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Abstract: Power system disruptions can be categorized as issues with the quality of electricity
brought on by voltage sags, lightning strikes, and other system-related interferences. The static
transfer switch (STS) has recently emerged as the most important technology for electric power
transmission, distribution, and control systems to manage power supply during power system
disruption issues, particularly in cost-effectively supplying power to critical loads and sensitive loads
without interruption. In this paper, for the switching between the two AC sources during the voltage
disruptions issue with low transfer time, a smart static transfer switch (SSTS) based on a digital
switching algorithm and Triac semiconductor switch is proposed and experimentally tested. A digital
switching algorithm based on online AC voltage sensing and zero-crossing detection is proposed and
implemented inside a DSP MCU. The printed circuit board (PCB) of the proposed SSTS is designed
and manufactured for the experimental performance investigation with different AC input voltage
conditions. A comparative study based on the advantages and disadvantages of the proposed SSTS
system with the previous works is also presented. A smart static transfer switch with a transition
time of less than one cycle and a digital protection technique during fault conditions is obtained in
this work.

Keywords: AC power control; smart static transfer switch (SSTS); switching algorithm; zero-crossing
detection; transfer time; online AC voltage measurements; Triac

1. Introduction

Nowadays, power quality has gained a lot of importance among residential and
industrial customers. Various power quality issues, such as voltage sag, lightning strikes,
and service outages affect many industrial loads. Industrial customers suffer significant
financial losses as a result of these power quality issues [1,2]. Therefore, in this circumstance,
an emergency transfer switch between the preferred and alternative power sources may be
the most economical way to avoid these issues [3–5].

Modern industrial facilities contain a variety of sensitive loads that require high-
quality electricity to operate steadily and minimize difficulties caused by abrupt voltage
interruptions [6,7]. Usually, two mean types of switches can be used for handling the source
switching process for such sensitive loads—an automatic transfer switch (ATS) [8–10] and
a static transfer switch (STS) [11–13].

An ATS is a device that automatically transfers a power supply from its preferred or
primary source to an alternative or a backup source when it senses a failure or outage in
the primary source. There are two types of automatic transfer switches: a circuit breaker
and a contactor. A circuit breaker type has two interlocked circuit breakers, though only
one breaker can be closed at any time [14–17]. A contactor type is a simpler design that is
electrically operated and mechanically held [18,19].
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A static transfer switch (STS), as depicted in Figure 1, can perform the same function
as an ATS, but an STS has no mechanical switching devices in which the semiconduc-
tor devices, such as thyristors [20–23], gate turn off (GTO) thyristors [24–26], insulated
gate bipolar transistors (IGCTs) [27–29], insulated-gate bipolar transistors (IGBTs) [30] or
Triac [31,32] semiconductor devices, can be used for the switching process. A compre-
hensive overview and a comparative study between the different semiconductor devices
utilized in AC power switching control were performed, as shown in Table 1, according
to the different performances such as conduction losses, on-state voltage drop, switching
speed, operating frequency, and specific applications.
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Figure 1. Basic configuration of the AC source switching-based static transfer switch.

Table 1. Comparison of the different semiconductor devices’ performances.

Performance Thyristor (SCR) GTO IGCT IGBT Triac

Production year 1956 1962 1996 1983 1958

Current flow Unidirectional Unidirectional Unidirectional Unidirectional Bidirectional

Voltage-
withstanding

capability
Bipolar Bipolar Unipolar Unipolar Unipolar

On-state
voltage High Very high High Low Low

Operating
frequency Low Low Low High Low

Conduction losses High Very high High Low Low

Drive circuit Very simple Complex Simple Very simple Simple

Switching speed Medium Fast Fast Very fast Very fast

Cost Low High High High Low

Specific
applications

AC power control,
HVDC systems,
oscillators, and
inverters

AC power control,
variable-speed
drives,
high-power
traction systems,
and inverters

Variable-frequency
inverters and fast
AC disconnect
switches

AC and DC motor
drives,
SMPS, and UPS

AC power control
and motor speed
control

For AC power switching control at low and medium voltage levels, a conventional
circuit of an STS is usually implemented with the use of thyristor or GTO semiconductor
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switches, and a thyristor-based STS has many advantages such as low costs, low conduction
loss, and simple gate driver circuit implementation as compared to STS-based GTO and
IGCT switches for the same operating conditions [24,33,34]. For switching control at
medium voltage levels, an STS-based IGBT can present excellent performance elements
such as low conduction losses and fast switching speed with simple gate driver circuit
implantation [30]. For high voltage and extra high voltage levels, solid-state wide bandgap
semiconductor devices, such as silicon carbides (SiC), static induction transistors (SITs), SiC
metal oxide semiconductor field effect transistors (MOSFETs), and SiC junction gate field
effect transistors (JFETs), are rapidly advancing in technology. These devices can provide a
superior switching performance and are far superior to their mechanical counterparts in
addressing power quality issues [35,36].

Recently, the Triac has been the most commonly used semiconductor device for switch-
ing and power control of AC systems as a Triac can be switched on by either a positive or
negative gate pulse, regardless of the polarity of the AC supply at that time. In addition,
in AC power switching control, when using a Triac semiconductor device (a bidirectional
device), it only requires one heat sink, but the other unidirectional devices require two heat
sinks. A Triac also requires only one fuse for protection, and while a safe breakdown can
occur in either direction, unidirectional devices should have parallel diode protection.

One of the advantages of an STS-based Triac semiconductor is that it is typically
utilized with the ability to transfer the critical load at the point of zero-crossing in an
AC waveform where there is no net flow of power to the load, which offers the best
opportunity to undertake a change-over with high reliability [34,37]. In this instance,
the zero-crossing switching technique can help to prevent an inrush current due to the
high dv/dt from flowing through the system’s different components, which provides
more protection [38–40]. However, in case of a loss of the primary source, the transfer
is completed at any point in the waveform to avoid a break in supply to the sensitive
loads [41–43]. Furthermore, an STS is typically implemented to offer operation with
an interruption or transfer time of less than one cycle, which is small compared to the
transfer time in the case of an ATS [44–47]. The selected semiconductors used in the
implementation of an STS should be rated with large safety margins to ensure long life and
reliable operation [37,48].

In this study, the overall structure of a smart static transfer switching system based on
Triac switches and a digital control algorithm is proposed. The AC voltage measurement
circuit is designed for online AC voltage sensing and interfacing with a DSP MCU, and the
control technique inside the DSP is proposed based on the digital switching algorithm, with
zero-crossing detection for the switching operation of the Triac switches and interrupt ser-
vice routine (ISR) for system protection during the fault condition. The power and control
circuits of the proposed SSTS system are designed and manufactured in a printed circuit
board (PCB) for the experimental verification of the designed SSTS system’s performance
with different operating conditions.

This paper is organized as follows: In Section 2, we describe the overall configuration
and basic control method of the proposed SSTS-based DSP MCU and Triac switches. In
Section 3, we briefly describe the proposed switching algorithm, the zero-crossing detection
technique, and the designed online voltage measurement circuit. The experimental verifica-
tion by developing the printed circuit board (PCB) of the smart static transfer switching
using Triac switches and the digital control circuit using a DSP TMS320 F28035 is provided
in Section 4. Section 5 presents a comparative study of the advantages and disadvantages
of the proposed switching technique and previous work. Finally, our conclusions are
presented in Section 6.

2. Overall Structure of the Proposed SSTS Switching System

The basic structure of the proposed two-source switching circuit with an SSTS, as
shown in Figure 2, can be summarized as follows:
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• A load which is usually sensitive to variations in utility supply voltage in such circuit
topologies

• Two independent sources, one of which is the preferred one (AC1) and the other being
the alternate one (AC2)

• Two semiconductor switches (Triac1 and Triac2) which connect the load to the two
power sources

• The thermal circuit breakers, C.B 1 and C.B 2. are used to protect the components and
equipment from current overload and short circuit conditions (or they can be replaced
by a current fuse)

• The noise and harmonic filters, used to reject the AC sources’ harmonics and reduce
the electromagnetic interface (EMI) levels, are connected to the load side

• The controlling algorithm implemented inside the DSP MCU to monitor the AC
voltage of both sources, detect normal and abnormal conditions in both supplies, and
perform a load transfer from one source to the other, if needed, by controlling the gate
pulses of the Triac switches, as well as to protect the system under fault conditions,
was implemented using an interrupt service routine (ISR), which shuts down both
Triac switches during fault detection
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Principle Operation of the SSTS

Under normal operating conditions, i.e., when the source AC1 meets load voltage
requirements, the control logic triggers only Triac1. If AC1 cannot meet the voltage require-
ments, the control logic will transfer the load to source AC2 if it is in a better condition.
This is achieved by removing the gating signals from Triac1 and triggering Triac2. To offer
ride-through capability, the load must be transferred within a very small transfer time.
Therefore, the SSTS must meet the following requirements:

• It must detect voltage fluctuations in the system as fast as possible.
• In case the preferred source fails, it must perform a fast load transfer to the alternate

source.
• The gating strategy, which controls the transfer process, must prevent the two sources

from paralleling.
• Voltage sensing and switching processes between both sources must function properly

for all possible operating conditions.

The switching between the two sources (AC1 and AC2) is performed based on the
voltage conditions of both sources. The normal condition of the voltage supply to the load
from any source is considered to be in the range of 220 V ± 20% Vrms. Table 2 shows the
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possible operating conditions of the two AC sources and the turn-on sequence of the Triac
switches.

Table 2. The turn-on sequence of the Triac switches.

AC Source 1 AC Source 2 On Sequence

Normal Normal Triac1
Normal Abnormal Triac1

Abnormal Normal Triac2
Abnormal Abnormal Fault

3. The Proposed Digital Switching Algorithm

Figure 3 depicts the flowchart of the proposed switching algorithm with the interrupt
service routine (ISR) for the proposed SSTS system. The proposed algorithm consists of
three parts. The first part is implemented as the ready mode, which contains the system’s
different parameters’ initial values, the Triac switches’ initial switching conditions (Triac1 is
on and Triac2 is off), and the analog–digital converter (ADC) offset check. The second part
is the run mode, which starts with AC1 and AC2 voltage sensing to decide the switching-
on/-off condition for Triac1 and Triac2 based on the voltage condition of both sources,
according to the turn-on sequence shown in Table 2. To reduce the inrush current due to the
high dv/dt to flow through the Triac switches and to prevent the load power interruption
during the transfer process from any source to another, the gate pulses of the Triac switches
are offered at the second-next zero-voltage crossing point, followed by the point of the
fault detection in which the load net-power flow is exactly equal to zero at that point. The
third part (fault mode) of the switching algorithm is implemented to protect the load at the
fault condition where both sources are at abnormal conditions by switching off both Triac
switches.
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To select an optimal DSP MCU board to implement the proposed static transfer
switching system with the proposed switching algorithms and for the exact zero-crossing
point detection, there are important DSP MCU selection considerations, which can be
summarized as follows: a program memory large enough to process the data and a data
memory large enough to store the information during the voltage signal monitoring and
zero-crossing signal detection; an efficient computing engine for performing the math
processing and accessing the program from the program memory and the data from the
data memory; and an ADC with enough resolution and enough bits for the proper detection
the zero-crossing point.

Considering these selection considerations, in this work, the TMS320 F28035 from
Texas Instruments with a 32-bit, 60 MHz, 128 KB flash memory and an ADC resolution
of 12 bits is selected to implement the control circuit of the proposed switching schemes.
The selected DSP is featured with a fast interrupt response and an excellent performance
for storage and processing the data, which enable exact zero-crossing point detection with
high reliability.

3.1. The Proposed Online AC Voltage Measurement Circuit

Figure 4 shows the AC voltage-sensing circuit. In order to realize the function of
electrical isolation between the main circuit and the control circuit of the power supply, an
isolated optocoupler called HCPL-7840 is used to sense the ac voltage signals from sources
one and two.
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An HCPL7840 is typically designed for current-sensing in electronic motor drives.
In a typical implementation, a motor’s currents flow through an external resistor and the
resulting analog voltage drop is sensed by the HCPL-7840. A differential output voltage is
created on the other side of the HCPL-7840 optical isolation barrier. An HCPL-7840 has a
very small input offset voltage—less than 0.3 mV—and a high bandwidth of approximately
100 kHz, with a very small nonlinearity ratio of approximately 0.004%, which makes it
perfect for the AC voltage signals related to circuit protection and operation management
in this application.

In this work, the proposed AC voltage sensors based on the isolated optocoupler
circuit are designed to measure AC voltage with maximum values of −400 V to +400 V.
The input side resistors R1, R2, and R3 are designed to maintain the input voltage (VR3)
to the HCPL-7840 at the standard limit provided in the datasheet (−0.2 V to 0.2 V), and
with these input voltage conditions and the gain of the used isolated optocoupler IC, which
is approximately 8, the output voltage (Vout) is in the range of 0.94 V to approximately
4.14 V. Therefore, the other resistors (R4 and R5) are used to maintain the output voltage in
the voltage range of the used analog–digital converter (ADC) of the TMS320 F28035 DSP
board.
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3.2. The Proposed Zero-Voltage Crossing Detection Technique

The instant at which there is no voltage is known as zero-crossing. This often happens
twice during each cycle of a sine wave or other straightforward waveforms. When the
voltage is zero, and making or breaking connections is the simplest task [41]. A larger
inrush current would result from turning on the Triac when the voltage is almost at its peak,
which could harm the semiconductor device or result in unwanted electrical noise [41,44].
The safest method is to turn it on while the voltage is zero.

In this work, a zero-voltage detection digital technique is proposed to control the
turn-on sequence of the Triac switches after the voltage disturbance occurs at any AC
supply, where the Triac switches are switched at the second-next zero-crossing point after
the abnormal detection point.

Figure 5 shows a flowchart which describes the proposed technique implemented
inside the DSP MCU to detect the zero-voltage crossing point for any AC voltage signal
(Va), where, the Va[n] is related to the presently measured voltage signal, Va_sign_1 is the
polarity of the first-measured voltage signal, Va_sign_2 is the polarity of the next-measured
voltage signal, and Va_sign_old is the polarity of the previous one.
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Figure 5. Flowchart of the proposed zero-crossing detection technique.

Figure 6 shows the generated zero-voltage crossing signals (Va_ZC) for any pure sine
wave voltage signal (Va) using PSIM software. The Triac switches in the proposed SSTS
system are controlled to be turned on at the second-next point of the zero-voltage crossing
point (Va_ZC = 1) after detecting the abnormal voltage condition of the AC sources. In the
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calculation of the proposed switching algorithm, four sampling delay signals are considered;
therefore, to obtain precious voltage information and zero-crossing detection, the sampling
frequency for the ISR routine is selected with a high enough value (approximately 10 kHz).
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In applying the proposed switching algorithm with the ability of the zero-crossing
switching to the used Triac switches, the transition time of the designed SSTS system
between the two sources with any operating conditions and when AC1 or AC2 is faulted
at any point of the waveform (zero-crossing, fall time, or rise time), the transition time
will be within the one cycle. For clear observation, Figure 7 shows the waveforms of the
supplies (AC1 and AC2) and the load voltages at the worst case (longest transition time) in
which AC1 (or AC2) is faulted at the zero-crossing point. In this case, it is noticed that the
proposed SSTS system has a transition time of approximately one cycle only, in which Triac
1 is switched off and Triac 2 is switched on at the second zero-crossing point after the ACI
fault occurrence.
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the AC1 and AC2 sources are pure sine waves and the AC1 source is faulted at the zero-crossing
point (worst case).
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In order to investigate the behavior of the proposed switching algorithm when the
voltage is affected by the power quality disturbances (a non-pure sine wave input AC voltage),
the zero-crossing detection technique and the whole switching algorithm are tested with the
injection of the third and fifth harmonics to the input supplies (AC1 and AC2).

Figure 8 shows the generated zero-voltage crossing signals (Va_ZC) for the non-pure
sine wave voltage signal (Va) with a THD value of approximately 21.36%. It contains the
third and fifth harmonics components, as shown in the FFT analysis in the same figure, and
it is clearly observed that the proposed zero-crossing detection technique is successful in
detecting the zero-crossing points of the waveforms, which did not affected by the power
quality disturbance of the supply voltage.
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In addition, to test the proposed switching algorithm when AC1 and AC2 are affected
by the power quality disturbance, Figure 9 shows the voltage waveforms when the AC1 and
AC2 voltages are non-pure sine waves and the AC1 source is faulted at the zero-crossing
point. This shows that the when the fault occurs, the switching system turns off Triac1 and
turns on Triac2 at the second zero-crossing point, unaffected by the sources’ power quality
disturbances. Furthermore, the connected load filters reduce the THD value of the load
voltage side to approximately 4.48%.
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the AC1 and AC2 sources are non-pure sine waves and the AC1 source is faulted at the zero-crossing
point (worst case).
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4. Experimental Verification

Figure 10 shows the schematic circuit of the designed SSTS circuit, where the V.S.
circuits represent the proposed AC voltage sensors presented in Figure 4, and for the circuit
component protection at the overcurrent condition, the 220 V RMS fuse is used with a
current rating equal to the rated load current. The proposed switching algorithm with
zero-crossing detection and ISR techniques is implemented using a TMS320 F28035 DSP
MCU from Texas Instruments. Under the resistive loading condition of approximately 3
Kohm and using a TELEDYNE scope, the voltage waveforms performances of both AC
sources and the load are investigated with the different operating conditions provided in
Table 2. To reduce the harmonics and EMI levels on the load side, a WT-RC30-SF noise
filter from World Tech company is connected in parallel with the load terminals. Figure 11
shows the designed printed circuit board (PCB) and the overall experimental testing setup
of the proposed SSTS switching system for the two synchronized AC power sources with
nominal voltages of 220 V RMS and 60 Hz.
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Energies 2023, 16, x FOR PEER REVIEW 10 of 16 
 

 

4. Experimental Verification 

Figure 10 shows the schematic circuit of the designed SSTS circuit, where the V.S. 

circuits represent the proposed AC voltage sensors presented in Figure 4, and for the cir-

cuit component protection at the overcurrent condition, the 220 V RMS fuse is used with 

a current rating equal to the rated load current. The proposed switching algorithm with 

zero-crossing detection and ISR techniques is implemented using a TMS320 F28035 DSP 

MCU from Texas Instruments. Under the resistive loading condition of approximately 3 

Kohm and using a TELEDYNE scope, the voltage waveforms performances of both AC 

sources and the load are investigated with the different operating conditions provided in 

Table 2. To reduce the harmonics and EMI levels on the load side, a WT-RC30-SF noise 

filter from World Tech company is connected in parallel with the load terminals. Figure 

11 shows the designed printed circuit board (PCB) and the overall experimental testing 

setup of the proposed SSTS switching system for the two synchronized AC power sources 

with nominal voltages of 220 V RMS and 60 Hz. 

 

Figure 10. Schematic circuit of the proposed SSTS board for experimental testing (where V.S repre-

sents the proposed online voltage sensing circuit presented in Figure 4). 

 

Figure 11. The experimental testing setup of the proposed SSTS switching system. Figure 11. The experimental testing setup of the proposed SSTS switching system.



Energies 2023, 16, 526 11 of 16

Figure 12 shows AC1, AC2, and the load voltage waveforms when the AC1 source is
faulted precisely at the point of the zero-crossing (worst case). It is observed that the period
when AC1 and AC2 are in normal conditions, Triac1 is switched on, Triac2 is switched off,
and the load voltage is equal to the AC1 source voltage. When the fault occurs at the AC1
source, the proposed control algorithm will detect the fault and transfer the power supply
from AC1 to AC2 at the second-next voltage zero-crossing point with a transition time of
approximately 16.67 ms, which is approximately one cycle.
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Figure 12. Experimental voltage waveforms and transition time calculations when the AC1 source is
faulted at the point of zero-crossing.

Figure 13 shows the voltage waveforms and the transition time calculations when the
AC1 source is faulted during the voltage waveform fall time. It is noticed that the proposed
control algorithm will detect the fault and transfer the power supply from AC1 to AC2
at the second-next voltage zero-crossing point, with a transition time of approximately
15.8 ms (less than one cycle).
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faulted during the voltage waveform fall time.

Figure 14 shows the voltage waveforms and the transition time calculations when the
AC1 source is faulted during the voltage waveform rise time. It is noticed that again, the
proposed control algorithm will detect the fault and transfer the power supply from AC1 to
AC2 at the second-next voltage zero-crossing point, with a transition time of approximately
14 ms (less than one cycle).

From Figures 12–14, it is clearly observed that when the ACI fault condition occurs
at any point of the voltage waveforms, the proposed SSTS system successfully detects
the fault and transfers the power supply from the ACI source to the AC2 source with a
transition time of less than one cycle.
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faulted during the voltage waveform rise time.

The operation principle of the proposed SSTS system is similar when the AC1 source
is faulted instead of the AC2 source. To verify these operation conditions, Triac1 is switched
off and Triac2 is switched on, and then the AC2 source is faulted at the zero-crossing point,
and by applying the proposed switching algorithm, as shown in Figure 15, it is noticed that
when the fault occurs at the AC2 source, the proposed control algorithm will detect the fault
and transfer the power supply from AC2 to AC1 at the second-next voltage zero-crossing
point, with a transition time of approximately 16.22 ms.
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5. Comparison of the Proposed SSTS System with Previous Works

Table 3 shows the advantages and disadvantages of the proposed switching system
with previous works that used different semiconductor devices and control techniques and
different testing platforms.
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Table 3. Performance comparison of the proposed SSTS with previous works.

Ref. Configuration Testing Platform Control
Techniques Disadvantages Advantages

Proposed STS-based
Triac Experimental

Voltage
monitoring,
zero-crossing
detection, and ISR
implementation

Fault detection based on
voltage monitoring only
and there is no current
sensing

Simple construction,
exact zero-crossing
detection, load
protection, reduced
inrush current, and
short transition time
within one cycle

[21] STS-based
thyristor

PSCAD/EMTDC
simulation

Voltage sag
detection based on
synchronous
reference frame

Fault detection based on
voltage monitoring, but
without current sensing,
complex commutation
circuits, and
zero-crossing detection

Short transition time
(within one cycle),
preventing the source
from paralleling and
preventing the flow of
the cross-current

[22]
Hybrid ATS plus
STS based-
thyristor

Experimental

Voltage monitoring
and BBM
technique to
decide exact
transfer point

High transfer time
(more than one cycle),
high cost, and complex
power and control
circuit configuration

Reduced power losses
and reliable for
applications with high
voltage and power
capacity

[20] STS-based
thyristor Experimental

Voltage monitoring
and machine
learning technique

No current sensing,
complex control
algorithms, and
zero-crossing detection

High accuracy and short
transition time

[23] STS-based
thyristor

PSCAD/EMTDC
simulation

Voltage monitoring
based on PLL and
BBM techniques

No zero-crossing
detection

Fast synchronization
and short transfer time
with the PLL and BBM
techniques

[27] STS-based IGCT Experimental
Voltage source
converter and DC
chopper circuit

Using the dissipation
resistors in the circuit
construction increased
the circuit size and
thermal losses

High reliability with low
cost for very-high-power
applications

[13] STS-based
thyristor

MATLAB
simulation

Voltage and
current signal
detection using the
dq transformation

No zero-crossing
detection

Voltage and current
sensing to detect the
power disturbance and a
short transition time

6. Conclusions

A smart static transfer switch (SSTS) based on a Triac semiconductor switch and digital
control switching algorithm is proposed in this paper. The SSTS system is designed to
control the power transfer from the preferred power supply to an alternate power supply
with a transition time of less than one cycle. The zero-crossing switching technique is offered
in the proposed switching algorithm for the Triac switches during the transition process,
helping to reduce the inrush current due to the high dv/dt. Furthermore, an interrupt
service routine (ISR) is implemented to protect the loads during the fault conditions when
all available sources are at abnormal conditions. The printed circuit board (PCB) of the
proposed SSTS was designed and manufactured, and the experimental results show that
when the fault occurs at the AC power source connected to the load, the proposed switching
algorithm successfully senses the AC voltage, detects the fault condition, predicts the zero-
crossing point, and converts the power from the preferred source to the alternate source
with a transition time of within one cycle (at the worst case).

For future work related to this research, the switching algorithm based on the online
measurements and monitoring of the voltage and current waveforms (and not only the
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voltage waveforms) should be conducted to increase the circuit reliability and protect the
circuit components during the overload conditions. In addition, the design and coordi-
nation of the communication and SCADA system to remotely operate the semiconductor
switches will also be completed. Furthermore, the design and the experimental perfor-
mance investigation of the SSTS will be extended to work with three-phase AC systems
with the same and different voltage sequences.
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