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Abstract: The aim of this work was to eliminate the backflow power present in an isolated three-
port DC–DC converter. Backflow power (which is an inherent property of phase-shifted DC–DC
converters) is the major contributor of circulating current the converter, which in turn is known to
be the leading cause of system loss. The dual phase shift (DPS) control scheme (which alters the
transformer voltage waveform at the different winding terminals) was used to reduce the backflow
power. Mathematical relations for the backflow power present in the three-port converter were
derived. And from this equation, an operating point in which the backflow power is zero was also
obtained. This condition for zero backflow power was confirmed by simulations on PSIM. Added
to this were simulation results that show other operating conditions in which zero backflow power
could be obtained in the converter. In addition, equations for the power processed at the different
ports of the converter were also presented, and 3D plots were made to illustrate the variation of the
power and backflow power with respect to the phase shift ratios of the DPS control scheme. It was
observed that the backflow power can be totally removed from the three-port converter when using
this control scheme.

Keywords: backflow power; three-port converter; reactive power; dual phase shift; isolated DC–DC
converter; multi-winding DC–DC converter

1. Introduction

The multi-port or multi-winding-based DC–DC converter enables the interconnection
of multiple energy sources and systems; this can be especially useful in DC microgrids
for interconnecting different renewable energy power busses. In contrast to multi-port
DC–DC converters that employ separate transformers for isolation at each module, thereby
increasing the total weight of the converter, the converter researched in this work makes
use of a single multi-winding transformer for isolation, which interconnects the different
ports. This sees the reduction of isolation transformers leading to a significant increase in
power density due to the reduction of the isolation transformer core and power conversion
stages. A block representation of the three-port converter is as shown in Figure 1. It makes
use of a single three-winding high-frequency transformer, interconnecting three ports [1–3].

The isolated three-port DC–DC converter is a multi-winding-based DC–DC converter
that transfers power based on the phase difference between the switching signals of the
sending and the receiving port(s). The isolated three-port DC–DC converter, as with the
case of any other phase-shifted DC–DC converter, suffers from high backflow power, and
this backflow power is known to be immanent in DC–DC converters that are phase-shifted.
In simple terms, backflow power can be defined as the power that “flows back” to the
transmitting source. Additionally, it is the main cause of system loss, since it flows contrary
to the active power of the converter [4,5].
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Figure 1. Block diagram representation of the three-winding transformer-based DC–DC converter.

Although much work has been carried out on the multi-winding-based DC–DC
converter, especially on the three-port converter, it still faces some limitations, which over
time have been investigated by different authors [6–8]. Since the main goal of this research
was efficiency improvement and stress reduction by eliminating the backflow power, the
literature focuses on that aspect. Ref. [8] presents a method of efficiency improvement on
the TAB converter by optimizing conduction loss. This was realized by minimizing the true
RMS current instead of the fundamental part alone, as is the case in other studies.

The backflow power discussed in this paper contributes significantly to the reactive
power in phase-shifted DC converters with an isolation transformer. On that note, we
reviewed the following journals. Ref. [9] defined reactive power as negative power that
flows back to the input source, while [4,10,11] defined reactive power as the reactive power
consumed by the converter’s inductor with no fundamental frequency approximation
of the voltage and currents. What [9] referred to as “reactive power” is actually what
is referred to as “backflow power” in this paper. However, since the backflow power
is the major contributor to the reactive power in the converter, the backflow power can
then be interchangeably referred to as the system’s reactive power. The authors of [9]
distinctly showed how minimizing the reactive (backflow) power positively influences the
overall efficiency. The result of [4] presents a neural network model for the minimization of
reactive power in a DAB converter, while [10] presented equations (solutions) for the total
elimination of the reactive power from a DAB converter, and its results were outstanding.
Ref. [9] presents a novel DPS control scheme to eliminate reactive power from a DAB
converter. The algorithm presented in [9] is what was adopted by this work and applied
to the three-port converter for backflow power elimination. Ref. [12] presents a method
of reducing loss by adding a phase shift between diagonal switches of the primary, which
also adds the degree of freedom of control. Ref. [13] researched on a resonant solid-state
transformer (SST) aimed at minimizing the reactive currents. It features a phase-shifting
mechanism that uses additional phase shifts on the secondary and tertiary switching
signals but not the primary, resulting in a square voltage waveform on the primary side.
Thus, [12,13] are the exact opposite in terms of switching though both achieved the aim of
reactive power reduction. These works are different from that presented in this paper in
that—in addition to the normal angle between the transformer voltages at the first (primary)
winding and second (secondary) winding, primary and third (tertiary) winding—another
phase shift is added between the diagonal switching signals of all ports. This creates a
three-level voltage waveform on all transformer terminals. Ref. [14] presents a scheme for
interconnecting modular multilevel converters, which also minimizes circulating power
and overall system loss. Here, the control algorithm is dependent on the polarity of
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the power at the different output ports and does not make use of the fixed DPS control;
moreover, the implemented topology is different from that used in this paper. This paper’s
authors presented a study that compares the SPS and the DPS control scheme when applied
to a TAB converter [15]. Ref. [15]’s research proposes the control characteristics analysis
when the triple active bridge converter is controlled by two methods (the SPS and the
DPS). In particular, when the triple active bridge converter is controlled by the SPS and
DPS methods, harmonics, power characteristics, and backflow power representing loss are
compared and analyzed.

As far as we know, this is the first time a detailed analysis of the backflow power
present in a three-port DC–DC converter operating on the DPS control scheme is researched.
This paper proposes a method to eliminate backflow power that is a causative component of
power loss. Additionally, this paper applies the proposed method to an isolated three-port
bidirectional DC–DC converter and proposes the characteristics of eliminating backflow
power according to the proposed conditions. The work applies the DPS control algorithm
on all three ports of the converter. the DPS scheme makes use of an extra phase shift
angle between the switching signals of the diagonally placed semiconductor switches of
each H-bridge of the converter. This results in a three-level step voltage profile at the
transformer terminals. The mathematical description presented in this work results in not
only a solution for backflow power but also solutions for the power present at each port
of the three-port converter with full DPS control. With this control scheme, in addition to
rightly choosing the high-frequency isolation transformer specifications, it is possible to
achieve zero Backflow power, thereby drastically improving the overall system efficiency.

Section 2 presents the method; this includes the circuit description and the backflow
power analysis in both the SPS and DPS control algorithms. The derived equations and
waveforms are presented in Section 3, under the Results and Discussion. Lastly, Section 4 is
the conclusion of the work.

This paper’s authors presented a study that compares the SPS and the DPS control
scheme when applied to a TAB converter [15]. Ref. [15]’s research proposes the control
characteristics analysis when the triple active bridge converter is controlled by two methods
(the single phase shift (SPS) and the dual phase shift (DPS)). In particular, when the
triple active bridge converter is controlled by SPS and DPS methods, harmonics, power
characteristics, and backflow power representing loss are compared and analyzed.

As far as we know, this is the first time a detailed analysis of the backflow power
present in a three-port DC–DC converter operating on the DPS control scheme is researched.
This paper proposes a method to eliminate backflow power, which is a causative compo-
nent of power loss. Additionally, this paper applies the proposed method to an isolated
three-port bidirectional DC–DC converter and proposes the characteristics of eliminating
backflow power according to the proposed conditions.

This work applies the DPS control algorithm on all three ports of the converter. The
DPS scheme makes use of an extra phase shift angle between the switching signals of
the diagonally placed semiconductor switches of each H-bridge of the converter. This
results in a three-level step voltage profile at the transformer terminals. The mathematical
description presented in this work results in not only a solution for the backflow power
but also solutions for the power present at each port of the three-port converter with full
DPS control. With this control scheme, in addition to rightly choosing the high-frequency
isolation transformer specifications, it is possible to achieve zero backflow power, thereby
drastically improving the overall system efficiency.

2. Method
2.1. Circuit Description

Figure 2 shows the three-port DC–DC converter, and it is described as follows: This
converter comprises a single transformer core with three windings that are connected
to separate H-bridges. Taking the first port (connected to the primary winding of the
transformer) of the converter as a reference, the phase shift ratio between the primary
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and secondary voltages of the transformer is D1 while the ratio between the primary and
tertiary is D2. D1 = δ1/π and D2 = δ2/π, where δ1 and δ2 are the corresponding phase
shift angles between the secondary and tertiary with respect to the primary. V1, V2 and
V3 are the DC-linked voltages of the primary, secondary, and tertiary ports, respectively.
N1, N2, and N3 represent the number of turns of the transformer’s primary, secondary, and
tertiary winding, respectively, while U1, U2, and U3 are the corresponding transformer
voltages at the different winding terminals. Iin is the input current to port 1, while I1, I2,
and I3 are the transformer currents for each winding. L1, L2, and L3 are the corresponding
leakage inductance for the transformer windings.
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Figure 2. The three-port DC–DC converter showing the different H-bridges.

Table 1 shows the converter specifications that were used for the simulation.

Table 1. Converter specifications.

Specification Symbol Value

DC linked voltages (v) V 400
Switching frequency (kHz) f 30

Turn ratio n 1 : 1 : 1
Leakage inductance (µH) L 30

Power (kw) P1 10
Phase shift ratio Dm 0.215
Phase shift angle δm 38.7◦

Internal phase shift angle δ 20◦

For this work, all the DC linked voltages are the same (V1 = V2 = V3 = V), all
the windings are of the same number of turns, the leakage inductances are the same
(L1 = L2 = L3 = L), so too are the phase-shift ratios (D1 = D2 = Dm or δ1 = δ2 = δm). With
these assumptions, the voltage conversion ratios are all equal to 1. i.e., k1 = k2 = 1, where
k1 = V1

nV2
and k2 = V1

nV3
.

2.2. Backflow Power in SPS Operation

In the SPS control of the three-port converter, each H-bridge is controlled by a modu-
lated signal with a duty ratio of 0.5, and the secondary and tertiary H-bridge signals are
phase-shifted by the ratios D1 and D2, respectively, with respect to the primary H-bridge
(cell). This results in square voltage waveforms at the transformer terminals as shown
on the first curve of Figure 3b, while the PSIM simulated circuit is as shown in Figure 3a.
The second curve of Figure 3b illustrates the transformer currents (leakage inductance
currents) while the last is the input current waveform. From Figure 3b, it is observed that
the voltage across the primary winding (U1) becomes positive (from−400 V to 400 V) when
t = t0, whereas the corresponding current (I1) turns positive when t = t′0. So too, the
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same primary voltage becomes negative (from −400 V to 400 V) when t = t2, whereas the
current only turns negative when t = t′2. This results in a phase difference between the
primary current and voltage during the periods t = t0 ∼ t′0 and t = t2 ∼ t′2. This phase
difference leads to a negative power (since either the voltage is negative when the current
is positive, or the current is negative when the voltage is positive) that flows in the reverse
direction. This power is referred to as the power that “flows back” to the source or backflow
power. This occurs twice within one switching cycle and this power is represented by the
area below the zero mark on the input current waveform (i.e., the shaded area of the last
curve of Figure 3b). This power can be obtained by averaging the shaded area over half the
period and then multiplying by the input voltage. This can be obtained using the integral
equation provided in Equation (1).
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Figure 3. SPS operation (a) simulated circuit and (b) corresponding waveforms.

Table 2 shows the switching cycle for one period for the SPS control.

Table 2. Switching cycle for one period for the SPS.

Time Value

t0 0
t1 TDm/2
t2 T/2
t3 T[1 + Dm]/2
t4 T

The equation for the backflow power present in an SPS-controlled three-port converter
based on the transformer current and voltage waveforms is calculated by Equation (1).

PRxy = VIA =
2
T

V1

∫ t′0

t0

|iin(t)|dt (1)

where xy can be 12 and 13.
The time period is calculated by Equation (2)

(t′0 − t0)
T
4
[
k + (2Dm − 1)

k + 1
] k = k1, k2 (2)
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The peak current at time t0 is calculated by Equation (3)

|I0| =
TVn

12L
[k + (2Dm − 1)], Vn = V2, V3 (3)

The area of the shaded region is

A =
T2Vn

96L
[k + (2Dm − 1)]2

k + 1
(4)

Thus, the average current is shown as IA = 2A/T

IA =
TVn

48L
[k + (2Dm − 1)]2

k + 1
(5)

The backflow power between winding 1 and 2 is calculated by Equation (6)

PR12 =
V1V2

48fL
[k1 + (2Dm − 1)]2

k1 + 1
(6)

Backflow power between winding 1 and 3 is calculated by Equation (7)

PR13 =
V1V3

48fL
[k2 + (2Dm − 1)]2

k2 + 1
(7)

The total backflow power is

PRs = PR12 + PR13 (8)

In our work, when V1 = V2 = V3 = V and k = k1 = k2, the total backflow power
becomes

PRs =
V2

24fL
[k + (2Dm − 1)]2

k + 1
(9)

To further reduce the equation, when k = 1,

PRs =
(VDm)2

12fL
(10)

From Equation (10), it is seen that there is always some backflow power with the SPS
control scheme except for when the phase shift ration Dm = 0, at which point the converter
is off.

2.3. Backflow Power in DPS Operation

In DPS, each H-bridge has an extra phase angle (δ) between its diagonal switching
signals (the added angle is referred to as the internal phase shift angle). For the DPS, extra
signal generators are required for each H-bridge so as to create the internal phase-shift angle.
Thus, instead of the traditional square voltage profile, a three-level step voltage waveform
with the inclusion of a zero-voltage level is generated at the transformer terminals (the
first curves of Figure 4b). This phase shift angle corresponds to a phase shift ratio of D.
i.e., D = δ/π. The simulated circuit and the corresponding waveforms are, respectively,
shown in Figure 4a,b. The transformer currents are represented by I1, I2, and I3 of Figure 4b.
Following the same description as with the SPS control scheme, on the last curve, the
shaded area is the backflow power (input current curve). Contrary to the SPS, the backflow
region caused by the phase difference between the transformer voltage and current for the
DPS start from t = t1 and t = t4, and end at t = t′1 and t = t′4, respectively, for a single
switching period. This is as shown in the last curve of Figure 4b and it is seen that this
region spans a smaller period compared to the SPS implying lesser backflow power with
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the use of DPS control scheme. Table 3 presents the switching cycle for one period with the
DPS control.
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Table 3. Switching cycle for one period with the DPS control.

Time Value

t0 0
t1 TD/2
t2 T[D + Dm]/2
t3 T/2
t4 T[1 + D]/2
t5 T[1 + D + Dm]/2
t6 T

Using Table 3 and Figure 4b, the relations for obtaining the backflow power with the
DPS algorithm are presented in Equations (11)–(20).

PRxy = VIA =
2
T

V1

∫ t′1

t1

|iin(t)|dt (11)

The time period is calculated by Equation (12) while the peak current at time t1 is
calculated by Equation (13).

(t′1 − t1) =
T
4
[
k(1−D) + (2Dm −D− 1)

k + 1
] (12)

|I1| =
TVn

12L
[k(1−D) + (2Dm −D− 1)] (13)

The area of the shaded region is

A =
T2Vn

96L
[k(1−D) + (2Dm −D− 1)]2

k + 1
(14)
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Thus, the average current is calculated as

IA = 2A/T =
TVn

48L
[k(1−D) + (2Dm −D− 1)]2

k + 1
(15)

Therefore, the backflow power between winding 1 and 2, and winding 1 and 3 is
calculated by Equations (16) and (17), respectively.

PR12 =
V1V2

48fL
[k1(1−D) + (2Dm −D− 1)]2

k1 + 1
(16)

PR13 =
V1V3

48fL
[k2(1−D) + (2Dm −D− 1)]2

k2 + 1
(17)

The total Backflow power is calculated by

PRd = PR12+PR13 (18)

When V1 = V2 = V3 = V and k = k1 = k2, the total backflow power becomes

PRd =
V2

24fL
[k(1−D) + (2Dm −D− 1)]2

k + 1
(19)

Equation (20) provides a further reduced form of Equation (19) by letting k = 1

PRd =
V2

12fL
[Dm −D]2 (20)

From Equation (20), when D = Dm, there is zero power backflow. The next section
(Section 3; results) provides a simulation of this.

3. Results and Discursion
3.1. Backflow Power Eliminated with DPS

From Section 2, under the “Backflow Power in DPS Operation” subsection, Equation (20)
illustrates that it is possible to eliminate the backflow power when the added (inner) phase-
shift angle is equal to the outer phase-shift angle (D = Dm = 38.7◦ (this is illustrated
in Figure 5)). On this figure it is seen that the phase difference between the transformer
voltages and their corresponding currents is cut off (the phase difference is zero), i.e., the
current and voltage waveforms cuts across the zero line at same time (becomes negative
and/or positive at the same time: at T

2 [D, Dm] and at T
2 [1 + D, Dm

]
, respectively), this is

visible from the first and middle curves of Figure 5. Due to the elimination of the phase
difference, the backflow power is therefore eliminated from the three-port converter since
there is no power “flow back”. Moreover, for the time period in which the current is
already above or below the zero line, the added phase-shift angle clamps the voltage to
zero, leading to zero-power transferred and thereby zero backflow power for that time
period (0 ∼ T

2 [D, Dm

]
and T

2 ∼
T
2 + T

2 [D, Dm

]
within one switching cycle).

Based on further experimentation (simulations) on the converter, it is observed that
the backflow power can also be eliminated when the inner phase shift angle, D of the DPS
control scheme, is greater than the outer phase shift angle, Dm (as illustrated in Figure 6).
For this simulation, D = 45◦ while the outer phase shift angle remained at Dm = 38.7◦.
Furthermore, it is observed that when the zero-level of the transformer voltages overlap
(due to the inner phase-shift angle being greater than the outer phase-shift angle), the
transformer currents are clamped to zero (this is seen on the middle curve of Figure 6, i.e.,
TDm

2 ∼ TD
2 ), resulting in zero power being transferred during this period. When there is

zero power transfer, there is consequently zero backflow power.
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3.2. Characteristics of the Backflow Power and the Power Processed by the Converter

The power processed at the various ports based on the stated range of D, D1, and D2
under the SPS control scheme is shown by Equations (21)–(23) while those for the DPS
control scheme are shown by Equations (24)–(26).

For 0 ≤ D < D1 < D2 ≤ 1

PS1 =
V1V2D1(1−D1) + V1V3D2(1−D2)

6fL
(21)
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PS2 =
V1V2D1(D1 − 1) + V2V3[(1−D2 + D1)(D2 −D1)]

6fL
(22)

PS3 =
V1V3D2(D2 − 1) + V2V3[(1−D2 + D1)(D1 −D2)]

6fL
(23)

PD1 =
V1V2

[
(1−D1)D1 − D2

2 ]+V1V3[(1−D2)D2 − D2

2

]
6fL

(24)

PD2 =
V1V2

[
(D1 − 1)D1 +

D2

2 ]+V2V3[(1−D2 + D1)(D2 −D1)− D2

2

]
6fL

(25)

PD3 =
V1V3

[
(D2 − 1)D2 +

D2

2 ]+V2V3[(1−D2 + D1)(D1 −D2) +
D2

2

]
6fL

(26)

In our work, were D1 = D2 = Dm and V1 = V2 = V3 = V, Equations (21)–(26)
become Equations (27) and (28) for the SPS, and Equations (29) and (30) for the DPS

PS1 =
V2Dm(1−Dm)

3fL
(27)

PS2 = PS3 =
V2Dm(Dm − 1)

6fL
(28)

PD1 =
V2

[
Dm(1−Dm)− D2

2

]
3fL

(29)

PD2 = PD3 =
V2[Dm(Dm − 1) + D2

2 ]

6fL
(30)

Differentiating Equation (27) with respect to Dm and equating to zero for the maximum
point we obtain

dPS1

dDm
= V2(1− 2Dm) = 0, ⇒ Dm =

1
2

Therefore, the maximum transferable power PN, of converter occurs at Dm = 1
2 , and

is calculated by Equation (31). This value is used for the following characterization (i.e., the
unified value).

PN =
V2

12fL
(31)

Partial differentiating Equation (29), with respect to Dm and D, then equating to zero
for the maximum point we calculate

dPD1

dDm
= V2[(1− 2Dm)− 0] = 0, ⇒ Dm =

1
2

dPD1

dD
= V2(0− 0−D) = 0, ⇒ D = 0

The maximum power for the DPS control scheme occurs when Dm = 0.5 and D = 0.

3.2.1. Characterization of the Backflow Power

The unified value for the backflow power in the SPS-controlled three-port converter
is calculated by Equation (32), while that for the DPS-controlled three-port converter
is calculated by Equation (33). The corresponding 3D surface plots are illustrated in
Figure 7a,b.

prs =
PRs

PN
= Dm

2 (32)

prd =
PRd
PN

= [Dm −D]2 (33)
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Figure 7a shows that although the internal phase shift D has no effect on the backflow
power, it increases exponentially as the outer phase-shift Dm increases. Moreover, the
plot confirms the derived Equation (10), which illustrates that the backflow power can
only be zero when the converter is not transmitting power. Figure 7b also confirms the
statement under Equation (20), which illustrates that the backflow power is zero when the
internal phase-shift is equal the external phase-shift Moreover, as illustrated on Figure 6,
the backflow power is eliminated when the internal phase-shift is greater than the external
phase-shift; this is also discernible from Figure 7b. Furthermore, observations reveal that
the backflow power decreases as the inner phase-shift D angle increases.

3.2.2. Characterization of the Processed Power at the Various Ports

The equations for the unified power at the different ports are Equations (34)–(37).
Where ps1 is the unified power at port one using SPS control, pd1 is that at port one using
DPS control, ps2, ps3, and pd2, pd3 are the unified powers at ports two and three for the
SPS and DPS, respectively. Figure 8 illustrates the characteristics of the corresponding
unified powers.

ps1 =
PS1

PN
= 4Dm(1−Dm) (34)

pd1 =
Pd1
PN

= 4[Dm(1−Dm)− D2

2
] (35)

ps2 = ps3 =
PS2

PN
= 2Dm(Dm − 1) (36)

pd2 = pd3 =
Pd2
PN

= 2[Dm(Dm − 1) +
D2

2
] (37)

According to Figure 8a (power at port 1 for the SPS control scheme), the maximum
power occurs at Dm = 0.5, and D does not affect it. For the DPS control, at port 1 (Figure 8b),
maximum power is reached at Dm = 0.5 and D = 0. This affirms the partial derivation
of Equation (29), and this power reduces as the added phase shift (D) increases. Ports 2
and 3 exhibit the same behavior for the corresponding control schemes, except that the
maximum power is half of that at port 1 for the two control schemes.
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4. Conclusions

The purpose of this work was to eliminate the backflow power present in three-port
DC–DC converters. As seen in the literature, backflow power is immanent in DC–DC
converters that are phase-shifted, and it is the main cause of loss. Still, in the literature it
is seen that different switching techniques aimed at reducing the losses present in similar
converters have been proposed and implemented. This work introduces the use of the DPS
control scheme on the three-port converter for the purpose of backflow power elimination
and subsequently increases the overall system efficiency. This work sees the mathematical
analysis of not only the backflow power for both schemes, but also the full analysis of the
converter as well. This analysis led to the derivation of the equations for the power at
the various ports and also the backflow power with SPS and DPS. From this equation, a
mathematical solution for zero backflow power was obtained, i.e., the backflow power is
zero when the internal phase-shift angle (D) is equal to the external phase-shift angle (Dm).
This solution was confirmed by simulation with values of Dm = D, which obtained zero
backflow power. Other simulations showed that the backflow power can also be eliminated
when the internal phase-shift angle of the DPS is greater than the external phase-shift. As a
result, this work achieved its primary objective. It was also observed that, unless the added
phase-shift of the DPS scheme is zero, backflow power will always be greater with the SPS
algorithm than the DPS. This affords more credit to the DPS control algorithm.

For future works, more research should be carried out on the backflow power of the
three-port converter with a voltage conversion ratio (k) different from 1.
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Abbreviations

DPS Dual phase shift
SPS Single phase shift
PSIM Power SIM
TAB Triple active bridge
RMS Root mean square
DAB Dual active bridge
SST Solid state transformer
Symbols
D Internal phase-shift ratio
D1 Phase-shift ratio between ports 1 and 2
D2 Phase-shift ratio between ports 1 and 3
δ Internal phase-shift angle
δ1 Phase-shift angle between ports 1 and 2
δ2 Phase-shift angle between ports 1 and 3
V1, V2, V3 DC-linked voltages at the different ports
U1, U2, U3 Voltages at the transformer terminals
N1, N2, N3 Number of turns of the different windings
I1, I2, I3 Transformer currents
L1, L2, L3 Leakage inductance of the windings
Iin Converter’s input current
k1, k2 Voltage conversion ratios
PRs Backflow power with SPS control
PRd Backflow power with DPS control
A Area of the backflow region
T Switching period
IA Average current
PR12 Backflow power between ports 1 and 2
PR13 Backflow power between ports 1 and 3
Ps1, Ps2, Ps3 Power processed at the ports with SPS
Pd1, Pd2, Pd3 Power processed at the ports with DPS
PN Maximum possible power
prs Ratio of backflow power with SPS on PN
prd Ratio of backflow power with DPS on PN
ps1, ps2, ps3 Ratio of power at the ports with SPS on PN
pd1, pd2, pd3 Ratio of power at the ports with DPS on PN
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