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Abstract: Recently, biomass has become an increasingly widely used energy resource. The problem
with the use of biomass is its variable composition. The most important property that determines the
energy content and thus the performance of fuels such as biomass is the heating value (HHV). This
paper focuses on selecting the optimal number of input variables using linear regression (LR) and
the multivariate adaptive regression splines approach (MARS) to create an artificial neural network
model for predicting the heating value of selected biomass. The MARS model selected the input data
better than the LR model. The best modeling results were obtained for a network with three input
neurons and nine neurons in the hidden layer. This was confirmed by a high correlation coefficient
of 0.98. The obtained results show that artificial neural network (ANN) models are effective in
predicting the calorific value of woody and field biomass, and can be considered a worthy simulation
model for use in selecting biomass feedstocks and their blends for renewable fuel applications.

Keywords: HHV forecasting; artificial neural networks; multivariate adaptive regression splines approach

1. Introduction

The primary sources for conventional power generation are fossil fuels, such as coal,
oil, and natural gas. Fossil fuel resources are being depleted; they also contaminate the
environment with the products of their combustion: particulate matter, sulfur, nitrogen,
and carbon oxides. Moreover, the unstable situation in the fuel market has prompted
countries to become independent from raw material suppliers and produce energy on
their own.

To reduce the rate of consumption of fossil fuels, renewable energy sources are used.
These sources are inexhaustible and environmentally friendly. Biomass has the greatest
significance in the fuel and energy balance due to its availability, as well as expected benefits
for the environment and the economy of local communities. Biomass includes various
types of agricultural and forest products, as well as residues from the wood processing
industry, and it is used to generate electricity, heat, and transport fuels.

According to Directive 2009/28/EC of the European Parliament and of the Council
of 23 April 2009 on the promotion of the use of energy from renewable sources (and
amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC), biomass
denotes the biodegradable fraction of products, wastes, or residues of biological origin from
agriculture (including plant and animal matter), forestry, and related industries, including
fisheries and aquaculture, as well as the biodegradable fraction of industrial and municipal
waste [1]. The energy from biomass can come from various processes: thermochemical
(combustion, gasification, and pyrolysis), biological (anaerobic digestion and fermentation),
or chemical (esterification). Currently, there is growing interest in biomass as a solid fuel,
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as its combustion produces steam for use in electricity generation, whereas its gasification
produces combustible gas and syngas.

Compared with conventional fuels, biomass contains significantly more oxygen in the
chemical bond structures, resulting in lower energy concentration per unit mass (energy
density). Its negative characteristics include large variations in chemical composition (ni-
trogen, chlorine, alkali) and water content, the tendency to form tars, and an ash melting
point [2–4]. The high heterogeneity and variability of biomass characteristics make it
difficult to develop and adopt common test methods (standardization, normalization) for
basic characteristics, such as the higher heating value (HHV). HHV is of key importance
for the design and operation of biomass combustion systems. This property determines the
efficiency of the thermochemical conversion of biomass to energy; the potential energy con-
tent of biomass must be known [5]. The HHV of fuel is equal to the amount of heat released
after the complete combustion of a unit mass of fuel, taking into account the enthalpy of
condensation of liquid water as a product of combustion under normal conditions. The
fuels with higher HHV will have the highest possible energy production [6]. The HHV
of biomass can be experimentally evaluated using an adiabatic oxygen bomb calorimeter,
which is a simple and accurate method of measuring the changes between reactants and
enthalpy of products.

Despite its simplicity, experimental analysis of HHV is not always possible [7]. There-
fore, many empirical models that correlate the elemental composition (carbon (C), hydrogen
(H), nitrogen (N), oxygen (O), sulfur (S)) of biomass, and HHV have been developed [8–11].

Most empirical models apply either to a single feedstock or to proximate and ultimate
analysis data. The HHV values of biomass are strongly dependent on the physical and
chemical properties of the biomass, climatic conditions, and the soil on which the biomass
is grown. This variable composition of biomass forces the development of models to reflect
different HHV values.

Several researchers have used statistical techniques and machine learning to success-
fully “predict” HHV. Essentially, the goal of these techniques was the same; namely, to
predict the HHV values of various biomass materials as accurately as possible. Discriminant
analysis and linear regression are the two most commonly used data mining techniques to
construct HHV models. These techniques are good when the relationship between variables
is linear. However, the relationship between the elemental composition of biomass and
properties such as moisture content, ash quantity, volatile matter, and heat of combustion
cannot be explained linearly. For this reason, the regression model may be insufficient for
applications to biomass sample variables [12–14].

An alternative in modeling nonlinear variables is artificial neural networks (ANN).
ANNs have many scientific and engineering applications, including process monitor-
ing [15], waste volume prediction [16], and water quality prediction [17]. ANNs have been
used for combustion modeling [18], energy consumption prediction [19], and prediction
of oxidation stability of biodiesel derived from waste [20]. The application of ANNs for
HHV prediction of solid fuels has been examined. Patel et al. (2007) used a non-linear
ANN model to estimate the HHV of coals [21]. Huang et al. (2008) predicted straw HHV
based on ash content [22]. Qian et al. (2018) developed a regression model to predict the
HHV of poultry waste from proximate analysis [14]. With different inputs, including the
chemical composition of biomass, physical, or physicochemical properties (such as density,
moisture content, ash content, or volatile matter), ANN models are an efficient method to
predict the HHV of biomass. ANN models give better results than linear models, such as
regression [23,24].

ANN models have been criticized because of the overly long training process in
designing the optimal network topology and the difficult-to-identify validity of potential
input variables. The selection of an optimal and small number of input parameters while
maintaining high model performance is a challenge in developing new ANN models for
HHV forecasting. Moreover, there are few works that have found optimal input factors
affecting HHV. A discriminant analysis, as well as linear regression and the multivariate
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adaptive regression splines approach (MARS), have been used to select input variables.
Unlike discriminant analysis and linear regression, MARS demonstrates the ability to
model complex relationships between data. Additionally, MARS can identify “important”
independent variables with multiple variables; moreover, it does not require a long training
process. The most important advantage of the MARS technique is the easy interpretation
of the model, since it is the resulting model [25].

Aiming to improve the quality of neural network models predicting HHV, the purpose
of the presented article is to select input variables using the multivariate adaptive regression
splines approach (MARS) and linear regression (LR) to create a neural network (ANN)
model predicting the heating value (HHV) of the biomass produced in Poland. Routine
experimental data such as carbon, nitrogen, sulfur, hydrogen, moisture content (M), and
volatile matter (V) of woody and field biomass typically found in Poland were used as
input data. MARS and LR techniques will yield significant predictor variables, which will
then serve as input data in the designed neural network model.

2. Materials and Methods

The research material consisted of the bark of oak, pine, hornbeam, alder, spruce, larch,
and Douglas fir trees and waste from the field production of wheat, rape, oat, rye, triticale,
barley, and maize straw. The biomass samples were collected from a farm in the village
of Kobło (Poland). Table 1 specifies the methods and standards followed in the biomass
parameters testing.

Table 1. Testing methods employed in the biomass analysis.

Determined Parameters Device Standard

Moisture M (%) Laboratory dryer ISO 18134 (2017) [26]

Volatile matter V (%),
ash content A (%)

FCF 2,5S electric muffle furnace made by Czylok
with SM-946 electronic controller and temperature

display (Warsaw, Poland)
ISO 18122 (2016) [27]

Determination of total carbon, hydrogen
and nitrogen (%)

CHNS Flash EA 1112 Series Elemental Analyzer
(Thermo Finnigan, Walthman, MA, USA) ISO 16948 (2015) [28]

Higher heating value (HHV) (kJ/kg) Mikado Calorimeter (Warsaw, Poland) ISO 18125 (2015) [29]

The content of other combustible solid
fractions FC (%)

FC was determined from the difference
FC = 100-A-W-V [30]

An ANN model for HHV was built based on two methods of selecting input variables:
linear regression and multivariate adaptive regression spline (MARS) [31]. The modeling
process was carried out in Matlab 2022a and R (version 4.1.2, Vienna, Austria). The quality
of the statistical model fit was tested using mean squared error (MSE)

MSE =
1
n

n

∑
n=1

(ŷi − yi)
2 (1)

together with root mean square error RMSE =
√

MSE, the determination coefficient (R2)

R2 =
∑n

n=1(ŷi − yi)
2

∑n
n=1(yi − yi)

2 . (2)

and the mean absolute error (MAE)

MAE =
1
n

n

∑
n=1
|ŷi − yi| (3)
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In the formulas above, yi and ŷi denote the actual value of the i-th observation and the
value predicted from the model, while yi is the the sample mean. Recall that the lower the
MSE, RMSE, and MAE, and the higher the R2, the better the quality of the constructed model.

Let X1, X2, . . . , Xn and Y be input variables and dependent variable. The linear regres-
sion model

Y = α0 + α1X1 + α2X2 + . . . + αnXn, (4)

is a convenient tool for selecting input variables, it allows understanding of the impact of
individual variables on Y by model coefficients α1, α2, . . . , αn. The following assumptions
for linear regression model were verified: normality of the distribution of the residuals—
Shapiro–Wilk test; homoscedasticity of the residuals—Breusch–Pagan test; absence of
autocorrelation of the residuals—Durbin–Watson test; existence of outliers—Bonferroni
outlier test.

Multivariate adaptive regression spline (MARS) is a nonparametric regression analysis
method that is used to model nonlinear relationships and interactions. In the simplest form,
the MARS model has the form

Y = α0 + α1 · h1
(
Xi1
)
+ α2 · h2

(
Xi2
)
+ . . . + αm · hm(Xim), (5)

where hj(x), j = 1, 2, . . . , m, is a hinge function equal to max
(
0, x− cj

)
or max

(
0, cj − x

)
(where cj is a constant, the cutpoint) and i1, i2, . . . , im ∈ {1, 2, . . . , n} (each independent
variable used in the model can appear in more than one term). Max () is the maxi-
mum function, that is: for real numbers a, b, max(a,b) denotes the larger of a and b,
i.e., max(a,b) = a if a > b and max(a,b) = b otherwise. The MARS model can also include
terms representing interactions, being a product of some number of hinge functions. In
order to use the MARS model as a tool for selecting input variables for the ANN model,
only a basic model (without interaction terms) was considered in this study. The modeling
process was carried out in the R environment using the Earth package [32]. The optimal
model was determined using the generalized cross-validation method (backward pass).
As a result, the optimal number of terms m in the model and the related most important
independent variables used and cut points were found. These variables form the input for
ANN model.

A network with one hidden layer was used to model ANN, in which the number
of neurons ranged from 2 to 10. Three types of learning algorithms were tested: the
Levenberg-Marquardt (L-M) algorithm, the Bayesian regularization algorithm (BR), and
the Scaled conjugate gradient algorithm (SCG). Three algorithms were chosen on the
basis of their performance. Although the Levenberg-Marquardt method is faster, it often
uses more memory. As shown by an increase in the mean square error of the validation
samples, training automatically stops when generalization no longer improves [33,34].
However, even if Bayesian regularization takes longer, it can produce good generalization
for complicated, small, or difficult data sets. Training stops due to adaptive weight loss
(regularization) [35,36]. On the other hand, the Scaled Conjugate Gradient Backpropagation
technique uses less memory than the previous ones. When the generalization no longer
improves, training stops automatically, as indicated by an increase in the mean square
error of the validation samples [37,38]. The data set was divided in the proportion of 75%
(training set): 25% (validation set), omitting the test set due to the small amount of input
data [15]. The quality of the network was determined on the basis of qualitative indicators
presented in Table 2.

The methodology for the development of this research is shown in the flowchart
below (Figure 1).
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Table 2. Quality indicators used to evaluate the received networks.

Quality Indicator Formula Meaning of Symbols

Regression value R R(y′, y∗) =
cov(y′ , y∗)
σy′σy∗

, Rε〈0, 1〉

σy′—standard deviation of reference values
of HHV,

σy*—standard deviation of predicted
values HHV,

yi is the actual value of HVV,
ŷi denotes the value of the HVV for the i-th

observation obtained from the model

Mean Squared Error (MSE) MSE = 1
n

n
∑

n=1
(ŷi − yi)

2

Root Mean Square Error (RMSE) RMSE =

√
∑n

i=1(yi−ŷi)
2

n

Mean Absolute Percentage Error (MAPE) MAPE = 1
n

n
∑

i=1

∣∣∣ y−y′
y

∣∣∣
Mean Absolute Error (MAE) MAE == 1

N

N
∑

i=1
(|yi − ŷi |)
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3. Results
3.1. Dataset

Experimental data from various biomass samples were used to create neural network
models. As shown in the Table 3, the moisture (M) and volatile matter (V) content values
varied significantly, with values ranging from 43.20–85.36% wt. for V and 5.8–10.39% for
M. Moreover, the content of C (31.47–66.45 wt%) varied in a relatively high percentage. It
should be mentioned that there were outliers in the data, which were identified by dots
outside the box. The large range of C and V resulted from the properties selected for biomass
analysis. The contents of S, N, and H were within the narrow ranges of 0.01–0.19 wt%,
0.17–3.62 wt%, and 0.59–8.84 wt, respectively. On the other hand, the calorific value (HHV)
was within a narrow range of 10.13–26.7% by weight, including the outlier. It should be
mentioned that a varied range of input feature values is very useful in the generality of
the data.

Table 3. Learning results of neural networks with two input neurons C and H.

Fuel Type
Industrial Analysis (%) Elemental Analysis (%) HHV

MJ/kgM A V FC C H N S

Oak Bark 7.93 1.57 71.50 19 41.20 3.73 0.84 7.93 16.08

Pine 6.88 1.46 64.10 27.56 36.41 3.51 0.17 6.88 14.98

Hornbeam 5.88 1.14 41.10 51.88 31.47 2.89 0.23 5.88 10.13

Alder 10.39 1.97 79.10 18.54 44.86 4.17 0.39 10.39 19.39
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Table 3. Cont.

Fuel Type
Industrial Analysis (%) Elemental Analysis (%) HHV

MJ/kgM A V FC C H N S

Oat Straw 6.03 4.32 43.20 46.45 42.20 3.80 0.51 6.03 16.45

Wheat Straw 6.16 3.15 71.34 19.35 43.26 4.03 0.64 6.16 18.47

Maize Straw 7.02 4.20 81.80 16.98 46.00 6.00 0.56 7.02 16.43

Rape Straw 9.05 5.50 76.54 18.91 45.00 2.80 0.47 9.05 15.02

Douglas Fir Bark 6.6 3.0 68.65 21.75 66.45 7.26 1.31 6.6 26.70

Spruce 5.9 1.37 73.10 19.63 54.00 5.70 0.5 5.9 20.84

Larch 7.2 0.5 52.10 40.2 51.60 5.60 0.8 0.16 20.61

Rye Straw 5.9 4.0 76.4 13.7 46.60 0.6 0.6 0.09 13

Triticale Straw 6.1 2.1 75.2 16.6 43.90 0.59 0.4 0.11 13.42

Barley Straw 5.8 4.0 77.3 12.9 47.50 0.59 0.5 0.15 13.32

Reed Pulp 5.8 11.4 70.78 12.02 43.50 5.93 3.42 0.01 16.5

Roegrass Haughty 7.8 2.7 69.66 19.84 38.38 8.84 0.44 0.03 16.8

Wooly Spikelet 6.2 9.1 79.65 17.05 44.98 5.66 1.86 0.01 14.8

Reed Fescue 6.5 9.2 77.56 16.74 39.47 5.07 1.2 0.02 15.3

Gigant Miscanthus 7.6 9.2 79.78 13.42 42.86 4.81 3.62 0.12 17.7

Hay 6.9 8.9 85.36 16.4 46.58 5.87 0.47 0.12 18

3.2. Linear Regression

The maximum of the absolute value of the independent variables correlation coeffi-
cients was equal to 0.365; therefore, all variables were used to construct the linear regression
model. The variables C and H turned out to be statistically significant at the significance
level α = 0.01, and the linear model had the form

HHV = −4.467 + 0.373·C + 0.597·H (6)

Here, MSE = 1.448529 and R2 = 0.8775. Response plot graphs for linear regression and
the predicted response versus true response graphs are shown in Figure 2. All the as-
sumptions were met: normality of the distribution of the residuals—the Shapiro–Wilk test
(p-value = 0.396); homoscedasticity of the residuals—Breusch–Pagan test (p-value = 0.745);
absence of autocorrelation of the residuals—Durbin–Watson test (p-value = 0.3497); the
existence of outliers—Bonferroni outlier test (p-value = 0.0106).

3.3. Multivariate Adaptive Regression Spline

The model was fitted using the generalized cross-validation method, where the maxi-
mum number of terms in the model was 50. As a result, the optimal model was obtained in
the form

HHV = 17.2367 − 0.42·h(43.9-C) + 0.48·h(C-43.9)-
−1.54·h(4.17-H) − 0.86·h(H−4.17) + 17.47·h(S−0.12),

(7)

where h(x) = max(0,x). The model consists of six terms based on three predictors: C, H, S,
MSE = 0.53114, and R2 = 0.95507. Figures 3 and 4 below show the process of finding the
best model—the highest value of R2 attained for six terms (red color in Figure 3).

3.4. ANN Simulation

Neural networks were analyzed in two variants. In the first one, two variables, C and
H, were taken into account in the linear regression analysis; in the second, three predictors,
C, H, and S, were obtained in the multivariate spline adaptive regression analysis.
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As a result of modeling neural networks with two input neurons, C and H, using the
L-M learning algorithm, the best results were obtained with eight neurons in the hidden
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layer, obtained in 13 iterations. Then, for the network with eight neurons in the hidden
layer, the network was trained with the next two learning algorithms: SCG and BR. The
results of training these networks are presented in Table 4.

Table 4. Learning results of neural networks with two input neurons: C and H.

No. of Network 1 2 3

Training algorithm Levenberg-Marquardt Scaled Conjugate Gradient Bayesian Regularization

Epoch 13 27 76

Performance 1.15*10−21 0.573 1.81

Best training performance 1.4215 at epoch 8 1.1868 at epoch 21 1.8125 at apoch 73

Gradient 9.19*10−10 0.993 1.02

Quality assessment indicators are given in Table 5. In addition, Figure 5 includes
regression plots or training, validation, and all data sets for individual models with learn-
ing algorithms: for L-M—Figure 5a, for SCG—Figure 5b, and for BR—Figure 5c. When
analyzing the evaluation quality index, the best results were obtained for the network with
the L-M learning algorithm.
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Figure 5. Regression statistics for individual sets and the total set for: (a) L-M, (b) SCG, and (c) BR
for the networks with two input neurons: C and H.
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Table 5. Results of network quality indicators for networks with two input neurons: C and H.

Levenberg-Marquardt Scaled Conjugate Gradient Bayesian Regularization

R (all data) 0.98453 0.96794 0.91375

MSE 0.3873 0.7789 2.0084

RMSE 0.6223 0.8826 1.4172

MAPE 0.0210 0.0428 0.0768

MAE 0.3577 0.6894 1.1896

As a result of modeling neural networks with three input neurons, C, H, and S, using
the L-M learning algorithm, the best results were obtained with nine neurons in the hidden
layer, obtained in 11 iterations. Similarly, modeling was performed for the networks with
the SCG and BR learning algorithms. The results of training these networks are presented
in Table 6.

Table 6. Learning results of neural networks with three input neurons: C, H, and S.

No. of Network 1 2 3

Training algorithm Levenberg-Marquardt Scaled Conjugate Gradient Bayesian Regularization

Epoch 11 26 904

Performance 0.118 0.624 1.25

Best training performance 0.61523 at epoch 5 1.0617 at epoch 20 1.2438 at epoch 159

Gradient 0.296 1.18 0.617

Network quality assessment indicators are presented in Table 7, whereas regression
graphs for individual models with different learning algorithms are shown in Figure 6.
When analyzing the quality indicators, it can be concluded that in this case, similarly to
the first variant of the model, the best results were obtained for the network with the L-M
learning algorithm.

Table 7. Results of network quality indicators for a network with three input neurons: C, H, and S.

Levenberg-Marquardt Scaled Conjugate Gradient Bayesian Regularization

R (all data) 0.98827 0.96817 0.90396

MSE 0.2914 0.7672 2.1978

RMSE 0.5398 0.8759 1.4825

MAPE 0.0226 0.0411 0.0694

MAE 0.3794 0.6896 1.0359

When comparing the models for each of the variants, the models with the L-M learning
algorithm were the best. The first was the model with two inputs (C, H)—Model 1; the
second was the model with three inputs (C, H, S)—Model 2. Their comparison is presented
in Table 8 and in Figure 7.
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Figure 6. Regression statistics for individual sets and the total set for: (a) L-M, (b) SCG, and (c) BR
for the networks with three input neurons: C, H, and S.

Table 8. Comparison of model 1 and model 2.

Quality Indicators
Model with 2 Inputs (C, H) Model with 3 Inputs (C, H, S)

Model 1 Model 2

R (all data) 0.98453 0.98827

MSE 0.3873 0.2914

RMSE 0.6223 0.5398

MAPE 0.0210 0.0226

MAE 0.3577 0.3794



Energies 2023, 16, 4162 11 of 16

Energies 2023, 16, x FOR PEER REVIEW 11 of 17 
 

 

Table 7. Results of network quality indicators for a network with three input neurons: C, H, and S. 

 Levenberg-Marquardt Scaled Conjugate Gradient Bayesian Regularization 
R (all data) 0.98827 0.96817 0.90396 

MSE 0.2914 0.7672 2.1978 
RMSE 0.5398 0.8759 1.4825 
MAPE 0.0226 0.0411 0.0694 
MAE 0.3794 0.6896 1.0359 

When comparing the models for each of the variants, the models with the L-M 
learning algorithm were the best. The first was the model with two inputs (C, H)—
Model 1; the second was the model with three inputs (C, H, S)—Model 2. Their compari-
son is presented in Table 8 and in Figure 7. 

 

Figure 7. Comparison of the real data and the data obtained by model 1 and 2. 

Table 8. Comparison of model 1 and model 2. 

Quality Indicators 
Model with 2 Inputs (C, H) Model with 3 Inputs (C, H, S)  

Model 1 Model 2 
R (all data) 0.98453 0.98827 

MSE 0.3873 0.2914 
RMSE 0.6223 0.5398 
MAPE 0.0210 0.0226 
MAE 0.3577 0.3794 

4. Discussion 
Researchers select input parameters for building mathematical models in various 

ways. Manatura et al. (2023)’s review report on machine learning for biomass showed that 
the most frequently selected input data are the percentages of C, N, S, O, H, and moisture 
(M), volatile substances (V), fixed carbon (FC), and ash [39]. In previous studies on models 
for HHV prediction of biomass, input data are rarely selected using mathematical models. 
The aim of these studies was to use the multivariate adaptive regression splines approach 
(MARS) and linear regression (LR) to select input parameters to create a neural network 
(ANN) model predicting the calorific value (HHV) of biomass produced in Poland. The 
input data for the conducted analyses included the content of carbon, nitrogen, sulfur, 
hydrogen, moisture, and volatile matter of wood and field biomass, typically found in 
Poland. The linear regression results showed that only C and N are significant factors, 

H
H

V

Figure 7. Comparison of the real data and the data obtained by model 1 and 2.

4. Discussion

Researchers select input parameters for building mathematical models in various
ways. Manatura et al. (2023)’s review report on machine learning for biomass showed that
the most frequently selected input data are the percentages of C, N, S, O, H, and moisture
(M), volatile substances (V), fixed carbon (FC), and ash [39]. In previous studies on models
for HHV prediction of biomass, input data are rarely selected using mathematical models.
The aim of these studies was to use the multivariate adaptive regression splines approach
(MARS) and linear regression (LR) to select input parameters to create a neural network
(ANN) model predicting the calorific value (HHV) of biomass produced in Poland. The
input data for the conducted analyses included the content of carbon, nitrogen, sulfur,
hydrogen, moisture, and volatile matter of wood and field biomass, typically found in
Poland. The linear regression results showed that only C and N are significant factors,
whereas the other parameters are irrelevant. In MARS, effects are classified as C > H > S,
and only these are significant. The R2 values for linear regression and MARS are 0.8775
and 0.95507, respectively. These results reveal the better performance of MARS than LR.

Since MARS takes into account three parameters, while LR only covers two parameters
in the learning and prediction process, two network models with two variants of input
data were created.

In this study, models were compared with different neural network training algorithms:
Levenberg-Marquardt (L-M), Bayesian regularization algorithm (BR), and Scaled conjugate
gradient algorithm (SCG). Model performance was assessed by taking into account Mean
Squared Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error
(MAPE), Mean Absolute Error (MAE), and correlation coefficients between predicted and
actual HHV values. ANN analysis was performed for models with one hidden layer.
Adil et al. conducted an ANN model to analyze the concrete mix (ANN structure: 17 inputs
and 5 outputs). They revealed that a simple ANN with one or two hidden layers achieved
better results than three or more such layers [40]. This outcome implies that ANN analysis
with lower hidden layer numbers and more neurons performs better [41,42]. There is no
exact method for selecting the number of hidden layers; to find the best predicted results,
the selection of the number of hidden layers and neurons is performed iteratively by trial
and error. When the number of hidden layers is small, the required training time and cost
of the model is lower [43].

In the model with two input variables, the number of neurons in the hidden layer is 8.
The results show that the correlation gives a quality of fit of 0.98453 for the L-M algorithm,
0.96794 for the SCG and 0.91375 for the BR. In the second model with three input variables,
the number of neurons in the hidden layer is 9, the matching quality was 0.98827 for the
L-M algorithm, 0.96817 for the SCG and 0.90396 for the BR. Taking into account the value
of R, better values were obtained for the model with three input variables. When analyzing
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the applied learning algorithms, the highest R and the smallest errors were obtained for
the Levenberg-Marquardt algorithm for both created models. As shown in Table 9, this
is the algorithm most often used in HHV forecast studies, giving good regression value
results. In addition, Jakŝić et al. (2016) compared the qualitative and quantitative analysis
of twelve algorithms for training artificial neural networks (ANN) that predict the higher
heating value (HHV) of biomass based on proximate analysis (fixed carbon, volatile matter
and ash percentage). Of these, the Levenberg-Marquardt algorithm gave the best results in
terms of mean squared error calculated on the training set data [44].

Comparison of the error values showed that the ANN model with three input neurons
ANN 3-9-1 with the L-M learning algorithm had lower RMSE (0.5398 vs. 0.6223) and lower
MSE (0.2924 vs. 0.3873) than the ANN model with two input neurons, with a 2-8-1 structure
and an L-M learning algorithm. The research results showed that MARS gave better results
in the selection of input variables than LR.

This study focused on the development of an ANN model to predict HHV from
biomass. As was mentioned earlier, the relationship between some of the analyzed biomass
components and their high HHV calorific value is non-linear; therefore, predicting models
based on correlations or linear regression may be insufficient, especially when intending
to predict the calorific value of various types of biomass [45]. In the articles that reviewed
both linear and non-linear regression approaches to HHV analyses, the models based
on non-linearity gave better predictive results [12,46,47]. Comparing the obtained model
quality with other models available in the literature that use different HHV prediction
methods, the models presented in these studies have the highest correlation coefficients
and the best predictive ability. This is evidenced by significantly lower errors than those
presented in the literature, as shown in Table 8.

Table 9. Results of ANN as compared to published literature models for biomass.

Model RMSE MAE R2 References

A correlation for calculating
HHV from proximate analysis 1.043 0.502 0.359 Parikh et al. (2005) [46]

A correlation for calculating
HHV from proximate analysis 1.431 0.679 0.456 Nhuchhen and Salam (2012) [47]

Genetic programming 0.808 0.485 0.934 Ghugare et al. (2014) [45]

Support Vector Machines
(SVR) model 3.962 6.172 0.912 Ghugare et al. (2014) [45]

Our model with 2 inputs 0.6223 0.3577 0.968 This study

Our model with 3 inputs 0.5398 0.3794 0.976 This study

This paper proposes, develops, and analyzes a new approach using the modeling of
artificial neural networks in terms of the selection of input variables for modeling neural
networks using MARS and LR analysis. The review of the literature shows that the input
data set for ANN modeling appears to be a rather random selection. It should be noted
that the amount of input data has a significant impact on the time of creating ANN models.
Therefore, it seems that the use of the MARS model for the selection of input variables will
allow creating models of artificial neural networks of good quality.

The results obtained in this study are not much different from those found in the
literature. A comparison of the proposed ANN model with the existing models is presented
in Table 10. The model created shows a high correlation value and low errors. This is
additionally confirmed by Figure 7, showing a comparison of the HHV predicted by ANN
and the values of models calculated on the basis of real data. On this basis, it can be
concluded that the overall compliance of real and simulated data is satisfactory. Such
models can be created using different types of biomass, facilitating the selection and
widespread use of biomass as a fuel.
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Table 10. Comparison of the proposed model ANN with the existing models.

Input Variables Type of ANN ANN
Architecture R2 Activation

Functions Authors

FC, V, M, A Levenberg-Marquardt 3-7-1 0.9852 Sigmoid symmetry [23]

FC, V, M, A Levenberg-Marquardt 1-23-1-1 0.9591
Hyperbolic

tangent sigmoid
and linear

[47]

C, H, N, S, O, A,
H2O

Radial basis
function

combined with
Levenberg-
Marquardt

0.997 Radial basis
function [48]

V, FC, A, M, C, H,
N, S, and O

Levenberg-
Marquardt 9-10-1 0.985 Tangent sigmoid [49]

C, H, N, S, O Levenberg-
Marquardt 5-11-1 0.77 Tangent sigmoid [50]

FC, V, A Levenberg-
Marquardt 3-10-1 0.966

Hyperbolic
tangent sigmoid
transfer function

[51]

Temperature, Time,
FC, V, A, C, O, H

Levenberg-
Marquardt 5-10-1 0.8321 Tangent sigmoid [52]

V, FC, A, M, C, H,
N, S, and O

Levenberg-
Marquardt 9-10-1 0.909 Tangent sigmoid [53]

C, H, S Levenberg-Marquardt 3-9-1 0.976
Hyperbolic

tangent sigmoid
transfer function

This study

C, H Levenberg-Marquardt 2-8-1 0.968
Hyperbolic

tangent sigmoid
transfer function

This study

Additionally, there is no method for determining the best input variables of a neural
network model, MARS can be implemented as a generally accepted method for determining
a good subset of input variables when multiple potential variables are considered when
deciding inputs for designing a neuron network model.

5. Conclusions

This study developed a machine learning model for predicting the calorific value of
selected types of biomass based on input data selected using MARS and linear regression.
On the basis of the lowest error values and the regression value, the MARS model was
selected as the most accurate for the selection of input data to create a neural network
model. The three most important input functions that have a significant impact on HHV
prediction were C, H, and S content. It is worth noting that the MARS model presented in
this study is better at selecting input data than the LR model.

The best results were obtained for the network with three input neurons and nine
neurons in the hidden layer. The resulting model has a high regression value (0.988) and
a low root mean square error value (0.3). These studies clearly show that using ANNs is
an attractive strategy for estimating the HHV for biomass. The approach presented here
can also be usefully extended to accurately estimate the HHV of a wide spectrum of solid,
liquid, and gaseous fuels.
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Abbreviations

A Ash content
ANN Artificial neural network
BR Bayesian regularization algorithm
C Carbon
FC Combustible solid content
H Hydrogen
HHV Heating value
L-M Levenberg-Marquardt
LR Linear regression
M Moisture
MAE Mean absolute error
MAPE Mean absolute percentage error
MARS Multivariate adaptive regression spline
Max () Maximum function
MLP Multilayer perception
MLR Multiple linear regression
MSE Mean squared error
N Nitrogen
O Oxygen
R Regression value
R2 Coefficient of determination
RMSE Root Mean Square Error
S Sulfur
SCG Scaled conjugate gradient algorithm
V Volatile matter
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