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Abstract

:

Forecasting energy consumption in Saudi Arabia for the period from 2020 until 2030 is investigated using a two-part composite model. The first part is the frontier, and the second part is the autoregressive integrated moving average (ARIMA) model that helps avoid the large disparity in predictions in previous studies, which is what this research seeks to achieve. The sample of the study has a size of 30 observations, which are the actual consumption values in the period from 1990 to 2019. The philosophy of this installation is to reuse the residuals to extract the remaining values. Therefore, it becomes white noise and the extracted values are added to increase prediction accuracy. The residuals were calculated and the ARIMA (0, 1, 0) model with a constant was developed both of the residual sum of squares and the root means square errors, which were compared in both cases. The results demonstrate that prediction accuracy using complex models is better than prediction accuracy using single polynomial models or randomly singular models by an increase in the accuracy of the estimated consumption and an improvement of 18.5% as a result of the synthesizing process, which estimates the value of electricity consumption in 2030 to be 575 TWh, compared to the results of previous studies, which were 365, 442, and 633 TWh.
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1. Introduction


The Kingdom of Saudi Arabia (KSA) is currently undergoing significant development in all fields, especially in the production of electric energy and electric energy consumption. The government is formulating future plans for the advancement of this sector due to its importance in targeted sustainable development and the mandate to generate electricity through alternative energy sources, as contained in Vision 2030. This is represented in the establishment of a number of economic development projects that pave the way to the goals of the KSA’s Vision 2030. This includes goals such as raising the competitiveness of renewable energy and managing carbon emissions in KSA.



KSA is the 14th largest consumer of electricity in the world. Its consumption is similar to that of the most densely populated countries, for example, Mexico, whose population in 2019 reached 127.5 million, compared to 34.2 million for KSA. It is also on par with the most advanced economies, for example, Italy, whose gross domestic product (GDP) for the year 2019 amounted to USD 2151.4 billion, compared to USD 704.0 billion for KSA. The electric energy consumption in KSA is affected by many economic variables, including economic growth, population growth, and income of individuals, and by energy prices, their fluctuations, and their direct and strong connection with the current successive global economic shocks [1,2].



The research problem and its challenges are summed up in the existence of a large variation in the predicted values of consumption in previous studies.



From this point, the importance of predicting electricity consumption until 2030 with greater accuracy using a composite model that helps avoid the large disparity in predictions in previous studies lies in clarifying the predicted electricity consumption for decision makers, in a way that enables them to develop and activate plans to keep pace with increasing energy demand—as proven by the results of this research—by using more renewable energy sources.



1.1. Prior Studies


In this part, we review the most important previous studies from two perspectives. First, the predicted values of electric energy consumption in KSA for the year 2030 are discussed. Second, a number of models used in prediction are reviewed.



1.1.1. The First Perspective: Predicting Consumption Values in 2030


The first study was conducted by Somani and Gracie in 2022 [1] on “Projecting Saudi sectoral electricity demand in 2030 using a computable general equilibrium model”. Their study predicted that the value of the total consumption would be 365.4 TWh in 2030. The second study was conducted by Al-Harbi and Shala in 2019 [3] on Saudi Arabia’s electricity: Energy supply and demand future challenges, in which they predicted electric energy consumption in KSA for the year 2030 to be 442 TWh. The third study was conducted by Al-Mulla in 2014 [4] on Gulf Cooperation Council (GCC) countries 2040 energy scenario for electricity generation and water desalination, in which he predicted that KSA’s electric energy consumption would reach 633.34 TWh in 2030. From the above, it is clear that there is a discrepancy in the estimates of future consumption, which justifies the need for further studies to accurately estimate consumption, especially in light of current global economic challenges.




1.1.2. The Second Perspective: Models Used in Forecasting


Liang and Liang 2017 [5] used a hybrid of the gray model and the logistic model to predict China’s electricity consumption from 2016 to 2020. It is noted that these are both distinct models. Muhammed and Podger 2005 [6] used the logistic model after modifying it by making the saturation level a function of population, electricity price, and gross national product (GNP). The modified model was used to predict electricity consumption in New Zealand in the period (2000–2020). Ogungbemi et al. 2017 [7] used the Harvey Model and a first order autoregressive model to predict the industrial electricity consumption in Nigeria from 2015 to 2029. Gharib 2022 [8] used a set of specific and stochastic models to predict the consumption of solar PV energy in China in the period 2019–2030. Al-Samman and Ahmed 2021 [9] used ten polynomial models to predict the consumption of solar PV energy in China in the period (2019–2030).



The research is based on the following hypotheses:




	1.

	
There will be a steady and continuous increase in KSA’s electric energy consumption until 2030.




	2.

	
It is possible to synthesize the polynomial models and the ARIMA models.




	3.

	
Prediction accuracy using the compound models is better than prediction accuracy using a single polynomial or a single stochastic model.









The rest of the study structure consists of the following sections: Section 2 presents previous studies. Section 3 develops the general equation of the polynomial models in the following steps: calculating the parameters of the models, comparing models and selecting the best one, testing the significance of the second order polynomial model, prediction using the second order polynomial model in the sample period from 1990 to 2019, modeling residuals using the ARIMA model, calculating residuals of the residuals and making sure that they become white noise, calculating the autocorrelation function (ACF) for residuals of the residuals, testing ACF parameters one by one, synthesizing the second order polynomial outputs with the outputs of the autoregressive integrated moving average (ARIMA) model in the sample period 1990–2019, comparing the polynomial residuals with the compound model residuals in the sample period, and predicting electric energy consumption in KSA in the period from 2020 until the end of 2030. Section 4 explains and discusses the results. The final Section 5 concludes with recommendations.






2. Materials and Methods


The inductive approach, with its descriptive and analytical parts, was used [10,11], where the electric energy consumption in KSA in the period from 1990 to 2019 was described. Then, these data were analyzed, and polynomial models were created to predict consumption. Various models were evaluated and the best of them selected; then, a stochastic model was developed for the residuals of the selected polynomial model, and a compound model was created consisting of a polynomial model and a stochastic model. The significance of the selected polynomial model was tested using the F-statistical test and it passed successfully; the significance of the selected ARIMA model was tested using the Z-statistical test to ensure that its residuals became white noise.



2.1. The General Equation of the Polynomial Models Used


The general equation of these models is [12]:


  y =  a 0  +  a 1  t +  a 2   t 2  + … +  a n   t n   



(1)




where: y is the dependent variable and expresses the value of the electric energy consumption (the unit is terawatt-hours); t is the independent variable and expresses time (the unit is the year);    a 0   ,    a 1   ,    a 2  ,   …. are the model parameters; n is the order of the polynomial and will be from 1 to 10.



We enter these parameters (   a 0   ,    a 1   ,    a 2   ). into a program called PHP, which calculates the values, and then put the parameter values in Excel to obtain the estimated   y ^  .




2.2. Calculating the Parameters of the Models


The actual electricity consumption data Table A1 will be used [13] in calculating the model parameters by applying the least squares method and using Excel and Hypertext Preprocessor (PHP) programs [14].



The results are shown in the Appendix, where   y ^   is the predicted consumption.



In these formulas, numbers in 17 decimal digits are used for accuracy because an important part of this research is related to the study of residuals, which are small quantities.




2.3. Comparing Models


The comparison between the ten models is made on the basis of the coefficient of determination R2, which is a strong measure of the quality of the model’s fit for the sample data. It also expresses the percentage of data interpreted by the model.



The coefficient of determination    R 2    is calculated as follows: [15,16,17]:


   R 2  =   S S F   S S T   = 1 −   S S R   S S T    



(2)




where


  S S T = S S R + S S F  



(3)







SST is the sum of the squared deviations of the actual consumption values from their mean. SSR is the sum of the square differences between the actual electricity consumption and estimated electricity consumption. SSF is the sum of the squared deviations of the estimated electricity consumption values from their mean:


  S S T =   ∑   t = 1  T     (   y t  −  y ¯   )   2   



(4)






  S S R =   ∑   t = 1  T     (   y t  −   y ^  t   )   2   



(5)






  S S F =   ∑   t = 1  T     (    y ^  t  −  y ¯   )    2            



(6)







T is the size of the study sample (the number of actual electricity consumption values used in the research).



   y t    is the actual electricity consumption.



    y ^  t    is the estimated electricity consumption.



   y ¯    is the average of the actual electricity consumption values.



    y ^  ¯    is the average of the estimated electricity consumption values.



From Figure 1 and Table A2, there is an improvement in the value of the coefficient of determination caused by increasing the polynomial order, which becomes limited after the second order polynomial. Since the lower the polynomial order, the better it is, due to the simplicity of the model, the second order polynomial model was selected.




2.4. Testing the Significance of the Second Order Polynomial Model


In this part, the “F-statistical test” is performed [16,18] to determine the significance of the selected model as a whole.



The general equation of the model is:


   y t  = a + b   t + c    t 2   



(7)







The test aims to determine if there is a relationship between the dependent variable yt and a subset of the variables t, t2.



The hypotheses are the null hypothesis H0 and the alternative hypothesis H1, and are as follows:


H0: a = b = c = 0











H1: at least one of a, …, c ≠ 0



Rejecting the null hypothesis H0 results in at least one of the variables t and t2 contributing significantly to the model.



Test procedures include an analysis of variance (the mean of sum of squared errors) by dividing the sum of the total squared errors (SST) into two parts. The first part is the sum of squared errors resulting from the model (regression process) SSF, and the second is the sum of the squared errors resulting due to the residual SSR, i.e.,


SST = SSF + SSR








where


  S S F =   ∑   i = 1   30      (    y ^  i  −   y ^  ¯   )   2  = 241915.7399  










  S S R =   ∑   i = 1   30      (   y i  −   y ^  i   )   2  = 2213.57356  











The test statistic of the significance of the model is:


   F 0  =   S S F / k   S S R /  (  n − p  )     








where k is the number of independent variables in the model (it is equal to 2 in the case under study), n is the number of observations (equal to 30 in the case under study), and p is the number of parameters in the model (equal to 3 in the case under study). In the case under study, it will be:


   F 0  =   241915.7399 / 2   2213.57356 /  (  30 − 3  )    = 1475.380149 .  











By comparing the value of      F 0    to the value


   F  α , k , n − p    








taken from the general table of the probability distribution “F” with a level of significance α = 0.05 and degrees of freedom for the numerator k = 2, and degrees of freedom for the denominator n − p = 27, i.e.,


   F  0.05 , 2 , 27   = 3.35  











By comparison, it was found that


   F 0  >  F  0.05 , 2 , 27    











Thus, the null hypothesis H0 was rejected with a confidence level of 95% and the alternative hypothesis H1 was accepted. That is, there is a significant relationship between the dependent variable and a subset of the independent variables; therefore, we accept the model.



The model is significant with a confidence level of 95%, and it reconciles the data to an excellent degree. The conclusion is that the model can be relied upon in the prediction process.




2.5. Prediction Using the Second Order Polynomial Model in the Sample Period 1990–2019


Table A3 shows estimated electricity consumption by the second order polynomial model (calculating the actual and estimated consumption in the sample period 1990–2019) after concluding that the model as a whole is significant, with a confidence level of 95%, that it reconciles the data to an excellent degree, and that the model can be relied upon in the prediction process. The residuals, which will be inputs to the random model, can be calculated in Table A4.




2.6. Residues of the Second Order Polynomial Model


Table A4 and Figure 2 present the residues of the second order polynomial model by calculating the difference between the actual consumption and estimated consumption E = y −   y ^   within the period 1999–2019.



Figure 2 shows that this period (T = 26) (2015) has the biggest difference between actual and estimated consumption.




2.7. Modeling Residuals Using the ARIMA Model


By entering the residuals into the SPSS program and using the EXPERT MODELER, we obtained the optimal model for the residuals, which was ARIMA (0, 1, 0) [15,19,20] with a constant of (−0.616). This is shown in Table A5; by entering the residuals into the SPSS program and using the EXPERT MODELER, we obtained the optimal model for the residuals, which was ARIMA (0, 1, 0) [15,19,20] with a constant of (−0.616). This is a step to calculate the residuals of the residuals.




2.8. Calculating Residuals of the Residuals and Making Sure They Become White Noise


The calculation of residuals of the residuals shown in Table A6 makes sure that it becomes white noise; this is very important for the next step of calculating the autocorrelation function for residuals of the residuals.




2.9. Calculating Autocorrelation Function (ACF) [16,20,21] for Residuals of Residuals


Table A7 shows the calculation of the autocorrelation function. The autocorrelation analysis helps detect patterns and check for randomness. This is especially important when intending to use the (ARIMA) model for forecasting because it helps to determine its parameters.




2.10. Testing ACF Coefficients One by One


If the time series is white noise, then the distribution of the correlation coefficients for the sample follows the normal distribution with a mean of zero and a variance of 1/T, where T is the number of time periods; in the case under study, T = 30. This can be expressed as follows [19,20,21]:


   r k  ~ N  (  0 ,  1 T   )   



(8)







Thus, the null hypothesis:


   H 0  :      r k  = 0  








and can be tested using the parametric statistical test:


   Z 0  =    r k       1 T      =  r k   T   



(9)







If it is:


   |   Z 0   |  <  Z   α 2     



(10)




where    Z   α 2      is the upper percentage point α/2 in the standard normal distribution. This indicates that the coefficients of the ACF are statistically zero. That is, we accept the null hypothesis at the confidence level α = 0.05.



Note that    Z   α 2    =  Z  0.025   = 1.96   is from the standard normal distribution table.



From Table A8, it is clear that:


   |   Z 0   |  <  Z   α 2     



(11)







This is for all rk coefficients. Thus, the null hypothesis can be accepted; all coefficients are statistically zero at the level of significance α = 0.05. Therefore, the residual series of the stochastic model is white noise, which means that the model is sufficient and significant with a confidence level of 95%.




2.11. Synthesizing the Second Order Polynomial Outputs with ARIMA Period 1990–2019


Table A9 presents a compound model. It consists of a polynomial model and a stochastic model. It examines the process of superposition between the second order parametric model and the ARIMA model.




2.12. Comparing Polynomial Residuals with Compound Model Residuals (Sample Period 1990–2019)


To show the improvement that occurred in the results due to the synthesizing process of the second order polynomial model and the ARIMA model, the residuals of the compound model were calculated, and we compared the sum of the residuals square and the square root of the mean of residuals of the two models shown in Table A10.



The residual sum of squares of the polynomial model RSS1 = 2213.57356.



The residual sum of squares of the compound model RSS2 = 1471.04359.



The amount of improvement resulting from the synthesizing process = RSS1 − RSS2 = 742.52997.



Improvement percentage = (RSS1 − RSS2)/RSS1 × 100 = 33.5444%.



Root-mean-square of residuals of the polynomial model RMSE1 = 8.58987.



Root-mean-square of residuals of the compound model RMSE2 = 7.00248.



Difference = RMSE1-RMSE2 = 1.58739.



Improvement percentage = (RMSE1 − RMSE2)/RMSE1 × 100 = 18.47979%.



As shown above, the synthesizing process of the two models led to a significant improvement in the accuracy of the results.



Figure 3 shows the synthesizing process of the two models that led to a significant improvement in the accuracy of the results in line y-(yhat + Ehat) compared to line E.




2.13. Predicting Electricity Consumption in KSA from 2020 to 2030 Using Compound Model


Table 1 shows the last step in predicting the electricity consumption values for the period 2020–2030 by using the compound model.





3. Explanation of the Results


The polynomials of the first order to the tenth order were experimented, where their parameters were calculated by entering the actual electricity consumption data, available in the study sample, into the PHP program on the Internet based on the method of least squares. The coefficient of determination R2 was calculated for each polynomial.



The coefficient of determination is a measure of how well the model fits the sample data; that is, the extent of convergence between the estimated electricity consumption and actual electricity consumption in the sample period. It also expresses the percentage of the data explained by the model from the total data in the sample.



By comparing the values of the coefficient of determination of the polynomials, it was found that the improvement in the value of the coefficient of determination was little for the polynomials from the third order to the tenth order. Considering that the simpler the model, the better, the second order polynomial was selected as a model for the sample data.



A graph was made showing the relationship between the polynomial and the value of determining factor. From the graph, it was found that the improvement in accuracy became imperceptible after the second order polynomial; this compendium could reduce the number of selected orders, but this was not possible before this experiment.



The significance of the model was tested using the F-statistical test at the level of significance α = 0.05, where the test was successfully passed. The residuals of the model were calculated, showing the difference between the actual electricity consumption and estimated electricity consumption in the sample period.



The ARIMA model was developed for these residuals by entering them into the SPSS statistical program and using the Expert Modeler available in the software. The ARIMA (0, 1, 0) model was produced with a constant, which is the best model for expressing residuals. The estimated residuals were calculated in the sample period using the ARIMA model, and then the residuals of the residuals were calculated, revealing the difference between the estimated residuals and the actual residuals. To make sure that the residuals of residuals became white noise, i.e., that they became statistically zero, the coefficients of the ACF were calculated and the Z-test was applied at the level of significance α = 0.05; the test was passed successfully. This means that the residuals estimated by the ARIMA model are all the remaining meaningful values in the actual residuals, and they can then be added to the electricity consumption estimated by the second order polynomial model in order to increase its accuracy.



In order to obtain the outputs of the compound model, the outputs of the ARIMA model were added to the outputs of the second order polynomial model. In order to find out the extent of improvement in the results obtained from the synthesizing process, the sum of the root-mean-square error in the sample period was calculated for each of the second order polynomial model and the compound model; a decrease of 33.5% was found, the root mean square deviation was calculated in both cases, and a decrease of 18.5% was found. All this means an improvement in the prediction accuracy using the compound model. The compound model was used in calculating the prediction for the period 2020–2030, where the value of the predicted electricity consumption in the year 2030 was 575 TWh. This result can be compared with the results of previous studies, mentioned in the current study, which were 365, 442, and 633 TWh. It should be noted that the actual electricity consumption for the year 2020 was 341 TWh, while the estimated electricity consumption in the compound model was 375 TWh, with an increase of about 10% from the actual. This can be understood as a result of the impact of the COVID-19 pandemic on actual electricity consumption in that year. As for the year 2021, the actual electricity consumption value had not yet been published at the time of preparation of this research.



There will be a steady and continuous increase in the KSA’s electricity consumption until 2030. It is also possible to make a synthesis of the polynomial models and the ARIMA models.



Prediction accuracy using compound models solves the research problem of a large discrepancy in the predicted values of consumption in previous studies. It also proves the validity of the research hypotheses, which are:




	-

	
There will be a steady and continuous increase in the KSA’s electric energy consumption until 2030.




	-

	
It is possible to synthesize the polynomial models and the ARIMA models.




	-

	
Prediction accuracy using the compound models is better than prediction accuracy using a single polynomial or a single stochastic model.










4. Discussion


Energy is the mainstay of comprehensive and sustainable development in all societies and the artery of development in various economic and social fields, in addition to being one of the most important pillars of national security. Comprehensive sustainable development plans are linked to the state’s ability to provide the energy resources needed for these plans during trade-offs between state regulation, and deregulation and liberalization of energy markets [22,23].



In the case of KSA’s economy, the Ministry of Energy is working on diversifying the energy mix used in the production of electricity by increasing the share of gas and renewable energy sources in it in a more efficient and less costly manner. This is done by replacing liquid fuels with natural gas in addition to renewable energy sources. This makes the process of predicting electric energy consumption a very important component of the future planning of any economy, especially in light of current challenges and external shocks in the global economy from the impact of the COVID-19 pandemic and the Russia–Ukraine war. Therefore, the importance of this research is to achieve accurate forecasting of electric energy consumption by making an overlay between polynomial models and ARIMA models, and to confirm that the accuracy of the prediction using complex models is better than prediction accuracy using single polynomial or singular stochastic models. From this point of view, the current research provides an accurate vision of what will be the level of energy consumption in KSA up to 2030, contrary to what has been presented by previous studies, which gives a clearer picture for decision makers to make the best decision regarding the generation of electrical energy through a variety of renewable energy sources. This is in line with the sustainable development goals in KSA’s 2030 vision.



KSA’s goal of increasing and diversifying the use of renewable energy sources in generating electric energy by nearly 50% in 2030 on the one hand, and the existence of a large discrepancy in the predicted values in most of the studies conducted on this subject on the other, prompted the researchers to perform this study in order to predict KSA’s electric energy consumption for the period from 2020 to 2030. The current study was based on a sample size of 30 observations representing KSA’s actual electric energy consumption in the period from 1990 to 2019 [13]. A composite model was constructed consisting of two parts. The first part is parametric and the second part is the ARIMA model. The limits were tested from the first degree to the tenth degree, where their parameters were calculated by entering the actual consumption data, available in the study sample, into the PHP program, which is based on the method of least squares. An ARIMA model was built for these residuals by entering them into the SPSS statistical program, and with the help of the Expert Modeler available in the program, the ARIMA (0, 1, 0) model was produced with a fixed term, which is the best model for expressing the residuals.



In order to obtain the outputs of the composite model, the outputs of the ARIMA model were added to the outputs of the parametric model of the second degree. In order to find out the extent of improvement in the results resulting from the fitting process, the sum of the squared errors RSS was calculated in the sample period for each of the parametric models of the second degree and the composite model, and a decrease of 33.5% was found. All of this means an improvement in prediction accuracy using the composite model.



The composite model was used to calculate the forecast for the period 2020–2030, where the predicted consumption value in the year 2030 is 575 terawatt-hours (TWh). This result can be compared to the results of previous studies that were mentioned in this study, where they were 365, 442, and 633 TWh. It should be noted that the actual consumption for the year 2020 was 341 TWh, while the estimated consumption in the composite model was 375 TWh, an increase of about 10% from the actual. This can be understood as a result of the impact of the COVID-19 pandemic on the actual consumption in that year [24,25,26]. As for the year 2021, the actual consumption value had not yet been published by the date of preparation of this research.



Although the actual electricity consumption value for the year 2020, which was 341 TWh [27], was available, it was not used in creating the prediction models and was left to compare with the predicted values.



Therefore, the research problem is presented in the presence of a large discrepancy in the predicted values of electricity consumption in previous studies, taking these values as an indicator for sustainable development plans in the generation of electric energy and comparing them with the target for 2030. This is done in order for decision makers to be able to do what is required to keep pace with the increase in electric energy consumption by generating it through a variety of renewable energy sources and reducing carbon emissions in line with the goals of sustainable development and KSA’s vision 2030. One of the potential sources can be solar energy [28], as well as more efficient use of energy in sustainable economic development [29].



The aim of the present research is to shed light on polynomial predictive models, indicate the degree of confidence in their outputs using appropriate statistical methods, predict the electric energy consumption values using the compound model representing the period from 2020 until the end of 2030, and create a synthesis of the selected best ‘polynomial’ and its ARIMA model in order to increase prediction accuracy. It also aims to draw a future picture of electric energy consumption in KSA.



Finally, it is useful to mention that in the literature, several other forecasting approaches have been developed, such as those based on statistical and artificial neural network models, projections based on artificial intelligence [30,31,32,33], machine learning models [34,35,36], and those using novel hybrid models [37,38,39,40]. These are challenging issues for KSA, as well as other countries in the Middle East and Asian region, and are thus among the issues deserving of research in future.




5. Conclusions


The research problem was represented in forecasting the consumption of electricity consumption in the KSA in the period of the years 2020 to 2030, depending on a sample size of 30 observations, representing the actual consumption of electrical energy by Saudi Arabia in the period from 1990 to 2019. Although the actual consumption value for the year 2020 was available, which was 341 Twh, it was not used in building forecast models and was left to compare with the forecast values. The motivation for this research came from the presence of a large discrepancy in the estimated values presented in previous research.



The importance of the current research pertains to KSA’s goal of increasing and diversifying the use of renewable energy sources in generating electric energy by nearly 50% by 2030 on the one hand, and the presence of a large discrepancy in the predicted values in most of the studies conducted on this subject, on the other hand. This prompted the researchers to perform this study to predict KSA’s electric energy consumption for the period from 2020 to 2030, based on a sample size of 30 observations representing the actual electric energy consumption by KSA in the period from 1990 to 2019. Accordingly, a two-part compound model was developed. The first part is the polynomial model and the second part is the ARIMA model. Polynomials have the advantage that they can be used to express a wide range of mathematical models.



An improvement in the prediction accuracy was observed using the compound model. The compound model was used in calculating the prediction for the period 2020–2030, where the value of the predicted electricity consumption in the year 2030 was 575 TWh. This result can be compared with the results of previous studies that were mentioned in this study, where they were 365, 442, and 633 TWh. It should be noted that the actual electricity consumption for the year 2020 was 341 TWh, while the estimated electricity consumption in the compound model was 375 TWh, with an increase of about 10% from the actual.



This study recommends using the composite model as a tool that has proven its effectiveness and accuracy through the findings of this research, in order to provide accurate data and results for decision makers in KSA to determine the current and future consumption of electricity in line with the goals of sustainable development and KSA’s Vision 2030 to achieve economic benefit for KSA.
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Appendix A


Contains all the tables and formulas that were used in the model, including: Calculating the Parameters of the Models a; The relationship between the polynomial order and the coefficient of determination; Modeling residuals using the ARIMA model; Calculating residuals of the residuals and making sure they become white noise; Calculating autocorrelation function; Calculation of the significance test parameter of the stochastic model of the second order polynomial residuals; and a table presenting the compound model, which was created by combining a polynomial model and a stochastic model.
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Table A1. Electricity Consumption Time Series (Research Sample).






Table A1. Electricity Consumption Time Series (Research Sample).





	Year
	Period

T
	Actual Consumption

TWh
	Year
	Period

T
	Actual Consumption

TWh
	Year
	Period

T
	Actual Consumption

TWh





	1990
	1
	79.9
	2000
	11
	138.7
	2010
	21
	240.1



	1991
	2
	85
	2001
	12
	146.1
	2011
	22
	250.1



	1992
	3
	93.5
	2002
	13
	154.9
	2012
	23
	271.1



	1993
	4
	102.7
	2003
	14
	166.6
	2013
	24
	284.1



	1994
	5
	106
	2004
	15
	173.4
	2014
	25
	311.8



	1995
	6
	109.9
	2005
	16
	191.1
	2015
	26
	338.5



	1996
	7
	112.2
	2006
	17
	196.3
	2016
	26
	345.6



	1997
	8
	119.1
	2007
	18
	204.4
	2017
	28
	355.2



	1998
	9
	126.2
	2008
	19
	204.2
	2018
	29
	359.2



	1999
	10
	131
	2009
	20
	217.3
	2019
	30
	357.4







Data source: reference [3].











Table A1 will be used [3] in calculating the model parameters by applying the least squares method and using Excel and Hypertext Preprocessor (PHP) programs [15].
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Table A2. The relationship between the polynomial order and the coefficient of determination.






Table A2. The relationship between the polynomial order and the coefficient of determination.





	Polynomial Order, n
	Coefficient of Determination, R2





	1
	0.954939



	2
	0.990933



	3
	0.990954



	4
	0.994186



	5
	0.996316



	6
	0.998177



	7
	0.998177



	8
	0.998873



	9
	0.998929



	10
	0.998929







Source: Authors’ calculations.
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Table A3. Estimated electricity consumption by the second order polynomial.






Table A3. Estimated electricity consumption by the second order polynomial.





	Period

T
	Actual Consumption

Y
	Estimated Consumption

y Hat
	Period

T
	Actual Consumption

Y
	Estimated Consumption

y Hat
	Period

T
	Actual Consumption

Y
	Estimated Consumption

y Hat





	1
	79.9
	85.99859
	11
	138.7
	139.2364
	21
	240.1
	243.6417



	2
	85
	89.01984
	12
	146.1
	147.3744
	22
	250.1
	256.8965



	3
	93.5
	92.55276
	13
	154.9
	156.0241
	23
	271.1
	270.6629



	4
	102.7
	96.59736
	14
	166.6
	165.1854
	24
	284.1
	284.941



	5
	106
	101.1536
	15
	173.4
	174.8585
	25
	311.8
	299.7308



	6
	109.9
	106.2216
	16
	191.1
	185.0432
	26
	338.5
	315.0322



	7
	112.2
	111.8012
	17
	196.3
	195.7395
	27
	345.6
	330.8453



	8
	119.1
	117.8925
	18
	204.4
	206.9476
	28
	355.2
	347.1701



	9
	126.2
	124.4955
	19
	204.2
	218.6673
	29
	359.2
	364.0066



	10
	131
	131.6101
	20
	217.3
	230.8987
	30
	357.4
	381.3547







Source: Table 1, reference [3], and authors’ calculations.
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Table A4. Residues of the second order polynomial model.






Table A4. Residues of the second order polynomial model.





	Period

T
	Actual Consumption

Y
	Estimated Consumption

by Second Order Polynomial

  y ^  
	Residuals

E = y −   y ^  
	Period

T
	Actual Consumption

Y
	Estimated Consumption

Second Order Polynomial   y ^  
	Residuals

E = y −   y ^  





	1
	79.9
	85.99858871
	−6.09858871
	16
	191.1
	185.0431591
	6.05684093



	2
	85
	89.01983732
	−4.01983732
	17
	196.3
	195.7395278
	0.56047215



	3
	93.5
	92.55276061
	0.94723939
	18
	204.4
	206.9475713
	−2.54757131



	4
	102.7
	96.59735857
	6.10264143
	19
	204.2
	218.6672894
	−14.4672894



	5
	106
	101.1536312
	4.84636878
	20
	217.3
	230.8986823
	−13.5986823



	6
	109.9
	106.2215785
	3.67842146
	21
	240.1
	243.6417498
	−3.54174976



	7
	112.2
	111.8012005
	0.39879946
	22
	250.1
	256.8964919
	−6.79649194



	8
	119.1
	117.8924972
	1.20750278
	23
	271.1
	270.6629088
	0.43709121



	9
	126.2
	124.4954686
	1.70453142
	24
	284.1
	284.9410003
	−0.84100032



	10
	131
	131.6101146
	−0.61011461
	25
	311.8
	299.7307665
	12.0692335



	11
	138.7
	139.2364353
	−0.53643532
	26
	338.5
	315.0322074
	23.4677926



	12
	146.1
	147.3744307
	−1.27443072
	27
	345.6
	330.845323
	14.754677



	13
	154.9
	156.0241008
	−1.12410079
	28
	355.2
	347.1701132
	8.02988678



	14
	166.6
	165.1854455
	1.41455447
	29
	359.2
	364.0065781
	−4.80657814



	15
	173.4
	174.858465
	−1.45846496
	30
	357.4
	381.3547177
	−23.9547177







Source: Table 1, reference [3], and authors’ calculations.
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Table A5. The estimated residuals using the ARIMA model in the sample period 1990–2019.






Table A5. The estimated residuals using the ARIMA model in the sample period 1990–2019.












	Period

T
	Actual Consumption

Y
	Estimated Consumption

   y ^   
	Actual Residuals E
	Estimated Residuals    E ^   





	1
	79.9
	85.99859
	−6.09859
	



	2
	85
	89.01984
	−4.01984
	−6.71432



	3
	93.5
	92.55276
	0.94724
	−4.63557



	4
	102.7
	96.59736
	6.10264
	0.33151



	5
	106
	101.1536
	4.84637
	5.48691



	6
	109.9
	106.2216
	3.67842
	4.23064



	7
	112.2
	111.8012
	0.39880
	3.06269



	8
	119.1
	117.8925
	1.20750
	−0.21693



	9
	126.2
	124.4955
	1.70453
	0.59177



	10
	131
	131.6101
	−0.61011
	1.08880



	11
	138.7
	139.2364
	−0.53644
	−1.22584



	12
	146.1
	147.3744
	−1.27443
	−1.15216



	13
	154.9
	156.0241
	−1.12410
	−1.89016



	14
	166.6
	165.1854
	1.41455
	−1.73983



	15
	173.4
	174.8585
	−1.45846
	0.79883



	16
	191.1
	185.0432
	6.05684
	−2.07419



	17
	196.3
	195.7395
	0.56047
	5.44111



	18
	204.4
	206.9476
	−2.54757
	−0.05526



	19
	204.2
	218.6673
	−14.46729
	−3.16330



	20
	217.3
	230.8987
	−13.59868
	−15.08302



	21
	240.1
	243.6417
	−3.54175
	−14.21441



	22
	250.1
	256.8965
	−6.79649
	−4.15748



	23
	271.1
	270.6629
	0.43709
	−7.41222



	24
	284.1
	284.941
	−0.84100
	−0.17864



	25
	311.8
	299.7308
	12.06923
	−1.45673



	26
	338.5
	315.0322
	23.46779
	11.45350



	27
	345.6
	330.8453
	14.75468
	22.85206



	28
	355.2
	347.1701
	8.02989
	14.13895



	29
	359.2
	364.0066
	−4.80658
	7.41416



	30
	357.4
	381.3547
	−23.95472
	−5.42231







Source: Table 1, reference [3], and authors’ calculations.
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Table A6. Calculation of the residuals of residuals in the sample period 1990–2019.






Table A6. Calculation of the residuals of residuals in the sample period 1990–2019.











	Time

T
	Actual Error

E
	Estimated Error

    E ^    
	Difference between Actual Error and Estimated Error

  E   −     E ^    

the Residuals of Residuals





	1
	−6.09859
	
	



	2
	−4.01984
	−6.71432
	2.69448



	3
	0.94724
	−4.63557
	5.58281



	4
	6.10264
	0.33151
	5.77113



	5
	4.84637
	5.48691
	−0.64054



	6
	3.67842
	4.23064
	−0.55222



	7
	0.39880
	3.06269
	−2.66389



	8
	1.20750
	−0.21693
	1.42443



	9
	1.70453
	0.59177
	1.11276



	10
	−0.61011
	1.08880
	−1.69892



	11
	−0.53644
	−1.22584
	0.68941



	12
	−1.27443
	−1.15216
	−0.12227



	13
	−1.12410
	−1.89016
	0.76606



	14
	1.41455
	−1.73983
	3.15438



	15
	−1.45846
	0.79883
	−2.25729



	16
	6.05684
	−2.07419
	8.13103



	17
	0.56047
	5.44111
	−4.88064



	18
	−2.54757
	−0.05526
	−2.49231



	19
	−14.46729
	−3.16330
	−11.30399



	20
	−13.59868
	−15.08302
	1.48434



	21
	−3.54175
	−14.21441
	10.67266



	22
	−6.79649
	−4.15748
	−2.63901



	23
	0.43709
	−7.41222
	7.84931



	24
	−0.84100
	−0.17864
	−0.66236



	25
	12.06923
	−1.45673
	13.52596



	26
	23.46779
	11.45350
	12.01429



	27
	14.75468
	22.85206
	−8.09739



	28
	8.02989
	14.13895
	−6.10906



	29
	−4.80658
	7.41416
	−12.22074



	30
	−23.95472
	−5.42231
	−18.53241







Source: Authors’ calculations.
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Table A7. Coefficients of the two autocorrelation functions.






Table A7. Coefficients of the two autocorrelation functions.





	Lag
	Coefficients of the Autocorrelation Function

ACF
	La
	Coefficients of the Autocorrelation Function

ACF





	1
	0.258
	13
	0.000



	2
	0.112
	14
	−0.123



	3
	−0.088
	15
	−0.067



	4
	−0.322
	16
	−0.116



	5
	−0.036
	17
	0.047



	6
	−0.274
	18
	0.014



	7
	−0.174
	19
	0.007



	8
	−0.079
	20
	0.034



	9
	−0.041
	21
	0.049



	10
	0.180
	22
	0.110



	11
	0.136
	23
	0.081



	12
	0.156
	24
	−0.021







Source: Authors’ calculations.
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Table A8. Second order polynomial residuals.






Table A8. Second order polynomial residuals.





	Lag
	rk
	    Z 0  =  r k     Ö 30    
	|Z0|





	1
	0.258
	1.413
	1.413



	2
	0.112
	0.613
	0.613



	3
	−0.088
	−0.482
	0.482



	4
	−0.322
	−1.764
	1.764



	5
	−0.036
	−0.197
	0.197



	6
	−0.274
	−1.501
	1.501



	7
	−0.174
	−0.953
	0.953



	8
	−0.079
	−0.433
	0.433



	9
	−0.041
	−0.225
	0.225



	10
	0.180
	0.986
	0.986



	11
	0.136
	0.745
	0.745



	12
	0.156
	0.854
	0.854



	13
	0.000
	0.000
	0.000



	14
	−0.123
	−0.674
	0.674



	15
	−0.067
	−0.367
	0.367



	16
	−0.116
	−0.635
	0.635



	17
	0.047
	0.257
	0.257



	18
	0.014
	0.077
	0.077



	19
	0.007
	0.038
	0.038



	20
	0.034
	0.186
	0.186



	21
	0.049
	0.268
	0.268



	22
	0.110
	0.602
	0.602



	23
	0.081
	0.444
	0.444



	24
	−0.021
	−0.115
	0.115







Source: Authors’ calculations.
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Table A9. Synthesis of the second order polynomial outputs with the ARIMA model outputs.






Table A9. Synthesis of the second order polynomial outputs with the ARIMA model outputs.













	T
	Y
	Second Order Polynomial Outputs

   y ^   
	E
	ARIMA Model Outputs

    E ^    
	Compound Model Outputs

      y ^  +   E ^       





	1
	79.9
	85.99859
	−6.09859
	
	85.99859



	2
	85
	89.01984
	−4.01984
	−6.71432
	82.30552



	3
	93.5
	92.55276
	0.94724
	−4.63557
	87.91719



	4
	102.7
	96.59736
	6.10264
	0.33151
	96.92887



	5
	106
	101.1536
	4.84637
	5.48691
	106.64051



	6
	109.9
	106.2216
	3.67842
	4.23064
	110.45224



	7
	112.2
	111.8012
	0.3988
	3.06269
	114.86389



	8
	119.1
	117.8925
	1.2075
	−0.21693
	117.67557



	9
	126.2
	124.4955
	1.70453
	0.59177
	125.08727



	10
	131
	131.6101
	−0.61011
	1.0888
	132.6989



	11
	138.7
	139.2364
	−0.53644
	−1.22584
	138.01056



	12
	146.1
	147.3744
	−1.27443
	−1.15216
	146.22224



	13
	154.9
	156.0241
	−1.1241
	−1.89016
	154.13394



	14
	166.6
	165.1854
	1.41455
	−1.73983
	163.44557



	15
	173.4
	174.8585
	−1.45846
	0.79883
	175.65733



	16
	191.1
	185.0432
	6.05684
	−2.07419
	182.96901



	17
	196.3
	195.7395
	0.56047
	5.44111
	201.18061



	18
	204.4
	206.9476
	−2.54757
	−0.05526
	206.89234



	19
	204.2
	218.6673
	−14.4673
	−3.1633
	215.504



	20
	217.3
	230.8987
	−13.5987
	−15.083
	215.81568



	21
	240.1
	243.6417
	−3.54175
	−14.2144
	229.42729



	22
	250.1
	256.8965
	−6.79649
	−4.15748
	252.73902



	23
	271.1
	270.6629
	0.43709
	−7.41222
	263.25068



	24
	284.1
	284.941
	−0.841
	−0.17864
	284.76236



	25
	311.8
	299.7308
	12.06923
	−1.45673
	298.27407



	26
	338.5
	315.0322
	23.46779
	11.4535
	326.4857



	27
	345.6
	330.8453
	14.75468
	22.85206
	353.69736



	28
	355.2
	347.1701
	8.02989
	14.13895
	361.30905



	29
	359.2
	364.0066
	−4.80658
	7.41416
	371.42076



	30
	357.4
	381.3547
	−23.9547
	−5.42231
	375.93239







Source: Table 1, reference [3], and authors’ calculations.
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Table A10. Residues of the Compound Model.






Table A10. Residues of the Compound Model.














	T
	Y
	   y ^   
	Boundary Residuals    E = y −  y ^    
	    E ^    
	    y ^  +   E ^     
	Residuals of the Compound Model

   y − (  y ^  +   E ^     )





	1
	79.9
	85.99859
	−6.09859
	
	85.99859
	−6.09859



	2
	85
	89.01984
	−4.01984
	−6.71432
	82.30552
	2.69448



	3
	93.5
	92.55276
	0.94724
	−4.63557
	87.91719
	5.58281



	4
	102.7
	96.59736
	6.10264
	0.33151
	96.92887
	5.77113



	5
	106
	101.1536
	4.84637
	5.48691
	106.64051
	−0.64051



	6
	109.9
	106.2216
	3.67842
	4.23064
	110.45224
	−0.55224



	7
	112.2
	111.8012
	0.3988
	3.06269
	114.86389
	−2.66389



	8
	119.1
	117.8925
	1.2075
	−0.21693
	117.67557
	1.42443



	9
	126.2
	124.4955
	1.70453
	0.59177
	125.08727
	1.11273



	10
	131
	131.6101
	−0.61011
	1.0888
	132.6989
	−1.6989



	11
	138.7
	139.2364
	−0.53644
	−1.22584
	138.01056
	0.68944



	12
	146.1
	147.3744
	−1.27443
	−1.15216
	146.22224
	−0.12224



	13
	154.9
	156.0241
	−1.1241
	−1.89016
	154.13394
	0.76606



	14
	166.6
	165.1854
	1.41455
	−1.73983
	163.44557
	3.15443



	15
	173.4
	174.8585
	−1.45846
	0.79883
	175.65733
	−2.25733



	16
	191.1
	185.0432
	6.05684
	−2.07419
	182.96901
	8.13099



	17
	196.3
	195.7395
	0.56047
	5.44111
	201.18061
	−4.88061



	18
	204.4
	206.9476
	−2.54757
	−0.05526
	206.89234
	−2.49234



	19
	204.2
	218.6673
	−14.46729
	−3.1633
	215.504
	−11.304



	20
	217.3
	230.8987
	−13.59868
	−15.083
	215.81568
	1.48432



	21
	240.1
	243.6417
	−3.54175
	−14.2144
	229.42729
	10.67271



	22
	250.1
	256.8965
	−6.79649
	−4.15748
	252.73902
	−2.63902



	23
	271.1
	270.6629
	0.43709
	−7.41222
	263.25068
	7.84932



	24
	284.1
	284.941
	−0.841
	−0.17864
	284.76236
	−0.66236



	25
	311.8
	299.7308
	12.06923
	−1.45673
	298.27407
	13.52593



	26
	338.5
	315.0322
	23.46779
	11.4535
	326.4857
	12.0143



	27
	345.6
	330.8453
	14.75468
	22.85206
	353.69736
	−8.09736



	28
	355.2
	347.1701
	8.02989
	14.13895
	361.30905
	−6.10905



	29
	359.2
	364.0066
	−4.80658
	7.41416
	371.42076
	−12.22076



	30
	357.4
	381.3547
	−23.95472
	−5.42231
	375.93239
	−18.53239







Source: Table 1, reference [3], and authors’ calculations.











Calculating the Parameters of the Models



The first order polynomial model:


   y ^  = 41.19057471264368 + 10.184694104560624 t  



(A1)







The second order polynomial model:


   y ^  = 83.48901477832513 + 2.253736592245352 t + 0.25583733910694423  t 2   



(A2)







The third order polynomial model:


   y ^  = 84.83395730706076 + 1.7721439626681563 t + 0.2940459336732974  t 2  − 0.0008216902057280256  t 3   



(A3)







The fourth order polynomial model:


   y ^  = 63.33479221927498 + 13.867819507823924 t − 1.395524075804146  t 2  + 0.08300972446366839  t 3  −  0.0013521195914418776  t 4   



(A4)







The fifth order polynomial model:


   y ^  = 86.16489832007073 − 4.099943959460825 t + 2.400591494097555  t 2  − 0.23516904422015494  t 3  +  0.010093454991176316  t 4  − 0.00014768483332410572  t 5   



(A5)







The sixth order polynomial model:


   y ^  = 57.75731211317419 + 24.83996800501148 t − 6.041637787034118  t 2  + 0.8068538789773372  t 3  −  0.051680440105507985  t 4  + 0.0015929760862161242  t 5  − 0.00001871678408107774  t 6   



(A6)







The seventh order polynomial model:


   y ^  = 57.643512858955226 + 24.9819845514518 t − 6.095377306021259  t 2  + 0.815862184315436  t 3  −  0.05245280907224429  t 4  + 0.0016282585012546156  t 5  − 0.00001953344097961959  t 6  + 0.00000000752679169163  t 7   



(A7)







The eighth order polynomial model:


   y ^  = 90.76698650674774 − 23.644465498609527 t + 16.69659216991278  t 2  − 4.0949632466064285  t 3  +  0.5120294538898259  t 4  − 0.035190806450623516  t 5  + 0.0013459517043590157  t 6  − 0.00002680117056660032  t 7  +  0.00000021619917224429  t 8   



(A8)







The ninth order polynomial model:


   y ^  = 77.18611694154131 − 0.8930437908518888 t + 3.950515271184289  t 2  − 0.7057407804364993  t 3  +  0.015718240582896285  t 4  + 0.007782396358829107  t 5  − 0.0009080646201480251  t 6  + 0.00004348308707838665  t 7  −  0.00000098162131905363  t 8  + 0.00000000858652681934  t 9   



(A9)







The tenth order polynomial model:


   y ^  = 77.67766416789804 − 1.8113357174773226 t + 4.54824364199519  t 2  − 0.8957648439793898  t 3  +  0.04986512462338578  t 4  + 0.004043738455536497  t 5  − 0.0006497488448332843  t 6  + 0.00003217491257888407  t 7  −  0.00000067763036404404  t 8  + 0.00000000401026876840  t 9  − 0.00000000002952424549  t 10   



(A10)
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Figure 1. The relationship between the polynomial order (n) and the coefficient of determination R2 according to the data of Table A2. Source: Authors’ calculations. 
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Figure 2. Second order polynomial residuals versus time intervals. Source: Table 1, reference [3], and authors’ calculations. 
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Figure 3. Comparing the residuals of the polynomial model E with the residuals of the compound model y-(yhat + Ehat). Source: Authors’ calculations. 
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Table 1. Electricity consumption prediction values for the period 2020–2030.
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	T
	Year
	Estimated Consumption by the Second Order Polynomial
	Residuals Estimated by the ARIMA Model
	Estimated Consumption by the Compound Model





	31
	2020
	399.2145
	−24.5705
	374.64405



	32
	2021
	417.586
	−25.1862
	392.39983



	33
	2022
	436.4692
	−25.8019
	410.6673



	34
	2023
	455.864
	−26.4176
	429.44637



	35
	2024
	475.7705
	−27.0334
	448.73714



	36
	2025
	496.1887
	−27.6491
	468.53961



	37
	2026
	517.1186
	−28.2648
	488.85378



	38
	2027
	538.5601
	−28.8806
	509.67955



	39
	2028
	560.5133
	−29.4963
	531.01702



	40
	2029
	582.9782
	−30.112
	552.8662



	41
	2030
	605.9548
	−30.7277
	575.22707







Source: Authors’ calculations.
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