Predicting Electricity Consumption in the Kingdom of Saudi Arabia
Abstract
:1. Introduction
1.1. Prior Studies
1.1.1. The First Perspective: Predicting Consumption Values in 2030
1.1.2. The Second Perspective: Models Used in Forecasting
- 1.
- There will be a steady and continuous increase in KSA’s electric energy consumption until 2030.
- 2.
- It is possible to synthesize the polynomial models and the ARIMA models.
- 3.
- Prediction accuracy using the compound models is better than prediction accuracy using a single polynomial or a single stochastic model.
2. Materials and Methods
2.1. The General Equation of the Polynomial Models Used
2.2. Calculating the Parameters of the Models
2.3. Comparing Models
2.4. Testing the Significance of the Second Order Polynomial Model
2.5. Prediction Using the Second Order Polynomial Model in the Sample Period 1990–2019
2.6. Residues of the Second Order Polynomial Model
2.7. Modeling Residuals Using the ARIMA Model
2.8. Calculating Residuals of the Residuals and Making Sure They Become White Noise
2.9. Calculating Autocorrelation Function (ACF) [16,20,21] for Residuals of Residuals
2.10. Testing ACF Coefficients One by One
2.11. Synthesizing the Second Order Polynomial Outputs with ARIMA Period 1990–2019
2.12. Comparing Polynomial Residuals with Compound Model Residuals (Sample Period 1990–2019)
2.13. Predicting Electricity Consumption in KSA from 2020 to 2030 Using Compound Model
3. Explanation of the Results
- -
- There will be a steady and continuous increase in the KSA’s electric energy consumption until 2030.
- -
- It is possible to synthesize the polynomial models and the ARIMA models.
- -
- Prediction accuracy using the compound models is better than prediction accuracy using a single polynomial or a single stochastic model.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | Period T | Actual Consumption TWh | Year | Period T | Actual Consumption TWh | Year | Period T | Actual Consumption TWh |
---|---|---|---|---|---|---|---|---|
1990 | 1 | 79.9 | 2000 | 11 | 138.7 | 2010 | 21 | 240.1 |
1991 | 2 | 85 | 2001 | 12 | 146.1 | 2011 | 22 | 250.1 |
1992 | 3 | 93.5 | 2002 | 13 | 154.9 | 2012 | 23 | 271.1 |
1993 | 4 | 102.7 | 2003 | 14 | 166.6 | 2013 | 24 | 284.1 |
1994 | 5 | 106 | 2004 | 15 | 173.4 | 2014 | 25 | 311.8 |
1995 | 6 | 109.9 | 2005 | 16 | 191.1 | 2015 | 26 | 338.5 |
1996 | 7 | 112.2 | 2006 | 17 | 196.3 | 2016 | 26 | 345.6 |
1997 | 8 | 119.1 | 2007 | 18 | 204.4 | 2017 | 28 | 355.2 |
1998 | 9 | 126.2 | 2008 | 19 | 204.2 | 2018 | 29 | 359.2 |
1999 | 10 | 131 | 2009 | 20 | 217.3 | 2019 | 30 | 357.4 |
Polynomial Order, n | Coefficient of Determination, R2 |
---|---|
1 | 0.954939 |
2 | 0.990933 |
3 | 0.990954 |
4 | 0.994186 |
5 | 0.996316 |
6 | 0.998177 |
7 | 0.998177 |
8 | 0.998873 |
9 | 0.998929 |
10 | 0.998929 |
Period T | Actual Consumption Y | Estimated Consumption y Hat | Period T | Actual Consumption Y | Estimated Consumption y Hat | Period T | Actual Consumption Y | Estimated Consumption y Hat |
---|---|---|---|---|---|---|---|---|
1 | 79.9 | 85.99859 | 11 | 138.7 | 139.2364 | 21 | 240.1 | 243.6417 |
2 | 85 | 89.01984 | 12 | 146.1 | 147.3744 | 22 | 250.1 | 256.8965 |
3 | 93.5 | 92.55276 | 13 | 154.9 | 156.0241 | 23 | 271.1 | 270.6629 |
4 | 102.7 | 96.59736 | 14 | 166.6 | 165.1854 | 24 | 284.1 | 284.941 |
5 | 106 | 101.1536 | 15 | 173.4 | 174.8585 | 25 | 311.8 | 299.7308 |
6 | 109.9 | 106.2216 | 16 | 191.1 | 185.0432 | 26 | 338.5 | 315.0322 |
7 | 112.2 | 111.8012 | 17 | 196.3 | 195.7395 | 27 | 345.6 | 330.8453 |
8 | 119.1 | 117.8925 | 18 | 204.4 | 206.9476 | 28 | 355.2 | 347.1701 |
9 | 126.2 | 124.4955 | 19 | 204.2 | 218.6673 | 29 | 359.2 | 364.0066 |
10 | 131 | 131.6101 | 20 | 217.3 | 230.8987 | 30 | 357.4 | 381.3547 |
Period T | Actual Consumption Y | Estimated Consumption by Second Order Polynomial | Residuals E = y − | Period T | Actual Consumption Y | Estimated Consumption Second Order Polynomial | Residuals E = y − |
---|---|---|---|---|---|---|---|
1 | 79.9 | 85.99858871 | −6.09858871 | 16 | 191.1 | 185.0431591 | 6.05684093 |
2 | 85 | 89.01983732 | −4.01983732 | 17 | 196.3 | 195.7395278 | 0.56047215 |
3 | 93.5 | 92.55276061 | 0.94723939 | 18 | 204.4 | 206.9475713 | −2.54757131 |
4 | 102.7 | 96.59735857 | 6.10264143 | 19 | 204.2 | 218.6672894 | −14.4672894 |
5 | 106 | 101.1536312 | 4.84636878 | 20 | 217.3 | 230.8986823 | −13.5986823 |
6 | 109.9 | 106.2215785 | 3.67842146 | 21 | 240.1 | 243.6417498 | −3.54174976 |
7 | 112.2 | 111.8012005 | 0.39879946 | 22 | 250.1 | 256.8964919 | −6.79649194 |
8 | 119.1 | 117.8924972 | 1.20750278 | 23 | 271.1 | 270.6629088 | 0.43709121 |
9 | 126.2 | 124.4954686 | 1.70453142 | 24 | 284.1 | 284.9410003 | −0.84100032 |
10 | 131 | 131.6101146 | −0.61011461 | 25 | 311.8 | 299.7307665 | 12.0692335 |
11 | 138.7 | 139.2364353 | −0.53643532 | 26 | 338.5 | 315.0322074 | 23.4677926 |
12 | 146.1 | 147.3744307 | −1.27443072 | 27 | 345.6 | 330.845323 | 14.754677 |
13 | 154.9 | 156.0241008 | −1.12410079 | 28 | 355.2 | 347.1701132 | 8.02988678 |
14 | 166.6 | 165.1854455 | 1.41455447 | 29 | 359.2 | 364.0065781 | −4.80657814 |
15 | 173.4 | 174.858465 | −1.45846496 | 30 | 357.4 | 381.3547177 | −23.9547177 |
Period T | Actual Consumption Y | Estimated Consumption | Actual Residuals E | Estimated Residuals |
---|---|---|---|---|
1 | 79.9 | 85.99859 | −6.09859 | |
2 | 85 | 89.01984 | −4.01984 | −6.71432 |
3 | 93.5 | 92.55276 | 0.94724 | −4.63557 |
4 | 102.7 | 96.59736 | 6.10264 | 0.33151 |
5 | 106 | 101.1536 | 4.84637 | 5.48691 |
6 | 109.9 | 106.2216 | 3.67842 | 4.23064 |
7 | 112.2 | 111.8012 | 0.39880 | 3.06269 |
8 | 119.1 | 117.8925 | 1.20750 | −0.21693 |
9 | 126.2 | 124.4955 | 1.70453 | 0.59177 |
10 | 131 | 131.6101 | −0.61011 | 1.08880 |
11 | 138.7 | 139.2364 | −0.53644 | −1.22584 |
12 | 146.1 | 147.3744 | −1.27443 | −1.15216 |
13 | 154.9 | 156.0241 | −1.12410 | −1.89016 |
14 | 166.6 | 165.1854 | 1.41455 | −1.73983 |
15 | 173.4 | 174.8585 | −1.45846 | 0.79883 |
16 | 191.1 | 185.0432 | 6.05684 | −2.07419 |
17 | 196.3 | 195.7395 | 0.56047 | 5.44111 |
18 | 204.4 | 206.9476 | −2.54757 | −0.05526 |
19 | 204.2 | 218.6673 | −14.46729 | −3.16330 |
20 | 217.3 | 230.8987 | −13.59868 | −15.08302 |
21 | 240.1 | 243.6417 | −3.54175 | −14.21441 |
22 | 250.1 | 256.8965 | −6.79649 | −4.15748 |
23 | 271.1 | 270.6629 | 0.43709 | −7.41222 |
24 | 284.1 | 284.941 | −0.84100 | −0.17864 |
25 | 311.8 | 299.7308 | 12.06923 | −1.45673 |
26 | 338.5 | 315.0322 | 23.46779 | 11.45350 |
27 | 345.6 | 330.8453 | 14.75468 | 22.85206 |
28 | 355.2 | 347.1701 | 8.02989 | 14.13895 |
29 | 359.2 | 364.0066 | −4.80658 | 7.41416 |
30 | 357.4 | 381.3547 | −23.95472 | −5.42231 |
Time T | Actual Error E | Estimated Error | Difference between Actual Error and Estimated Error the Residuals of Residuals |
---|---|---|---|
1 | −6.09859 | ||
2 | −4.01984 | −6.71432 | 2.69448 |
3 | 0.94724 | −4.63557 | 5.58281 |
4 | 6.10264 | 0.33151 | 5.77113 |
5 | 4.84637 | 5.48691 | −0.64054 |
6 | 3.67842 | 4.23064 | −0.55222 |
7 | 0.39880 | 3.06269 | −2.66389 |
8 | 1.20750 | −0.21693 | 1.42443 |
9 | 1.70453 | 0.59177 | 1.11276 |
10 | −0.61011 | 1.08880 | −1.69892 |
11 | −0.53644 | −1.22584 | 0.68941 |
12 | −1.27443 | −1.15216 | −0.12227 |
13 | −1.12410 | −1.89016 | 0.76606 |
14 | 1.41455 | −1.73983 | 3.15438 |
15 | −1.45846 | 0.79883 | −2.25729 |
16 | 6.05684 | −2.07419 | 8.13103 |
17 | 0.56047 | 5.44111 | −4.88064 |
18 | −2.54757 | −0.05526 | −2.49231 |
19 | −14.46729 | −3.16330 | −11.30399 |
20 | −13.59868 | −15.08302 | 1.48434 |
21 | −3.54175 | −14.21441 | 10.67266 |
22 | −6.79649 | −4.15748 | −2.63901 |
23 | 0.43709 | −7.41222 | 7.84931 |
24 | −0.84100 | −0.17864 | −0.66236 |
25 | 12.06923 | −1.45673 | 13.52596 |
26 | 23.46779 | 11.45350 | 12.01429 |
27 | 14.75468 | 22.85206 | −8.09739 |
28 | 8.02989 | 14.13895 | −6.10906 |
29 | −4.80658 | 7.41416 | −12.22074 |
30 | −23.95472 | −5.42231 | −18.53241 |
Lag | Coefficients of the Autocorrelation Function ACF | La | Coefficients of the Autocorrelation Function ACF |
---|---|---|---|
1 | 0.258 | 13 | 0.000 |
2 | 0.112 | 14 | −0.123 |
3 | −0.088 | 15 | −0.067 |
4 | −0.322 | 16 | −0.116 |
5 | −0.036 | 17 | 0.047 |
6 | −0.274 | 18 | 0.014 |
7 | −0.174 | 19 | 0.007 |
8 | −0.079 | 20 | 0.034 |
9 | −0.041 | 21 | 0.049 |
10 | 0.180 | 22 | 0.110 |
11 | 0.136 | 23 | 0.081 |
12 | 0.156 | 24 | −0.021 |
Lag | rk | |Z0| | |
---|---|---|---|
1 | 0.258 | 1.413 | 1.413 |
2 | 0.112 | 0.613 | 0.613 |
3 | −0.088 | −0.482 | 0.482 |
4 | −0.322 | −1.764 | 1.764 |
5 | −0.036 | −0.197 | 0.197 |
6 | −0.274 | −1.501 | 1.501 |
7 | −0.174 | −0.953 | 0.953 |
8 | −0.079 | −0.433 | 0.433 |
9 | −0.041 | −0.225 | 0.225 |
10 | 0.180 | 0.986 | 0.986 |
11 | 0.136 | 0.745 | 0.745 |
12 | 0.156 | 0.854 | 0.854 |
13 | 0.000 | 0.000 | 0.000 |
14 | −0.123 | −0.674 | 0.674 |
15 | −0.067 | −0.367 | 0.367 |
16 | −0.116 | −0.635 | 0.635 |
17 | 0.047 | 0.257 | 0.257 |
18 | 0.014 | 0.077 | 0.077 |
19 | 0.007 | 0.038 | 0.038 |
20 | 0.034 | 0.186 | 0.186 |
21 | 0.049 | 0.268 | 0.268 |
22 | 0.110 | 0.602 | 0.602 |
23 | 0.081 | 0.444 | 0.444 |
24 | −0.021 | −0.115 | 0.115 |
T | Y | Second Order Polynomial Outputs | E | ARIMA Model Outputs | Compound Model Outputs |
---|---|---|---|---|---|
1 | 79.9 | 85.99859 | −6.09859 | 85.99859 | |
2 | 85 | 89.01984 | −4.01984 | −6.71432 | 82.30552 |
3 | 93.5 | 92.55276 | 0.94724 | −4.63557 | 87.91719 |
4 | 102.7 | 96.59736 | 6.10264 | 0.33151 | 96.92887 |
5 | 106 | 101.1536 | 4.84637 | 5.48691 | 106.64051 |
6 | 109.9 | 106.2216 | 3.67842 | 4.23064 | 110.45224 |
7 | 112.2 | 111.8012 | 0.3988 | 3.06269 | 114.86389 |
8 | 119.1 | 117.8925 | 1.2075 | −0.21693 | 117.67557 |
9 | 126.2 | 124.4955 | 1.70453 | 0.59177 | 125.08727 |
10 | 131 | 131.6101 | −0.61011 | 1.0888 | 132.6989 |
11 | 138.7 | 139.2364 | −0.53644 | −1.22584 | 138.01056 |
12 | 146.1 | 147.3744 | −1.27443 | −1.15216 | 146.22224 |
13 | 154.9 | 156.0241 | −1.1241 | −1.89016 | 154.13394 |
14 | 166.6 | 165.1854 | 1.41455 | −1.73983 | 163.44557 |
15 | 173.4 | 174.8585 | −1.45846 | 0.79883 | 175.65733 |
16 | 191.1 | 185.0432 | 6.05684 | −2.07419 | 182.96901 |
17 | 196.3 | 195.7395 | 0.56047 | 5.44111 | 201.18061 |
18 | 204.4 | 206.9476 | −2.54757 | −0.05526 | 206.89234 |
19 | 204.2 | 218.6673 | −14.4673 | −3.1633 | 215.504 |
20 | 217.3 | 230.8987 | −13.5987 | −15.083 | 215.81568 |
21 | 240.1 | 243.6417 | −3.54175 | −14.2144 | 229.42729 |
22 | 250.1 | 256.8965 | −6.79649 | −4.15748 | 252.73902 |
23 | 271.1 | 270.6629 | 0.43709 | −7.41222 | 263.25068 |
24 | 284.1 | 284.941 | −0.841 | −0.17864 | 284.76236 |
25 | 311.8 | 299.7308 | 12.06923 | −1.45673 | 298.27407 |
26 | 338.5 | 315.0322 | 23.46779 | 11.4535 | 326.4857 |
27 | 345.6 | 330.8453 | 14.75468 | 22.85206 | 353.69736 |
28 | 355.2 | 347.1701 | 8.02989 | 14.13895 | 361.30905 |
29 | 359.2 | 364.0066 | −4.80658 | 7.41416 | 371.42076 |
30 | 357.4 | 381.3547 | −23.9547 | −5.42231 | 375.93239 |
T | Y | Boundary Residuals | Residuals of the Compound Model ) | |||
---|---|---|---|---|---|---|
1 | 79.9 | 85.99859 | −6.09859 | 85.99859 | −6.09859 | |
2 | 85 | 89.01984 | −4.01984 | −6.71432 | 82.30552 | 2.69448 |
3 | 93.5 | 92.55276 | 0.94724 | −4.63557 | 87.91719 | 5.58281 |
4 | 102.7 | 96.59736 | 6.10264 | 0.33151 | 96.92887 | 5.77113 |
5 | 106 | 101.1536 | 4.84637 | 5.48691 | 106.64051 | −0.64051 |
6 | 109.9 | 106.2216 | 3.67842 | 4.23064 | 110.45224 | −0.55224 |
7 | 112.2 | 111.8012 | 0.3988 | 3.06269 | 114.86389 | −2.66389 |
8 | 119.1 | 117.8925 | 1.2075 | −0.21693 | 117.67557 | 1.42443 |
9 | 126.2 | 124.4955 | 1.70453 | 0.59177 | 125.08727 | 1.11273 |
10 | 131 | 131.6101 | −0.61011 | 1.0888 | 132.6989 | −1.6989 |
11 | 138.7 | 139.2364 | −0.53644 | −1.22584 | 138.01056 | 0.68944 |
12 | 146.1 | 147.3744 | −1.27443 | −1.15216 | 146.22224 | −0.12224 |
13 | 154.9 | 156.0241 | −1.1241 | −1.89016 | 154.13394 | 0.76606 |
14 | 166.6 | 165.1854 | 1.41455 | −1.73983 | 163.44557 | 3.15443 |
15 | 173.4 | 174.8585 | −1.45846 | 0.79883 | 175.65733 | −2.25733 |
16 | 191.1 | 185.0432 | 6.05684 | −2.07419 | 182.96901 | 8.13099 |
17 | 196.3 | 195.7395 | 0.56047 | 5.44111 | 201.18061 | −4.88061 |
18 | 204.4 | 206.9476 | −2.54757 | −0.05526 | 206.89234 | −2.49234 |
19 | 204.2 | 218.6673 | −14.46729 | −3.1633 | 215.504 | −11.304 |
20 | 217.3 | 230.8987 | −13.59868 | −15.083 | 215.81568 | 1.48432 |
21 | 240.1 | 243.6417 | −3.54175 | −14.2144 | 229.42729 | 10.67271 |
22 | 250.1 | 256.8965 | −6.79649 | −4.15748 | 252.73902 | −2.63902 |
23 | 271.1 | 270.6629 | 0.43709 | −7.41222 | 263.25068 | 7.84932 |
24 | 284.1 | 284.941 | −0.841 | −0.17864 | 284.76236 | −0.66236 |
25 | 311.8 | 299.7308 | 12.06923 | −1.45673 | 298.27407 | 13.52593 |
26 | 338.5 | 315.0322 | 23.46779 | 11.4535 | 326.4857 | 12.0143 |
27 | 345.6 | 330.8453 | 14.75468 | 22.85206 | 353.69736 | −8.09736 |
28 | 355.2 | 347.1701 | 8.02989 | 14.13895 | 361.30905 | −6.10905 |
29 | 359.2 | 364.0066 | −4.80658 | 7.41416 | 371.42076 | −12.22076 |
30 | 357.4 | 381.3547 | −23.95472 | −5.42231 | 375.93239 | −18.53239 |
References
- Soummane, S.; Ghersi, F. Projecting Saudi sectoral electricity demand in 2030 using a computable general equilibrium model. Energy Strat. Rev. 2022, 39, 100787. [Google Scholar] [CrossRef]
- Omran, K.M.; Zaalan, R.A.-I. Using Some Statistical Methods to Predict the Consumption of Electric Energy in the Kingdom of Saudi Arabia; Economic Sciences; University of Basra, College of Administration and Economics: Basra, Iraq, 2012; Volume 8, p. 29. [Google Scholar]
- Al Harbi, F.; Csala, D. Saudi Arabia’s Electricity: Energy Supply and Demand Future Challenges; Lancaster University: Lancaster, UK, 2019. [Google Scholar]
- Almulla, Y. Gulf Cooperation Council (GCC) Countries 2040 Energy Scenario for Electricity Generation and Water Desalination; KTH Industrial Engineering and Management: Stockholm, Sweden, 2014. [Google Scholar]
- Liang, J.; Liang, Y. Analysis and Modeling for China’s Electricity Demand Forecasting Based on a New Mathematical Hybrid Method. Information 2017, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, Z.; Bodger, P.S. A variable asymptote logistic (VAL) model to forecast electricity consumption. Int. J. Comput. Appl. Technol. 2005, 22, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Oluropo, O.E.; Archibong, E.J.; Affia, N.J. Time Series Analysis of Industrial Electricity Consumption in Nigeria Using Harvey Model and Autoregressive Model. Int. J. Energy Power Eng. 2017, 6, 40–46. [Google Scholar] [CrossRef] [Green Version]
- Ghareeb, M.M. Forecasting Solar PV Consumption in China by Compound Application of Specific and Random Models; Zagazig University: Zagazig, Egypt, 2022. [Google Scholar]
- Al-Samman, A.H.; Mohamed, M.; Ahmed, G. Predicting the Consumption of Solar Photovoltaic Energy in China Using ten Frontiers. Sci. J. Fac. Commer. Sect. 2021. [Google Scholar]
- Badawi, A.R. Scientific Research Methods, 3rd ed.; Publications Agency: Kuwait, 1977. [Google Scholar]
- Sarhan, M.; Al-Mahmoudi, A. Scientific Research Methods, 3rd ed.; Dar Al-Kutub: Sana’a, Yemen; Al-Azhar University: Cairo, Egypt, 2019. [Google Scholar]
- BP. Statistical Review of World Energy, 69th ed.; Microsoft Excel; BP: London, UK, 2020. [Google Scholar]
- Ali Shalaby, O. Principles of Mathematics for Traders; Part One; Faculty of Commerce; Zagazig University: Zagazig, Egypt, 2001; p. 86. [Google Scholar]
- Polynomial Regression. Available online: http://polynomialregression.drque.net/online.php (accessed on 22 December 2022).
- Montgomery, D.C.; Jennings, C.L.; Kulahci, M. Introduction to Time Series Analysis and Forecasting; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Al-Rahman, A.; Al-Salihi, I. Introduction to Statistics; Faculty of Commerce, Zagazig University: Zagazig, Egypt, 1997; pp. 176–177. [Google Scholar]
- Casmir, L.C. Commercial Statistics; Mustafa, M.G., Translator; International House for Cultural Investments: Cairo, Egypt, 2003. [Google Scholar]
- Chong, J. Powerful Forecasting with MS Excel; XL Pert Enterprise: Perth, WA, USA, 2010. [Google Scholar]
- Abdel, A.; Sabry, R. Applied Statistics with SPSS System; Methodology House for Publishing and Distribution: Amman, Jordan, 2015; p. 65. [Google Scholar]
- Mohamed, A.; Samie, A. Econometrics and Statistical Analysis of Economic Relationships—A Modern Introduction Using Windows SPSS; Faculty of Commerce, Zagazig University: Zagazig, Egypt, 2009. [Google Scholar]
- Borgonovo, E. Sensitivity Analysis: An Introduction for the Management Scientist; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Bojnec, Š.; Križaj, A. Electricity Markets during the Liberalization: The Case of a European Union Country. Energies 2021, 14, 4317. [Google Scholar] [CrossRef]
- Bahmanyar, A.; Estebsari, A.; Ernst, D. The impact of different COVID-19 containment measures on electricity consumption in Europe. Energy Res. Soc. Sci. 2020, 68, 101683. [Google Scholar] [CrossRef] [PubMed]
- Abulibdeh, A. Modeling Electricity Consumption Patterns during the COVID-19 Pandemic across Six Socioeconomic Sectors in the State of Qatar. Energy Strategy Rev. 2021, 38, 100733. [Google Scholar] [CrossRef]
- Jaramillo, M.; Carrión, D. An Adaptive Strategy for Medium-Term Electricity Consumption Forecasting for Highly Unpredictable Scenarios: Case Study Quito, Ecuador during the Two First Years of COVID-19. Energies 2022, 15, 8380. [Google Scholar] [CrossRef]
- BP. Statistical Review of World Energy, 70th ed.; BP: London, UK, 2021. [Google Scholar]
- Scaron; Tefan, B.; Drago, P. Can Solar Electricity Production and Use Help to Promote Economic Development in Africa? Afr. J. Bus. Manag. 2011, 5, 6949–6956. [Google Scholar]
- Bojnec, Š.; Papler, D. Economic efficiency, energy consumption and sustainable development. J. Bus. Econ. Manag. 2011, 12, 353–374. [Google Scholar] [CrossRef] [Green Version]
- da Silva, F.L.C.; da Costa, K.; Rodrigues, P.C.; Salas, R.; López-Gonzales, J.L. Statistical and Artificial Neural Networks Models for Electricity Consumption Forecasting in the Brazilian Industrial Sector. Energies 2022, 15, 588. [Google Scholar] [CrossRef]
- Jin, N.; Yang, F.; Mo, Y.; Zeng, Y.; Zhou, X.; Yan, K.; Ma, X. Highly Accurate Energy Consumption Forecasting Model Based on Parallel LSTM Neural Networks. Adv. Eng. Inform. 2022, 51, 101442. [Google Scholar] [CrossRef]
- Yang, S.; Deng, Z.; Li, X.; Zheng, C.; Xi, L.; Zhuang, J.; Zhang, Z.; Zhang, Z. A novel hybrid model based on STL decomposition and one-dimensional convolutional neural networks with positional encoding for significant wave height forecast. Renew. Energy 2021, 173, 531–543. [Google Scholar] [CrossRef]
- Gao, T.; Niu, D.; Ji, Z.; Sun, L. Mid-term electricity demand forecasting using improved variational mode decomposition and extreme learning machine optimized by sparrow search algorithm. Energy 2022, 261, 5328. [Google Scholar] [CrossRef]
- Shin, S.-Y.; Woo, H.-G. Energy Consumption Forecasting in Korea Using Machine Learning Algorithms. Energies 2022, 15, 4880. [Google Scholar] [CrossRef]
- Lee, M.H.L.; Ser, Y.C.; Selvachandran, G.; Thong, P.H.; Cuong, L.; Son, L.H.; Tuan, N.T.; Gerogiannis, V.C. A Comparative Study of Forecasting Electricity Consumption Using Machine Learning Models. Mathematics 2022, 10, 1329. [Google Scholar] [CrossRef]
- Kauffman, R.J.; Kim, K.; Lee, S.Y.T.; Hoang, A.P.; Ren, J. Combining machine-based and econometrics methods for policy analytics insights. Electron. Commer. Res. Appl. 2017, 25, 115–140. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Li, R. Forecasting energy demand in China and India: Using single-linear, hybrid-linear, and non-linear time series forecast techniques. Energy 2018, 161, 821–831. [Google Scholar] [CrossRef]
- Fan, G.F.; Wei, X.; Li, Y.T.; Hong, W.C. Forecasting electricity consumption using a novel hybrid model. Sustain. Cities Soc. 2020, 61, 102320. [Google Scholar] [CrossRef]
- Lee, J.; Cho, Y. National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model. Energy 2022, 239, 122366. [Google Scholar] [CrossRef]
- Dagar, V.; Ahmed, F.; Waheed, F.; Bojnec, Š.; Khan, M.K.; Shaikh, S. Testing the Pollution Haven Hypothesis with the Role of Foreign Direct Investments and Total Energy Consumption. Energies 2022, 15, 4046. [Google Scholar] [CrossRef]
- Kousar, S.; Sabir, S.A.; Ahmed, F.; Bojnec, Š. Climate Change, Exchange Rate, Twin Deficit, and Energy Inflation: Application of VAR Model. Energies 2022, 15, 7663. [Google Scholar] [CrossRef]
T | Year | Estimated Consumption by the Second Order Polynomial | Residuals Estimated by the ARIMA Model | Estimated Consumption by the Compound Model |
---|---|---|---|---|
31 | 2020 | 399.2145 | −24.5705 | 374.64405 |
32 | 2021 | 417.586 | −25.1862 | 392.39983 |
33 | 2022 | 436.4692 | −25.8019 | 410.6673 |
34 | 2023 | 455.864 | −26.4176 | 429.44637 |
35 | 2024 | 475.7705 | −27.0334 | 448.73714 |
36 | 2025 | 496.1887 | −27.6491 | 468.53961 |
37 | 2026 | 517.1186 | −28.2648 | 488.85378 |
38 | 2027 | 538.5601 | −28.8806 | 509.67955 |
39 | 2028 | 560.5133 | −29.4963 | 531.01702 |
40 | 2029 | 582.9782 | −30.112 | 552.8662 |
41 | 2030 | 605.9548 | −30.7277 | 575.22707 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahmy, M.S.E.; Ahmed, F.; Durani, F.; Bojnec, Š.; Ghareeb, M.M. Predicting Electricity Consumption in the Kingdom of Saudi Arabia. Energies 2023, 16, 506. https://doi.org/10.3390/en16010506
Fahmy MSE, Ahmed F, Durani F, Bojnec Š, Ghareeb MM. Predicting Electricity Consumption in the Kingdom of Saudi Arabia. Energies. 2023; 16(1):506. https://doi.org/10.3390/en16010506
Chicago/Turabian StyleFahmy, Marwa Salah EIDin, Farhan Ahmed, Farah Durani, Štefan Bojnec, and Mona Mohamed Ghareeb. 2023. "Predicting Electricity Consumption in the Kingdom of Saudi Arabia" Energies 16, no. 1: 506. https://doi.org/10.3390/en16010506
APA StyleFahmy, M. S. E., Ahmed, F., Durani, F., Bojnec, Š., & Ghareeb, M. M. (2023). Predicting Electricity Consumption in the Kingdom of Saudi Arabia. Energies, 16(1), 506. https://doi.org/10.3390/en16010506