Study on Dolomite Thin Layers and Nodules in the Qingshankou Formation Shale Oil Reservoir of Gulong Sag
Abstract
:1. Introduction
2. Geological Settings
3. Characteristics of the Gulong Shale Reservoir
3.1. Lithology of the Gulong Shale Oil Reservoir
3.2. Mineral Composition of the Gulong Shale Oil Reservoir
3.3. Characteristics of Dolomite Thin Layers and Nodules
3.3.1. Macro-Petrological Characteristics
3.3.2. Microscopic Petrographic Characteristics
- (1)
- Microscopic features obtained using mobile phones
- (2)
- Microscopic characteristics
- (3)
- Electron microlithological characteristics
3.4. Mineral Composition of the Thin Dolomite Layer and Nodule
3.5. Oil-Bearing Properties of Dolomite Thin Layers or Nodules
3.6. Frictional Mirrors, Abrasions, and Cracks in Thin Dolomite Layers or Nodules
3.7. Calcite Veins in Thin Layers or Nodules of Dolomite
3.8. Sand-Grade Mud Flakes in Thin Argillaceous Dolomite Layers and Nodules
3.9. Dolomite Storage Properties
3.10. Carbonized Biological Residues in Dolomite
3.11. Study of Silt Veins in Argillaceous Dolomite and Their Compaction Rates
3.12. Study of Major Element Compositions in Dolomite Thin Layers and Nodules
3.13. Carbon and Oxygen Isotope Characteristics
4. Analysis of the Factors Underlying Dolomite Formation
5. Conclusions
- (1)
- A certain number of thin dolomite layers and nodules developed in the Gulong Shale oil reservoir and can be classified into three rock types: pure dolomite, with a dolomite or calcite content greater than 90%; mud-bearing dolomite, with a dolomite or calcite content 75–90%; and argillaceous dolomite, with a 50–75% dolomite or calcite content.
- (2)
- The thin dolomite layers and nodules developed silt veins, and the 1.48 compaction rate or curvature of the silt veins was smaller than that of the mud shale from this period, indicating that the thin dolomite layers and nodules were subjected to less compaction after they were formed. Therefore, dolomitization occurred soon after deposition.
- (3)
- The thin dolomite layers and nodules in the Gulong shale oil reservoir formed under arid climatic conditions because of the initial salinization of the Gulong Sag, and they were also subjected to magmatic hydrothermal action.
- (4)
- The thin layers and nodules of dolomite and in the Gulong shale oil reservoir also present a certain oil storage capacity. This characteristic determines the exploration and development potential of Gulong’s shale oil, which has unique economic and technical attributes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, Z.J.; Zhu, D.Y.; Hu, W.X.; Zhang, X.F.; Wang, Y.; Yan, X.B. Geological and Geochemical Signatures of Hydrothermal Activity and Their Influence on Carbonate Reservoir Beds in the Tarim Basin. Acta Geol. Sin. 2006, 80, 245–253. [Google Scholar]
- Zou, C.N.; Zhang, G.S.; Yang, Z.; Tao, S.Z.; Hou, L.H.; Zhu, R.K.; Yuan, X.J.; Ran, Q.Q.; Li, D.H.; Wang, Z.P. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum. Pet. Explor. Dev. 2013, 40, 385–454. [Google Scholar] [CrossRef]
- Sun, H.Q. Exploration practice and cognitions of shale oil in Jiyang depression. China Pet. Explor. 2017, 22, 1–14. [Google Scholar]
- Liu, W.; Wang, P. Genesis and environmental significance of the dolomite concretions from the Nenjiang Formation in the Songliao Basin, northeast ERN China. Sediment. Facies Palaeogeogr. 1997, 17, 22–26. [Google Scholar]
- Kuang, L.; Tang, Y.; Lei, D.; Chang, Q.; Min, O.; Hou, L.; Liu, D. Formation conditions and exploration potential of tight oil in the Permian saline lacustrine dolomitic rock, Junggar Basin, NW China. Pet. Explor. Dev. 2012, 39, 657–667. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Li, W.; Yang, R.; Lei, C.; Liu, L.Y.; Liu, H.F.; Li, H.P. The microbial precipitation of lacustrine dolomite from Permian formation, Urumchi, Xinjiang, China. Geol. Bull. China 2013, 32, 661–670. [Google Scholar]
- Xiao, L. Sedimentary characteristics and control factors of lacustrine limestone of Nadu Formation of Paleogene in Nakun area of Baise. J. Oil Gas Technol. 2012, 34, 1–5. [Google Scholar]
- Wen, H.; Zheng, R.; Qing, H.; Fan, M.; Li, Y.; Gong, B. Primary dolostone related to the Cretaceous lacustrine hydrothermal sedimentation in Qingxi Sag, Jiuquan Basin on the northern Tibetan Plateau. Sci. China Seri. D Earth Sci. 2014, 44, 591–604. [Google Scholar] [CrossRef]
- Yuan, J.; Huang, C.; Cao, Z.; Li, Z.; Wan, C. Carbon and oxygen isotopic composition of saline lacustrine dolomite and its palaeoenvironmental significance: A case study of Lower Eocene Ganchaigou Formation in western Qaidam Basin. Geochimica 2015, 44, 254–266. [Google Scholar]
- Zhang, H.; Chen, G.; Zhu, Y.S. Discovery and significance of dolomites altered by hydrothermal fluid in Oligocene reservoirs of the Yingxi area, Qaidam Basin. Geol. Sci. Technol. Inf. 2017, 36, 87–97. [Google Scholar]
- Wang, G.; Cheng, R.; Wang, P.; Gao, Y.F. The forming mechanism of dolostone of Nengjiang Formation in Songliao Basin: Example from CCSD-SK II. Acta Geol. Sin. 2008, 82, 48–54. [Google Scholar]
- Yan, G.; Liu, Z.; Song, H.; Han, X.; Zhang, Z.; Cheng, D. Genesis of the dolomite in the Shahejie Formation of JZ oilfield, Bohai Basin. Mar. Geol. Front. 2020, 36, 26–35. [Google Scholar]
- Fu, X.; Meng, Q.A.; Wen, Z.; Bai, Y.; Gao, B.; Su, Y.X. Sedimentary Environment and Genetic Mechanism of Dolomites in the Qingshankou Formation, Songliao Basin. Acta Sedimentol. Sin. 2022, 10, 14027. [Google Scholar]
- Chen, Z.; Chen, F. Kinematic characteristics of inversion structures in Songliao Basin. J. Grad. School 1996, 10, 390–396. [Google Scholar]
- He, W.; Cui, B.; Wang, F.; Wang, Y.; Meng, Q.; Zhang, J.; Shao, H.; Wang, R.; Bai, Y.; Lin, X.; et al. Study on the shale fissures, shale calcite veins and oil-state of Qingshankou formation from Gulong Sag. Geol. Rev. 2022, 68, 693–741. [Google Scholar]
- He, W.; Yun, J.; Zhong, J. Dolomitization making reservoirs and fissure-cave reservoirs of the Changxing formation in eastnorthern Sichuan. Lithol. Res. 2022, 34, 1–25. [Google Scholar]
- Wang, G.; Wang, F.; Meng, Q.; Gu, S. Stratgic significance and research direction for Gulong shale oil. Pet. Geol. Oilfield Dev. Daqing 2020, 39, 8–19. [Google Scholar]
- Sun, L. Shale oil in Gulong Sag. Pet. Geol. Oilfield Dev. Daqing 2020, 39, 1–7. [Google Scholar]
- He, W.; Meng, Q.; Zhang, J. Controlling factors and their classification- evaluation of Gulong shale oil enrichment in Songliao Basin. Pet. Geol. Oilfield Dev. Daqing 2021, 40, 1–12. [Google Scholar]
- He, W.; Meng, Q.; Feng, Z.; Zhang, J.; Wan, R. In-Situ accumulation theory and exploration and development practice of Gulong shale oil in Songliao Basin. Acta Pet. Sin. 2022, 43, 1–14. [Google Scholar]
- He, W. Discovery of nm pores and nm fractures in Gulong shale oil reservoir and its significances. Pet. Geol. Oilfield Dev. Daqing 2022, 41, 1–15. [Google Scholar]
- Shao, H.; Gao, B.; Pan, H.; Chen, G.; Li, L. Diagenesis-pore evolution for Gulong shale in Songliao Basin. Pet. Geol. Oilfield Dev. Daqing 2021, 40, 56–67. [Google Scholar]
- Wang, F.; Fu, Z.; Wang, J.; Tang, Z.; Jiang, R. Characteristics and clasiification of Gulong shale reservoir in Songliao Basin. Pet. Geol. Oilfield Dev. Daqing 2012, 40, 144–156. [Google Scholar]
- Aigner, T. Storm deposits as a tool in facies analysis. In Abstracts: International Association of Sedimentologists 1st European Meeting; International Association of Sedimentologists: Bochum, Germany, 1980; p. 44. [Google Scholar]
- Aigner, T. Storm Depositional Systems; Springer: Berlin, Germany, 1985; p. 119. [Google Scholar]
- Aigner, T.A. Storm Depositional Systems: Dynamic Stratigraphy in Modern and Ancient Shallow-Marine Sequences; Lecture Notes in Earth Sciences; Springer: Berlin/Heidelberg, Germany, 1985; Volume 3, p. 174. [Google Scholar]
- Myrow, P.M.; Lukens, C.; Lamb, M.P.; Houck, K.; Strauss, J. Dynamics of a Transgressive Prodeltaic System: Implications for Geography and Climate within a Pennsylvanian Intracratonic Basin, Colorado, U.S.A. J. Sediment. Res. 2008, 78, 512–528. [Google Scholar] [CrossRef]
- Immenhauser, A. Estimating palaeo-water depth from the physical rock record. Earth Sci. Rev. 2009, 96, 107–139. [Google Scholar] [CrossRef]
- Mohseni, H.; Al-Aasm, I.S. Tempestite deposits on a storminfluenced carbonate ramp: An example from the pabdeh formation (paleogene), zagros basin, Swiran. J. Pet. Geol. 2004, 27, 163–178. [Google Scholar] [CrossRef]
- He, W.; Zhong, J.; Sun, N. Discovery and signifificance of tempestites and storm deposits in the Qingshankou Formation of the Gulong Sag, northeastern China. Front. Earth Sci. 2022, 16648714, 191. [Google Scholar]
- Vasconcelos, C.; McKenzie, J.A.; Warthmann, R.; Bernasconi, S.M. Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology 2005, 33, 317–320. [Google Scholar] [CrossRef]
- Ji, C.; Chen, C.; Wu, Z.; Yi, H.; Xia, G.; Zao, Z. Carbon and oxygen isotopes analysis of the fluid inclusions in Middle Jurassic saccharoidal dolostone of Qiangtang Basin and discussion on the genesis of dolostone. Geol. Rev. 2020, 66, 1186–1198. [Google Scholar]
- Luczaj, J.A.; Harrison, W.B., III; Smith Williams, N. Fractured hydrothermal dolomite reservoirs in the Devonian Dundee Formation of the central Michigan Basin. AAPG Bull. 2006, 90, 1787–1801. [Google Scholar] [CrossRef]
- Zhu, D.; Jin, Z.; Hu, W. Hydrothermal alteration dolomite reservoir in Tazhong area. Acta Pet. Sin. 2009, 30, 698–704. [Google Scholar]
- Huang, S.J.; Lan, Y.F.; Huang, K.K.; Lü, J. Vug fillings and records of hydrothermal activity in the Middle Permian Qixia Formation, western Sichuan Basin. Acta Petrol. Sin. 2014, 30, 687–698. [Google Scholar]
- Wang, K.; Hu, S.; Hu, Z.; Liu, W.; Huang, Q.; Shi, S.; Ma, K.; Li, M. Cambrian hydrothermal action in Gucheng area, Talimu Basin and its influences on reservoir development. Acta Pet. Sin. 2016, 37, 439–452. [Google Scholar]
Sample | Depth (m) | Sag | Layer | Lithology | Quartz | Potash Feldspar | Plagioclase Feldspar | Calcite | Ankerite | Clay Mineral | Pyrite | Siderite |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A1-4 | 2484.5 | Gulong | K2qn2 | Dolomite | 1.1 | 0 | 1.7 | 0 | 94.9 | 2.3 | 0 | 0 |
A1-5 | 2486.2 | Gulong | K2qn2 | Dolomite | 3.2 | 0 | 1.7 | 0 | 92 | 3.2 | 0 | 0 |
A1-7 | 2490.5 | Gulong | K2qn2 | Dolomite | 3.2 | 0 | 2.5 | 0 | 91.2 | 3 | 0 | 0 |
A1-11 | 2545.8 | Gulong | K2qn1 | Dolomite | 0.7 | 0 | 1.3 | 0.2 | 96.6 | 1.2 | 0 | 0 |
A1-14 | 2562.6 | Gulong | K2qn1 | Dolomite | 2.8 | 0 | 1.3 | 0 | 92.4 | 2.5 | 1 | 0 |
A3-160 | 2179.8 | Gulong | K2qn2 | Clay-bearing Dolomite | 14.4 | 0 | 3 | 0 | 78.8 | 3.8 | 0 | 0 |
A3-171 | 2189.7 | Gulong | K2qn2 | Clay-bearing Dolomite | 9.4 | 0 | 1.8 | 0 | 82.4 | 6.4 | 0 | 0 |
A1-3 | 2471.5 | Gulong | K2qn2 | Clay-bearing Dolomite | 4.1 | 0 | 4.4 | 0.4 | 87.5 | 3.7 | 0 | 0 |
A1-13 | 2554 | Gulong | K2qn1 | Clay-bearing Dolomite | 10.3 | 0 | 1.4 | 0.4 | 81 | 6.9 | 0 | 0 |
A5-2 | 1596.9 | Sanzhao | K2qn1 | Clay-bearing Dolomite | 3.6 | 0 | 2.8 | 0 | 86.6 | 5.8 | 1.2 | 0 |
A4-1 | 1805.4 | Sanzhao | K2qn1 | Clay-bearing Dolomite | 7.1 | 0 | 3.9 | 0 | 80 | 6.2 | 2.7 | 0 |
A3-161 | 2180.3 | Gulong | K2qn2 | Argillaceous dolomite | 14.7 | 0 | 6.2 | 1.9 | 64.3 | 11.1 | 1.8 | 0 |
A3-178 | 2199.9 | Gulong | K2qn2 | Argillaceous dolomite | 11.5 | 0 | 7.1 | 0 | 56.7 | 21.3 | 2.8 | 0.7 |
A3-183 | 2206.2 | Gulong | K2qn2 | Argillaceous dolomite | 18.7 | 0 | 6.9 | 0 | 63.6 | 10.7 | 0 | 0 |
A3-193 | 2216 | Gulong | K2qn2 | Argillaceous dolomite | 17.1 | 0 | 7.3 | 0 | 57.5 | 16.8 | 1.4 | 0 |
A3-243 | 2256.9 | Gulong | K2qn2 | Argillaceous dolomite | 26.2 | 0 | 1.6 | 0 | 60.3 | 10.5 | 1.4 | 0 |
A1-6 | 2487.2 | Gulong | K2qn2 | Argillaceous dolomite | 8.8 | 0 | 4.3 | 0 | 76.6 | 7.5 | 2.7 | 0 |
A1-8 | 2493.6 | Gulong | K2qn2 | Argillaceous dolomite | 14.6 | 0 | 8.7 | 3.3 | 60.6 | 9.8 | 2.4 | 0.7 |
A1-9 | 2525.2 | Gulong | K2qn1 | Argillaceous dolomite | 6.1 | 0 | 3.1 | 1.1 | 74.3 | 12.6 | 2.7 | 0 |
A1-10 | 2542.8 | Gulong | K2qn1 | Argillaceous dolomite | 7.2 | 0 | 2.7 | 0.9 | 76.9 | 10.6 | 1.7 | 0 |
A1-12 | 2550.4 | Gulong | K2qn1 | Argillaceous dolomite | 14.8 | 0 | 2.4 | 3.5 | 68.5 | 10.8 | 0 | 0 |
A1-15 | 2570.3 | Gulong | K2qn1 | Argillaceous dolomite | 13.5 | 0 | 3.2 | 1.2 | 69 | 11.4 | 1.7 | 0 |
A5-1 | 1593.9 | Sanzhao | K2qn1 | Argillaceous dolomite | 23 | 0 | 1.9 | 0 | 67.4 | 7.6 | 0 | 0 |
A5-3 | 1601.9 | Sanzhao | K2qn1 | Argillaceous dolomite | 15.3 | 0 | 8.3 | 0 | 60.1 | 14.2 | 2.1 | 0 |
A5-4 | 1604.7 | Sanzhao | K2qn1 | Argillaceous dolomite | 11.3 | 0 | 3.4 | 0 | 75.7 | 9.5 | 0 | 0 |
A5-5 | 1636.4 | Sanzhao | K2qn1 | Argillaceous dolomite | 24.5 | 0 | 6.6 | 0 | 52.1 | 16.7 | 0 | 0 |
A5-6 | 1640.3 | Sanzhao | K2qn1 | Argillaceous dolomite | 18.5 | 0 | 2.7 | 0 | 69.3 | 9.5 | 0 | 0 |
A4-2 | 1826.9 | Sanzhao | K2qn1 | Argillaceous dolomite | 15.7 | 0 | 3 | 0 | 69.7 | 10.1 | 1.6 | 0 |
Lower | Length (L) | Height (H) | L/H |
---|---|---|---|
1 | 12 | 9 | 1.333 |
2 | 13 | 9 | 1.444 |
3 | 14 | 6 | 2.333 |
4 | 8 | 5 | 1.600 |
5 | 31 | 15 | 2.067 |
6 | 19 | 14 | 1.357 |
7 | 32 | 28 | 1.143 |
8 | 13 | 8 | 1.625 |
9 | 7 | 5 | 1.400 |
10 | 35 | 26 | 1.346 |
11 | 38 | 28 | 1.357 |
12 | 64 | 49 | 1.306 |
13 | 24 | 19 | 1.263 |
14 | 18 | 15 | 1.200 |
15 | 34 | 26 | 1.308 |
16 | 13 | 9 | 1.444 |
17 | 12 | 8 | 1.500 |
18 | 8 | 6 | 1.333 |
19 | 35 | 23 | 1.522 |
20 | 26 | 14 | 1.857 |
21 | 16 | 14 | 1.143 |
22 | 24 | 13 | 1.846 |
23 | 16 | 12 | 1.333 |
24 | 28 | 15 | 1.867 |
25 | 14 | 12 | 1.167 |
26 | 13 | 8 | 1.625 |
27 | 12 | 9 | 1.333 |
28 | 16 | 11 | 1.455 |
29 | 13 | 9 | 1.444 |
Average | 20.966 | 14.655 | 1.481 |
Upper | Length (L) | Height (H) | L/H |
---|---|---|---|
1 | 8 | 5 | 1.600 |
2 | 13 | 8 | 1.625 |
3 | 21 | 10 | 2.100 |
4 | 10 | 6 | 1.667 |
5 | 21 | 4 | 5.250 |
6 | 24 | 5 | 4.800 |
7 | 19 | 11 | 1.727 |
8 | 14 | 5 | 2.800 |
9 | 22 | 12 | 1.833 |
10 | 14 | 5 | 2.800 |
11 | 33 | 10 | 3.300 |
Average | 18.091 | 7.364 | 2.682 |
Sample | Depth (m) | Lithology | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | TiO2 | P2O5 | MnO |
---|---|---|---|---|---|---|---|---|---|---|---|---|
A3-155 | 2174.17 | Dolomite | 5.61 | 2.23 | 7.39 | 29.72 | 13.36 | 0.44 | 0.29 | 0.11 | 0.14 | 0.38 |
A3-203 | 2227.04 | Dolomite | 19.87 | 17.94 | 4.01 | 31.2 | 12.01 | 3.67 | 1.56 | 0.6 | 0.08 | 0.05 |
A3-206 | 2229.58 | Dolomite | 19.76 | 18.73 | 4.41 | 30.53 | 11.87 | 3.77 | 1.63 | 0.65 | 0.1 | 0.03 |
A3-208 | 2230.89 | Dolomite | 18.66 | 18.48 | 4.43 | 30.86 | 11.85 | 3.78 | 1.62 | 0.64 | 0.16 | 0.05 |
A3-217 | 2238.29 | Dolomite | 15 | 17.76 | 4.88 | 32.51 | 12.89 | 3.69 | 1.24 | 0.59 | 0.14 | 0.06 |
A3-223 | 2242.09 | Dolomite | 19.06 | 17.68 | 4.45 | 30.69 | 11.96 | 3.23 | 1.87 | 0.6 | 0.11 | 0.03 |
A3-227 | 2245.36 | Dolomite | 2.34 | 1.26 | 5.84 | 28.62 | 17 | 0.23 | 0.18 | 0.06 | 0.26 | 0.16 |
A3-229 | 2247.04 | Dolomite | 9.18 | 3.12 | 6.92 | 25.73 | 14.61 | 0.18 | 0.18 | 0.08 | 0.15 | 0.14 |
A3-269 | 2275.36 | Dolomite | 7.31 | 1.35 | 3.21 | 31.13 | 14.89 | 0.16 | 0.15 | 0.04 | 0.14 | 0.28 |
A3-158 | 2177.36 | Clay-bearing dolomite | 8.1 | 2.89 | 9.78 | 27.63 | 12.07 | 0.4 | 0.34 | 0.1 | 0.19 | 0.28 |
A3-160 | 2179.8 | Clay-bearing dolomite | 15.33 | 2.26 | 7.18 | 25.82 | 12.07 | 0.22 | 0.44 | 0.08 | 0.21 | 0.21 |
A3-164 | 2181.93 | Clay-bearing dolomite | 20.23 | 6.43 | 8.04 | 21.67 | 9.17 | 1.2 | 1.04 | 0.26 | 1.4 | 0.29 |
A3-171 | 2189.7 | Clay-bearing dolomite | 16.82 | 2.93 | 8.82 | 24.83 | 11.32 | 0.31 | 0.35 | 0.09 | 0.22 | 0.29 |
A3-183 | 2206.17 | Clay-bearing dolomite | 19.89 | 3.86 | 7.46 | 23.61 | 10.36 | 0.64 | 0.5 | 0.13 | 0.44 | 0.28 |
A3-193 | 2216.01 | Clay-bearing dolomite | 15.87 | 4.87 | 8.13 | 23.78 | 11.12 | 0.91 | 0.46 | 0.18 | 0.19 | 0.32 |
A3-219 | 2239.58 | Clay-bearing dolomite | 23.44 | 4.66 | 8.25 | 19.89 | 11.15 | 0.33 | 0.24 | 0.1 | 0.05 | 0.21 |
A3-243 | 2256.85 | Clay-bearing dolomite | 24.12 | 5.3 | 7.64 | 20.61 | 9.75 | 0.93 | 0.32 | 0.18 | 0.12 | 0.25 |
A3-175 | 2195.59 | Argillaceous dolomite | 26.11 | 6.44 | 8.89 | 19.63 | 8.89 | 1.12 | 0.79 | 0.23 | 0.46 | 0.27 |
A3-197 | 2219.64 | Argillaceous dolomite | 37.6 | 12.16 | 6.93 | 11.29 | 6.84 | 2.37 | 1 | 0.43 | 0.13 | 0.14 |
A3-256 | 2265.97 | Argillaceous dolomite | 27.99 | 5.59 | 6.24 | 19.32 | 10.04 | 0.91 | 0.3 | 0.17 | 0.16 | 0.2 |
Average | 17.61 | 7.8 | 6.64 | 25.45 | 11.66 | 1.42 | 0.72 | 0.27 | 0.24 | 0.2 |
Number | Sample Description | Horizon | Distance Top (m) | Well Depth (m) | Detection Result (%) | Paleosalinity (Z) | Paleowater Temperature (°C) | δ18OCaco3 PDB | |
---|---|---|---|---|---|---|---|---|---|
δ13C PDB | δ18O PDB | ||||||||
GY1-2 | Gray micrite dolomite | K1qn1 | 21.40 | 2518.81 | 11.90 | −6.49 | 144.60 | 3.39 | 3.40 |
GY1-3 | Gray micrite dolomite | K1qn1 | 3.70 | 2527.72 | 2.18 | −16.79 | 120.47 | 50.78 | −6.90 |
GY1-4 | Gray micrite dolomite | K1qn1 | 5.10 | 2529.12 | 0.28 | −16.57 | 116.67 | 49.46 | −6.68 |
GY1-5 | Gray micrite dolomite | K1qn1 | 6.90 | 2530.92 | 1.67 | −15.68 | 119.88 | 44.35 | −5.79 |
GY1-6 | Gray micrite dolomite | K1qn1 | 8.30 | 2532.32 | 4.27 | −14.71 | 125.61 | 38.98 | −4.82 |
GY1-7 | Gray micrite dolomite | K1qn1 | 10.40 | 2534.42 | 2.25 | −16.49 | 120.74 | 48.97 | −6.60 |
GY1-8 | Gray micrite dolomite | K1qn1 | 11.30 | 2535.32 | 11.03 | −8.88 | 141.83 | 11.94 | 1.01 |
GY1-9 | Gray micrite dolomite | K1qn1 | 13.00 | 2537.02 | 9.53 | −9.40 | 138.56 | 13.99 | 0.49 |
GY1-10 | Gray micrite dolomite | K1qn1 | 16.20 | 2540.22 | 9.09 | −9.46 | 137.63 | 14.21 | 0.43 |
GY1-11 | Gray micrite dolomite | K1qn1 | 16.95 | 2540.97 | 4.86 | −12.22 | 127.84 | 26.36 | −2.33 |
GY1-12 | Gray micrite dolomite | K1qn1 | 7.50 | 2551.16 | 10.41 | −7.53 | 141.12 | 6.94 | 2.36 |
GY1-13 | Gray micrite dolomite | K1qn1 | 9.50 | 2553.16 | 9.99 | −7.89 | 140.11 | 8.22 | 2.00 |
GY1-15 | Gray micrite dolomite | K1qn1 | 15.00 | 2558.66 | 9.27 | −9.97 | 137.80 | 16.30 | −0.08 |
GY1-16 | Gray micrite dolomite | K1qn1 | 2.40 | 2575.00 | 9.29 | −7.65 | 138.79 | 7.34 | 2.25 |
C9 | Dolomite | K1qn1 | 0.90 | 2544.56 | 8.56 | −9.06 | 136.70 | 12.64 | 0.83 |
GY2-1 | Gray micrite dolomite | K1qn1 | 7.65 | 2286.94 | 3.52 | −14.41 | 124.19 | 37.38 | −4.52 |
GY2-2 | Gray micrite dolomite | K1qn1 | 8.40 | 2287.69 | 6.11 | −12.10 | 130.44 | 25.77 | −2.21 |
GY2-3 | Gray micrite dolomite | K1qn1 | 9.00 | 2288.29 | 7.03 | −12.04 | 132.36 | 25.47 | −2.15 |
GY2-4 | Gray micrite dolomite | K1qn1 | 10.70 | 2289.99 | 12.23 | −8.57 | 144.42 | 10.74 | 1.32 |
GY2-5 | Gray micrite dolomite | K1qn1 | 11.60 | 2290.89 | 9.48 | −10.12 | 138.16 | 16.94 | −0.23 |
GY2-6 | Gray micrite dolomite | K1qn1 | 13.00 | 2292.29 | 0.15 | −16.72 | 116.35 | 50.33 | −6.83 |
GY2-7 | Gray micrite dolomite | K1qn1 | 13.70 | 2292.99 | 5.73 | −13.34 | 129.17 | 31.82 | −3.45 |
GY2-8 | Gray micrite dolomite | K1qn1 | 16.00 | 2295.29 | 7.09 | −11.62 | 132.64 | 23.52 | −1.73 |
GY2-9 | Gray micrite dolomite | K1qn1 | 17.80 | 2297.09 | 3.59 | −13.01 | 124.90 | 30.16 | −3.12 |
GY2-10 | Gray micrite dolomite | K1qn1 | 21.60 | 2300.89 | 2.48 | −12.76 | 122.74 | 28.95 | −2.87 |
GY2-11 | Gray micrite dolomite | K1qn1 | 24.75 | 2304.04 | 12.83 | −7.73 | 145.99 | 7.64 | 2.16 |
GY2-12 | Gray micrite dolomite | K1qn1 | 4.80 | 2310.54 | 3.62 | −13.47 | 124.78 | 32.45 | −3.58 |
GY2-13 | Gray micrite dolomite | K1qn1 | 5.20 | 2326.69 | 10.72 | −9.12 | 141.12 | 12.87 | 0.77 |
GY2-15 | Gray micrite dolomite | K1qn1 | 2.95 | 2333.61 | 7.52 | −9.82 | 134.26 | 15.70 | 0.07 |
GY2-16 | Gray micrite dolomite | K1qn1 | 3.90 | 2334.56 | 2.82 | −12.52 | 123.54 | 27.79 | −2.63 |
GY2-17 | Gray micrite dolomite | K1qn1 | 1.50 | 2336.45 | 9.31 | −8.71 | 138.38 | 11.28 | 1.18 |
GY2-18 | Gray micrite dolomite | K1qn1 | 2.00 | 2336.95 | 8.63 | −8.52 | 137.08 | 10.53 | 1.38 |
GY2-19 | Gray micrite dolomite | K1qn1 | 3.56 | 2338.51 | 2.05 | −14.94 | 120.97 | 40.24 | −5.05 |
GY2-21 | Gray micrite dolomite | K1qn1 | 0.80 | 2346.08 | 6.18 | −11.21 | 130.94 | 21.69 | −1.32 |
GY2-22 | Gray micrite dolomite | K1qn1 | 2.50 | 2347.78 | 8.86 | −9.82 | 137.01 | 15.69 | 0.07 |
GY2-23 | Gray micrite dolomite | K1qn1 | 3.00 | 2348.28 | 3.90 | −12.93 | 125.58 | 29.78 | −3.04 |
GY2-24 | Gray micrite dolomite | K1qn1 | 3.30 | 2348.58 | 3.83 | −13.06 | 125.39 | 30.43 | −3.17 |
GY2-25 | Gray micrite dolomite | K1qn1 | 2.70 | 2353.11 | 4.65 | −12.36 | 127.34 | 26.99 | −2.47 |
GY2-26 | Gray micrite dolomite | K1qn1 | 3.20 | 2353.61 | 5.06 | −15.90 | 126.74 | 45.56 | −6.01 |
GY2-27 | Gray micrite dolomite | K1qn1 | 1.40 | 2356.49 | 12.70 | −7.40 | 145.86 | 6.48 | 2.49 |
GY2-28 | Gray micrite dolomite | K1qn1 | 2.30 | 2357.39 | 13.08 | −7.50 | 146.60 | 6.83 | 2.39 |
GY2-29 | Gray micrite dolomite | K1qn1 | 0.10 | 2358.52 | 6.52 | −11.53 | 131.52 | 23.11 | −1.64 |
GY2-30 | Gray micrite dolomite | K1qn1 | 0.90 | 2359.32 | 9.55 | −10.43 | 138.16 | 18.27 | −0.54 |
GY2-31 | Gray micrite dolomite | K1qn1 | 11.80 | 2370.22 | 3.84 | −14.63 | 124.75 | 38.52 | −4.74 |
GY2-32 | Gray micrite dolomite | K1qn1 | 13.10 | 2371.52 | 1.87 | −17.10 | 119.72 | 52.61 | −7.21 |
GY2-33 | Gray micrite dolomite | K1qn1 | 13.50 | 2371.92 | 0.64 | −16.53 | 117.43 | 49.25 | −6.64 |
3 | Gray dolomite | K1qn1 | 11.80 | 2370.22 | 7.37 | −12.92 | 132.68 | 29.73 | −3.03 |
C10 | Dolomite | K1qn1 | 2.45 | 2357.54 | 14.43 | −6.39 | 149.81 | 3.09 | 3.50 |
C11 | Dolomite | K1qn1 | 7.15 | 2365.57 | 16.13 | −8.67 | 152.38 | 11.11 | 1.22 |
C12 | Dolomite | K1qn1 | 9.90 | 2494.20 | 7.43 | −10.94 | 133.62 | 20.45 | −1.05 |
C13 | Dolomite | K1qn1 | 7.50 | 2491.80 | 6.69 | −11.80 | 131.76 | 24.36 | −1.91 |
11-2 | Dolomitic mudstone | K2qn1 | / | 1746.44 | 11.16 | −6.82 | 142.95 | 4.49 | 3.07 |
5-1 | Dolomite | K1qn2+3 | / | 2115.80 | 8.33 | −11.73 | 135.14 | 24.05 | −1.84 |
B10-2 | Dolomite | K2qn1 | / | 2369.78 | 8.28 | −10.03 | 135.74 | 16.56 | −0.14 |
B27-2 | Dolomite | K2qn1 | / | 2350.70 | 5.53 | −13.23 | 128.79 | 31.27 | −3.34 |
B6 | Dolomite | K2qn1 | / | 1665.22 | 16.78 | −6.80 | 154.47 | 4.42 | 3.09 |
98B | Dolomitic mudstone | K2qn1 | / | 1060.22 | 2.06 | −9.05 | 123.40 | 12.59 | 0.84 |
D9 | Dolomite | K2qn1 | / | 2388.08 | 10.00 | −8.05 | 140.07 | 8.80 | 1.84 |
1 | Black dolomitic shale | K2qn1 | / | 2056.60 | 5.18 | −11.98 | 128.59 | 25.21 | −2.09 |
22 | Dolomite | K2qn1 | / | 1994.05 | 9.97 | −7.82 | 140.10 | 7.96 | 2.07 |
15 | Gray dolomite | K2qn1 | / | 1870.14 | 11.34 | −7.62 | 142.99 | 7.25 | 2.27 |
52 | Gray dolomite | K2qn1 | / | 1826.93 | 5.97 | −11.03 | 130.60 | 20.87 | −1.14 |
B33 | Dolomite | K2qn1 | / | 1596.72 | 5.27 | −11.40 | 129.01 | 22.53 | −1.51 |
99B | Dolomitic mudstone | K2qn1 | / | 1063.39 | 2.33 | −9.28 | 123.86 | 13.50 | 0.61 |
416 | Muddy dolomite | K2qn1 | / | 2522.68 | 12.48 | −6.70 | 145.70 | 4.09 | 3.19 |
Average value | 7.18 | −11.09 | 133.05 | 22.32 | −1.20 |
Oil Layer | Ba (ppm) | Sr (ppm) | Cu (ppm) | Ni (ppm) | Cr (ppm) | V (ppm) | B (ppm) | Paleoclimate Sr/Cu (ppm) | Paleosalinity Sr/Ba (ppm) | |
---|---|---|---|---|---|---|---|---|---|---|
X8HC | Q9 | 357.20-723.20 | 228.70–686.10 | 14.69–50.46 | 18.62–42.22 | 37.56–87.84 | 39.50–202.80 | 8.40–135.30 | 6.80–46.71 | 0.44–1.92 |
532.69 (17) | 351.24 (17) | 29.98 (17) | 23.63 (17) | 52.45 (17) | 111.78 (17) | 67.50 (17) | 13.46 (17) | 0.69 (17) | ||
Q8 | 398.40–1610.00 | 176.00–280.30 | 26.41–38.78 | 20.08–77.50 | 39.93–58.81 | 87.78–144.20 | 40.27–75.28 | 4.62–12.30 | 0.23–0.83 | |
537.77 (16) | 270.41 (16) | 33.06 (16) | 26.47 (16) | 49.34 (16) | 119.51 (16) | 62.49 (16) | 8.18 (16) | 0.50 (16) | ||
Q7 | 244.80–566.80 | 197.50–557.20 | 23.20–42.75 | 18.58–32.76 | 31.92–59.84 | 80.71–148.20 | 40.81–92.92 | 4.96–23.17 | 0.45–2.09 | |
414.10 (15) | 303.30 (15) | 33.56 (15) | 25.04 (15) | 47.90 (15) | 118.35 (15) | 65.59 (15) | 9.04 (15) | 0.73 (15) | ||
Q6 | 476.60–746.00 | 242.40–1194.00 | 5.53–39.54 | 5.60–32.88 | 12.37–63.56 | 26.28–131.30 | 13.51–87.75 | 6.87–210.16 | 0.48–1.79 | |
558.69 (15) | 449.01 (15) | 29.66 (15) | 24.82 (15) | 48.89 (15) | 102.22 (15) | 71.53 (15) | 15.14 (15) | 0.80 (15) | ||
Q5 | 321.80–684.30 | 237.30–740.50 | 22.98–36.99 | 20.47–33.18 | 32.84–60.75 | 74.95–144.20 | 38.22–85.48 | 6.97–32.22 | 0.52–1.50 | |
465.76 (9) | 354.41 (9) | 29.83 (9) | 25.95 (9) | 49.49 (9) | 108.87 (9) | 60.67 (9) | 11.88 (9) | 0.76 (9) | ||
Q4 | 310.30–498.30 | 182.70–999.70 | 17.36–40.00 | 18.30–25.03 | 33.41–62.61 | 87.73–146.70 | 43.87–66.66 | 6.24–57.59 | 0.42–2.01 | |
424.01 (10) | 321.20 (10) | 30.81 (10) | 23.48 (10) | 50.14 (10) | 121.06 (10) | 57.96 (10) | 10.43 (10) | 0.76 (10) | ||
Q3 | 260.50–456.50 | 219.20–709.20 | 25.59–70.12 | 13.32–30.60 | 35.73–57.41 | 95.96–159.70 | 42.60–68.76 | 4.14–27.71 | 0.66–1.72 | |
359.43 (13) | 316.70 (13) | 41.04 (13) | 24.14 (13) | 51.45 (13) | 129.97 (13) | 55.81 (13) | 7.72 (13) | 0.88 (13) | ||
Q2 | 303.00–364.40 | 248.30–358.70 | 33.42–40.06 | 24.43–31.06 | 46.53–54.24 | 120.10–130.10 | 41.83–52.54 | 7.19–10.73 | 0.81–0.99 | |
343.03 (3) | 300.73 (3) | 36.01 (3) | 28.36 (3) | 50.95 (3) | 125.30 (3) | 46.85 (3) | 8.35 (3) | 0.88 (3) | ||
Q1 | 244.00–746.00 | 233.30–1162.00 | 5.53–39.84 | 5.60–29.87 | 12.37–55.93 | 26.28–134.90 | 13.51–87.75 | 6.02–210.16 | 0.51–2.09 | |
466.74 (11) | 418.72 (11) | 29.03 (11) | 23.43 (11) | 43.62 (11) | 102.63 (11) | 61.04 (11) | 14.42 (11) | 0.90 (11) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, G.; Dong, W.; Zhang, X.; Zhong, J.; Sun, N. Study on Dolomite Thin Layers and Nodules in the Qingshankou Formation Shale Oil Reservoir of Gulong Sag. Energies 2023, 16, 3981. https://doi.org/10.3390/en16103981
Sun G, Dong W, Zhang X, Zhong J, Sun N. Study on Dolomite Thin Layers and Nodules in the Qingshankou Formation Shale Oil Reservoir of Gulong Sag. Energies. 2023; 16(10):3981. https://doi.org/10.3390/en16103981
Chicago/Turabian StyleSun, Guoqing, Wanbai Dong, Xiangguo Zhang, Jianhua Zhong, and Ningliang Sun. 2023. "Study on Dolomite Thin Layers and Nodules in the Qingshankou Formation Shale Oil Reservoir of Gulong Sag" Energies 16, no. 10: 3981. https://doi.org/10.3390/en16103981
APA StyleSun, G., Dong, W., Zhang, X., Zhong, J., & Sun, N. (2023). Study on Dolomite Thin Layers and Nodules in the Qingshankou Formation Shale Oil Reservoir of Gulong Sag. Energies, 16(10), 3981. https://doi.org/10.3390/en16103981