Application of Response Surface Methodology and Artificial Neural Network to Optimize the Curved Trapezoidal Winglet Geometry for Enhancing the Performance of a Fin-and-Tube Heat Exchanger
Abstract
:1. Introduction
2. Model Description
2.1. Geometry of Fin-and-Tube Heat Exchanger
2.2. Equations Used for Calculating the Performance of HE
2.3. Description of Numerical Simulation
2.4. Discretization of the Solution Domain and Solver Settings
2.5. Validation and Methodology
2.6. Selection Criteria of Geometric Entities for Optimization
- With an increase in radius (r), both j and f values increase for the upper bound values of other parameters and this change is significant. For the middle bound values, the change in both j and f values is mild. At the lower bound, the j as well as f values decrease moderately until r = 9.5 mm and then increase with a further increase in r. This indicates the prominent impact of r at the upper bound values.
- The j and f values both increase with an increase in θ at the upper bound until θ = 60°, followed by nearly no change in the j value while the f value still increases. A similar trend is seen for the j value at the middle bound—initially, it increases until θ = 60° and then decreases by a small amount, while the f value increases consistently. At the lower bound, the j value decreases until θ = 45° and then increases mildly with θ, whereas the f value first undergoes reduction up until θ = 45° and thereafter it is nearly a constant.
- With an increase in the leading edge height (h1), at the upper bound both the j and f values increase. At the middle bound, the j values first increase until h1 = 2 mm and then remain constant while the f value continues to increase mildly. At the lower bound, the j value undergoes a more significant reduction than the f values do.
- The values of j and f increase with an increase in trailing edge height (h2) at the upper bound and middle bound while this increase is significant at the upper bound. At the lower bound, the variations are quite small.
Variable | Quantity | Lower Bound | Upper Bound |
---|---|---|---|
r | Winglet radius (in mm) | 8 | 11 |
The angle subtended by winglet (in degrees) | 30 | 75 | |
h1 | Winglet leading edge height (in mm) | 0.7 | 3.3 |
h2 | Winglet trailing edge height (in mm) | 0.7 | 3.3 |
2.7. Design of Experiments
3. Results and Discussion
3.1. Surrogate Modeling with RSM
3.2. Surrogate Modeling with ANN
3.3. Genetic Algorithm for Multi-Objective Optimization
3.4. Numerical Investigation of the Selected Models
3.4.1. Flow Field Description
3.4.2. Performance Analysis of GA and Validation of GA Prediction
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
r | Arc radius (mm) |
θ | Angle subtended on tube center () |
h1 | Winglet front edge height (mm) |
h2 | Winglet trailing edge height (mm) |
e | Eccentricity of winglets (mm) |
h | Heat transfer coefficient (W/m2K) |
j | Colburn factor |
f | Friction factor |
Inlet pressure (Pa) | |
Outlet pressure (Pa) | |
Area-weighted average temperature at the inlet (K) | |
Area-weighted average temperature at the outlet (K) | |
Wall temperature (K) | |
Density (kg/m3) | |
Specific heat capacities (J/kgK) | |
l | Prandtl number |
Inlet velocity (m/s) | |
Hydraulic diameter (m) | |
L | Flow length (m) |
Minimum free flow area (m2) | |
Total heat transfer surface area (m2) | |
Kinematic viscosity (m2/s) | |
Turbulent viscosity (m2/s) | |
Mass flow rate (kg/s) | |
Re | Reynolds number |
ReDh | Reynolds number based on hydraulic diameter (m) |
Pressure drop (Pa) | |
Turbulent thermal conductivity (W/mK) | |
Effective thermal conductivity (W/mK) | |
Diffusion coefficient | |
ω | Specific rate of turbulence dissipation (m2/s3) |
E | Total energy |
Pk | Production term |
Destruction term | |
Conductivity matrix | |
F | Blending function |
η | Enhancement factor |
Subscripts | |
Intermittency | |
k | Turbulent kinetic energy |
t | Turbulent |
Momentum thickness | |
Momentum thickness based on free stream |
References
- Chai, L.; Tassou, S.A. A Review of Airside Heat Transfer Augmentation with Vortex Generators on Heat Transfer Surface. Energies 2018, 11, 2737. [Google Scholar] [CrossRef]
- Han, H.; Wang, S.; Sun, L.; Li, Y.; Wang, S. Numerical study of thermal and flow characteristics for a fin-and-tube heat exchanger with arc winglet type vortex generators. Int. J. Refrig. 2019, 98, 61–69. [Google Scholar] [CrossRef]
- Abdollahi, A.; Shams, M. Optimization of heat transfer enhancement of nanofluid in a channel with winglet vortex generator. Appl. Therm. Eng. 2015, 91, 1116–1126. [Google Scholar] [CrossRef]
- Gherasim, I.; Taws, M.; Galanis, N.; Nguyen, C.T. Heat transfer and fluid flow in a plate heat exchanger part I. Experimental investigation. Int. J. Therm. Sci. 2011, 50, 1492–1498. [Google Scholar] [CrossRef]
- Godazandeh, K.; Ansari, M.; Godazandeh, B.; Ashjaee, M. Optimization of the Angle of Attack of Delta-Winglet Vortex Generators Over a Bank of Elliptical-Tubes Heat Exchanger. In Proceedings of the ASME 2013 International Mechanical Engineering Congress and Exposition, Heat Transfer and Thermal Engineering, San Diego, CA, USA, 15–21 November 2013. [Google Scholar] [CrossRef]
- Li, W.; Khan, T.A.; Tang, W.; Minkowycz, W.J. Numerical Study and Optimization of Corrugation Height and Angle of Attack of Vortex Generator in the Wavy Fin-and-Tube Heat Exchanger. J. Heat Transf. 2018, 140, 111801. [Google Scholar] [CrossRef]
- Dezan, D.J.; Rocha, A.D.; Ferreira, W.G. Parametric sensitivity analysis and optimisation of a solar air heater with multiple rows of longitudinal vortex generators. Appl. Energy 2020, 263, 114556. [Google Scholar] [CrossRef]
- Song, K.; Hu, D.; Zhang, Q.; Zhang, K.; Wu, X.; Wang, L. Thermal-hydraulic characteristic of a novel wavy fin-and-circle tube heat exchanger with concave curved vortex generators. Int. J. Heat Mass Transf. 2022, 194, 123023. [Google Scholar] [CrossRef]
- Lin, Z.-M.; Liu, C.-P.; Lin, M.; Wang, L.-B. Numerical study of flow and heat transfer enhancement of circular tube bank fin heat exchanger with curved delta-winglet vortex generators. Appl. Therm. Eng. 2015, 88, 198–210. [Google Scholar] [CrossRef]
- Lin, Z.-M.; Li, S.-F.; Liu, C.-P.; Wang, L.-B.; Zhang, Y.-H. Thermal and flow characteristics of a channel formed by aligned round tube bank fins stamped with curve delta-winglet vortex generators. Therm. Sci. Eng. Prog. 2021, 26, 101113. [Google Scholar] [CrossRef]
- Modi, A.J.; Rathod, M.K. Comparative study of heat transfer enhancement and pressure drop for fin-and-circular tube compact heat exchangers with sinusoidal wavy and elliptical curved rectangular winglet vortex generator. Int. J. Heat Mass Transf. 2019, 141, 310–326. [Google Scholar] [CrossRef]
- Zeng, M.; Tang, L.; Lin, M.; Wang, Q. Optimization of heat exchangers with vortex-generator fin by Taguchi method. Appl. Therm. Eng. 2010, 30, 1775–1783. [Google Scholar] [CrossRef]
- Xie, J.; Lee, H.M. Flow and heat transfer performances of directly printed curved-rectangular vortex generators in a compact fin-tube heat exchanger. Appl. Therm. Eng. 2020, 180, 115830. [Google Scholar] [CrossRef]
- Xie, J.; Lee, H.M. Thermo-Hydraulic Performance of a Fin-and-Tube Heat Exchanger with Differently Configured Curved-Rectangular Vortex Generators. Heat Transf. Eng. 2020, 43, 63–82. [Google Scholar] [CrossRef]
- Zhou, G.; Ye, Q. Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators. Appl. Therm. Eng. 2012, 37, 241–248. [Google Scholar] [CrossRef]
- Lu, G.; Zhou, G. Numerical simulation on performances of plane and curved winglet – Pair vortex generators in a rectangular channel and field synergy analysis. Int. J. Therm. Sci. 2016, 109, 323–333. [Google Scholar] [CrossRef]
- Esmaeilzadeh, A.; Amanifard, N.; Deylami, H. Comparison of simple and curved trapezoidal longitudinal vortex generators for optimum flow characteristics and heat transfer augmentation in a heat exchanger. Appl. Therm. Eng. 2017, 125, 1414–1425. [Google Scholar] [CrossRef]
- Zhou, G.; Feng, Z. Experimental investigations of heat transfer enhancement by plane and curved winglet type vortex generators with punched holes. Int. J. Therm. Sci. 2014, 78, 26–35. [Google Scholar] [CrossRef]
- Gong, B.; Wang, L.-B.; Lin, Z.-M. Heat transfer characteristics of a circular tube bank fin heat exchanger with fins punched curve rectangular vortex generators in the wake regions of the tubes. Appl. Therm. Eng. 2015, 75, 224–238. [Google Scholar] [CrossRef]
- Lu, G.; Zhou, G. Numerical simulation on performances of plane and curved winglet type vortex generator pairs with punched holes. Int. J. Heat Mass Transf. 2016, 102, 679–690. [Google Scholar] [CrossRef]
- Oh, Y.; Kim, K. Effects of position and geometry of curved vortex generators on fin-tube heat-exchanger performance characteristics. Appl. Therm. Eng. 2021, 189, 116736. [Google Scholar] [CrossRef]
- Fazeli, I.; Emami, M.R.S.; Rashidi, A. Investigation and optimization of the behavior of heat transfer and flow of MWCNT-CuO hybrid nanofluid in a brazed plate heat exchanger using response surface methodology. Int. Commun. Heat Mass Transf. 2021, 122, 105175. [Google Scholar] [CrossRef]
- Han, H.-Z.; Li, B.-X.; Wu, H.; Shao, W. Multi-objective shape optimization of double pipe heat exchanger with inner corrugated tube using RSM method. Int. J. Therm. Sci. 2015, 90, 173–186. [Google Scholar] [CrossRef]
- Hatami, M.; Jafaryar, M.; Ganji, D.; Gorji-Bandpy, M. Optimization of finned-tube heat exchangers for diesel exhaust waste heat recovery using CFD and CCD techniques. Int. Commun. Heat Mass Transf. 2014, 57, 254–263. [Google Scholar] [CrossRef]
- Zhou, J.; Hatami, M.; Song, D.; Jing, D. Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods. Int. J. Heat Mass Transf. 2016, 103, 715–724. [Google Scholar] [CrossRef]
- Promvonge, P.; Eiamsa-Ard, S.; Wongcharee, K.; Chuwattanakul, V.; Samruaisin, P.; Chokphoemphun, S.; Nanan, K. Characterization of heat transfer and artificial neural networks prediction on overall performance index of a channel installed with arc-shaped baffle turbulators. Case Stud. Therm. Eng. 2021, 26, 101067. [Google Scholar] [CrossRef]
- Wu, X.; Lin, Z.-M.; Liu, S.; Su, M.; Wang, L.-C. Experimental study on the effects of fin pitches and tube diameters on the heat transfer and fluid flow characteristics of a fin punched with curved delta-winglet vortex generators. Appl. Therm. Eng. 2017, 119, 560–572. [Google Scholar] [CrossRef]
- Tian, X.-L.; Jin, H.; Song, K.-W.; Wang, L.-C.; Liu, S.; Wang, L.-B. Effects of fin pitch and tube diameter on the air-side performance of tube bank fin heat exchanger with the fins punched plane and curved rectangular vortex generators. Exp. Heat Transf. 2018, 31, 297–316. [Google Scholar] [CrossRef]
- Box, G.E.P.; Wilson, K.B.; Hunter, J.S. On the Experimental Attainment of Optimum Conditions. J. R. Stat. Soc. Ser. B 1951, 13, 1–45. [Google Scholar] [CrossRef]
- Bovand, M.; Valipour, M.S.; Dincer, K.; Eiamsa-Ard, S. Application of Response Surface Methodology to optimization of a standard Ranque–Hilsch vortex tube refrigerator. Appl. Therm. Eng. 2014, 67, 545–553. [Google Scholar] [CrossRef]
- Hosseinirad, E.; Hormozi, F. Performance intensification of miniature channel using wavy vortex generator and optimization by response surface methodology: MWCNT-H2O and Al2O3-H2O nanofluids as coolant fluids. Chem. Eng. Process. Process Intensif. 2018, 124, 83–96. [Google Scholar] [CrossRef]
- Kanaris, A.; Mouza, A.; Paras, S. Optimal design of a plate heat exchanger with undulated surfaces. Int. J. Therm. Sci. 2009, 48, 1184–1195. [Google Scholar] [CrossRef]
- Khalajzadeh, V.; Heidarinejad, G.; Srebric, J. Parameters optimization of a vertical ground heat exchanger based on response surface methodology. Energy Build. 2011, 43, 1288–1294. [Google Scholar] [CrossRef]
- Chamoli, S. ANN and RSM approach for modeling and optimization of designing parameters for a V down perforated baffle roughened rectangular channel. Alex. Eng. J. 2015, 54, 429–446. [Google Scholar] [CrossRef]
- Lemouedda, A.; Breuer, M.; Franz, E.; Botsch, T.; Delgado, A. Optimization of the angle of attack of delta-winglet vortex generators in a plate-fin-and-tube heat exchanger. Int. J. Heat Mass Transf. 2010, 53, 5386–5399. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, C.-L. Evaluation of elliptical finned-tube heat exchanger performance using CFD and response surface methodology. Int. J. Therm. Sci. 2014, 75, 45–53. [Google Scholar] [CrossRef]
- Gholap, A.; Khan, J. Design and multi-objective optimization of heat exchangers for refrigerators. Appl. Energy 2007, 84, 1226–1239. [Google Scholar] [CrossRef]
- Wu, X.; Liu, D.; Zhao, M.; Lu, Y.; Song, X. The optimization of fin-tube heat exchanger with longitudinal vortex generators using response surface approximation and genetic algorithm. Heat Mass Transf. 2016, 52, 1871–1879. [Google Scholar] [CrossRef]
- Liu, S.; Huang, W.; Bao, Z.; Zeng, T.; Qiao, M.; Meng, J. Analysis, prediction and multi-objective optimization of helically coiled tube-in-tube heat exchanger with double cooling source using RSM. Int. J. Therm. Sci. 2021, 159, 106568. [Google Scholar] [CrossRef]
- Zheng, N.; Liu, P.; Shan, F.; Liu, Z.; Liu, W. Sensitivity analysis and multi-objective optimization of a heat exchanger tube with conical strip vortex generators. Appl. Therm. Eng. 2017, 122, 642–652. [Google Scholar] [CrossRef]
- Salviano, L.O.; Dezan, D.J.; Yanagihara, J.I. Optimization of winglet-type vortex generator positions and angles in plate-fin compact heat exchanger: Response Surface Methodology and Direct Optimization. Int. J. Heat Mass Transf. 2015, 82, 373–387. [Google Scholar] [CrossRef]
- Motahar, S.; Jahangiri, M. Transient heat transfer analysis of a phase change material heat sink using experimental data and artificial neural network. Appl. Therm. Eng. 2020, 167, 114817. [Google Scholar] [CrossRef]
- Qiu, Y.; Garg, D.; Zhou, L.; Kharangate, C.R.; Kim, S.-M.; Mudawar, I. An artificial neural network model to predict mini/micro-channels saturated flow boiling heat transfer coefficient based on universal consolidated data. Int. J. Heat Mass Transf. 2020, 149, 119211. [Google Scholar] [CrossRef]
- Haykin, S. Neural Networks a Comprehensive Foundation, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Eeckman, F. Analysis and Modeling of Neural Systems; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Berber, A.; Gürdal, M.; Bağırsakçı, K. Prediction of heat transfer in a circular tube with aluminum and Cr-Ni alloy pins using artificial neural network. Exp. Heat Transf. 2021, 34, 547–563. [Google Scholar] [CrossRef]
- Kocyigit, N.; Bulgurcu, H. Modeling of overall heat transfer coefficient of a concentric double pipe heat exchanger with limited experimental data by using curve fitting and artificial neural network combination. Therm. Sci. 2018, 23, 3579–3590. [Google Scholar] [CrossRef]
- Khan, M.Z.A.; Aziz, M.; Wijayanta, A.T. Prediction of heat transfer enhancement of delta-wing tape inserts using artificial neural network. Case Stud. Therm. Eng. 2021, 27, 101322. [Google Scholar] [CrossRef]
- Khan, T.A.; Li, W. Optimal configuration of vortex generator for heat transfer enhancement in a plate-fin channel. J. Therm. Sci. Eng. Appl. 2017, 10, 021013. [Google Scholar] [CrossRef]
- Pourpasha, H.; Farshad, P.; Heris, S.Z. Modeling and optimization the effective parameters of nanofluid heat transfer performance using artificial neural network and genetic algorithm method. Energy Rep. 2021, 7, 8447–8464. [Google Scholar] [CrossRef]
- Ke, H.; Khan, T.A.; Li, W.; Lin, Y.; Ke, Z.; Zhu, H.; Zhang, Z. Thermal-hydraulic performance and optimization of attack angle of delta winglets in plain and wavy finned-tube heat exchangers. Appl. Therm. Eng. 2019, 150, 1054–1065. [Google Scholar] [CrossRef]
- Song, K.; Xi, Z.; Su, M.; Wang, L.; Wu, X.; Wang, L. Effect of geometric size of curved delta winglet vortex generators and tube pitch on heat transfer characteristics of fin-tube heat exchanger. Exp. Therm. Fluid Sci. 2017, 82, 8–18. [Google Scholar] [CrossRef]
- Song, K.; Tagawa, T.; Chen, Z.; Zhang, Q. Heat transfer characteristics of concave and convex curved vortex generators in the channel of plate heat exchanger under laminar flow. Int. J. Therm. Sci. 2019, 137, 215–228. [Google Scholar] [CrossRef]
- Sarangi, S.; Mishra, D.; Ramachandran, H.; Anand, N.; Masih, V.; Brar, L. Analysis and optimization of the curved trapezoidal winglet geometry in a compact heat exchanger. Appl. Therm. Eng. 2021, 182, 116088. [Google Scholar] [CrossRef]
- Joardar, A.; Jacobi, A. A Numerical Study of Flow and Heat Transfer Enhancement Using an Array of Delta-Winglet Vortex Generators in a Fin-and-Tube Heat Exchanger. J. Heat Transf. 2007, 129, 1156–1167. [Google Scholar] [CrossRef]
- Webb, R.L.; Kim, N.H. Principles of Enhanced Heat Transfer, 2nd ed.; Taylor and Francis: New York, NY, USA, 2005; p. 315. [Google Scholar]
- Larki, A.J.; Ghafouri, A.; Assareh, E.; Moravej, M. Investigation of the effects of the detachable vortex generators series on phase change material behavior in an energy storage system. J. Build. Eng. 2022, 52, 104384. [Google Scholar] [CrossRef]
- Lu, G.; Zhai, X. Effects of curved vortex generators on the air-side performance of fin-and-tube heat exchangers. Int. J. Therm. Sci. 2019, 136, 509–518. [Google Scholar] [CrossRef]
- Langtry, R.B.; Menter, F.R. Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes. AIAA J. 2009, 47, 2894–2906. [Google Scholar] [CrossRef]
- Menter, F.R.; Langtry, R.; Völker, S. Transition Modelling for General Purpose CFD Codes. Flow Turbul. Combust. 2006, 77, 277–303. [Google Scholar] [CrossRef]
- Leonard, B.P.; Mokhtari, S. ULTRA-SHARP Nonoscillatory Convection Schemes for High-Speed Steady Multidimensional Flow; NASA Lewis Research Center ICOMP: Cleveland, OH, USA, 1990; Volume 90, pp. 1–54. [Google Scholar]
- Naphon, P.; Wiriyasart, S.; Arisariyawong, T.; Nakharintr, L. ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink. Int. J. Heat Mass Transf. 2019, 131, 329–340. [Google Scholar] [CrossRef]
- Krzywanski, J. A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods. Energies 2019, 12, 4441. [Google Scholar] [CrossRef]
- Holland, J.H. Genetic Algorithms, Scientific American. Sci. Am. 1992, 267, 66–73. Available online: http://www.jstor.org/stable/24939139 (accessed on 2 May 2018). [CrossRef]
- Sharma, R.; Mishra, D.P.; Sarangi, S.K.; Brar, L.S. Performance Evaluation of a Fin and Tube Heat Exchanger Based on Different Shapes of the Winglets. J. Therm. Sci. Eng. Appl. 2023, 15, 050905. [Google Scholar] [CrossRef]
- Naik, H.; Tiwari, S. Effect of winglet location on performance of fin-tube heat exchangers with inline tube arrangement. Int. J. Heat Mass Transf. 2018, 125, 248–261. [Google Scholar] [CrossRef]
- Gentry, M.C.; Jacobi, A.M. Heat transfer enhancement by delta-wing-generated tip vortices in flat-plate and developing channel flows. J. Heat Transf. 2002, 124, 1158–1168. [Google Scholar] [CrossRef]
- Sarangi, S.; Mishra, D.; Ramachandran, H.; Anand, N.; Masih, V.; Brar, L. Analysis and optimization of the curved trapezoidal winglet geometry in a high-efficiency compact heat exchanger. Int. J. Therm. Sci. 2021, 164, 106872. [Google Scholar] [CrossRef]
Element Size (mm) | Mesh Count (in Millions) | Re (-) | h (CFD) (W/m2K) | h (Exp. [55]) (W/m2K) | Variation w.r.t. BLM (%) |
---|---|---|---|---|---|
0.55 | 0.133 | 659.74 | 34.716 | 36.593 | 5.129 |
0.50 | 0.176 | 34.817 | 4.853 | ||
0.45 | 0.246 | 35.444 | 3.139 | ||
0.40 | 0.332 | 35.551 | 2.847 | ||
0.35 | 0.470 | 35.552 | 2.844 | ||
0.30 | 0.729 | 35.556 | 2.833 | ||
0.25 | 1.166 | 35.559 | 2.828 |
No. | R (mm) | θ (deg.) | h1 | h2 | j (×103) | f (×103) |
---|---|---|---|---|---|---|
1 | 9.5 | 52.5 | 0.7 | 3.3 | 18.553 | 84.809 |
2 | 9.5 | 52.5 | 3.3 | 3.3 | 18.740 | 97.484 |
3 | 9.5 | 30 | 3.3 | 0.7 | 15.238 | 64.323 |
4 | 8 | 75 | 0.7 | 3.3 | 17.495 | 71.745 |
5 | 11 | 30 | 2 | 3.3 | 17.312 | 78.545 |
6 | 11 | 75 | 3.3 | 3.3 | 23.725 | 228.332 |
7 | 8 | 52.5 | 3.3 | 3.3 | 16.322 | 77.897 |
8 | 9.5 | 30 | 0.7 | 2 | 15.698 | 61.919 |
9 | 8 | 52.5 | 2 | 2 | 16.298 | 68.235 |
… | … | … | … | … | … | … |
73 | 9.5 | 52.5 | 2 | 0.7 | 15.835 | 64.425 |
74 | 11 | 52.5 | 0.7 | 3.3 | 20.632 | 102.554 |
75 | 9.5 | 75 | 2 | 2 | 18.382 | 82.700 |
76 | 11 | 75 | 3.3 | 2 | 21.995 | 138.715 |
77 | 9.5 | 75 | 3.3 | 2 | 20.035 | 100.050 |
78 | 8 | 30 | 2 | 2 | 15.443 | 62.617 |
79 | 8 | 75 | 2 | 3.3 | 18.194 | 79.229 |
80 | 11 | 30 | 3.3 | 0.7 | 15.542 | 67.403 |
81 | 11 | 75 | 2 | 0.7 | 17.012 | 74.989 |
Term | p-Value |
---|---|
r | 0.0000 |
θ | 0.0000 |
h1 | 0.0000 |
h2 | 0.0000 |
r2 | 0.1296 |
rθ | 0.0000 |
rh1 | 0.0002 |
rh2 | 0.0000 |
θ2 | 0.0038 |
θh1 | 0.0000 |
θh2 | 0.0000 |
h12 | 0.0150 |
h1h2 | 0.0000 |
h22 | 0.3526 |
Term | p-Value |
---|---|
r | 0.0000 |
θ | 0.0000 |
h1 | 0.0000 |
h2 | 0.0000 |
r2 | 0.1232 |
rθ | 0.0000 |
rh1 | 0.0002 |
rh2 | 0.0000 |
θ2 | 0.5765 |
θh1 | 0.0000 |
θh2 | 0.0000 |
h12 | 0.5946 |
h1h2 | 0.3063 |
h22 | 0.3681 |
Population type | Double-precision floating point vector |
Population size | 200 |
Selection operation | Tournament (tournament size equals 2) |
Crossover fraction | 80% crossover, 20% mutation |
Migration operation | 20% population moves forward by 20 generations |
Pareto front population | 35% |
Crossover operator | Based on a random weighted average of parents |
Stopping criteria |
|
No. | R (mm) | θ (in Degrees) | h1 (mm) | h2 (mm) | f (×103) | j (×103) |
---|---|---|---|---|---|---|
R1 | 8.109 | 75 | 0.712 | 0.748 | 48.056 | 14.443 |
R2 | 8.109 | 74.969 | 0.718 | 0.775 | 48.294 | 14.492 |
R3 | 8.642 | 74.961 | 0.781 | 0.774 | 49.342 | 14.908 |
R4 | 8.566 | 74.837 | 1.014 | 0.754 | 51.119 | 15.112 |
R5 | 9.142 | 74.858 | 0.751 | 1.019 | 53.254 | 15.595 |
R6 | 9.068 | 74.794 | 0.871 | 1.164 | 55.921 | 15.95 |
R7 | 8.809 | 74.883 | 0.987 | 1.327 | 57.589 | 16.164 |
R8 | 9.122 | 74.777 | 1.062 | 1.382 | 61.08 | 16.578 |
R9 | 8.856 | 74.901 | 0.757 | 1.878 | 62.121 | 16.839 |
R10 | 8.999 | 74.805 | 0.92 | 1.816 | 64.23 | 17.036 |
R11 | 8.707 | 74.83 | 0.975 | 2.021 | 64.996 | 17.134 |
R12 | 8.768 | 74.429 | 0.814 | 2.222 | 66.403 | 17.343 |
R13 | 8.752 | 74.634 | 0.733 | 2.38 | 67.476 | 17.494 |
R14 | 8.897 | 74.891 | 0.77 | 2.274 | 67.852 | 17.519 |
R15 | 8.852 | 74.824 | 1.077 | 2.182 | 69.544 | 17.614 |
R16 | 8.759 | 74.699 | 0.902 | 2.599 | 72.351 | 17.976 |
R17 | 9.23 | 74.076 | 0.881 | 2.36 | 73.832 | 18.088 |
R18 | 9.36 | 74.866 | 1.02 | 2.211 | 74.825 | 18.119 |
R19 | 9.239 | 73.21 | 0.935 | 2.454 | 75.883 | 18.278 |
R20 | 9.278 | 72.464 | 0.865 | 2.529 | 76.507 | 18.356 |
R21 | 8.938 | 74.613 | 0.783 | 2.903 | 77.604 | 18.537 |
R22 | 8.684 | 74.867 | 1.092 | 3.03 | 79.805 | 18.637 |
R23 | 9.302 | 74.842 | 0.83 | 2.764 | 80.761 | 18.788 |
R24 | 9.4 | 74.819 | 0.866 | 2.865 | 84.34 | 19.095 |
R25 | 9.515 | 74.775 | 1.13 | 2.713 | 86.881 | 19.205 |
R26 | 9.254 | 74.631 | 1.042 | 3.043 | 87.56 | 19.341 |
R27 | 9.329 | 74.56 | 1.109 | 3.044 | 89.608 | 19.484 |
R28 | 9.437 | 74.772 | 0.985 | 3.057 | 89.959 | 19.548 |
R29 | 9.585 | 74.843 | 0.918 | 3.064 | 91.522 | 19.683 |
R30 | 9.771 | 74.209 | 0.945 | 3.001 | 93.397 | 19.792 |
R31 | 9.568 | 74.573 | 0.985 | 3.27 | 96.022 | 20.042 |
R32 | 9.666 | 74.754 | 1.174 | 3.107 | 97.347 | 20.054 |
R33 | 9.978 | 74.776 | 0.782 | 3.164 | 98.023 | 20.189 |
R34 | 9.976 | 74.807 | 0.829 | 3.226 | 100.055 | 20.343 |
R35 | 9.984 | 74.811 | 0.969 | 3.189 | 101.574 | 20.409 |
R36 | 10.043 | 74.817 | 1.18 | 3.121 | 104.539 | 20.539 |
R37 | 10.051 | 74.698 | 1.071 | 3.245 | 105.544 | 20.667 |
R38 | 10.184 | 74.825 | 1.056 | 3.236 | 107.705 | 20.803 |
R39 | 10.142 | 74.772 | 1.25 | 3.231 | 109.924 | 20.901 |
R40 | 10.169 | 74.826 | 1.365 | 3.257 | 113.001 | 21.071 |
R41 | 10.461 | 74.875 | 1.249 | 3.174 | 115.022 | 21.179 |
R42 | 10.505 | 74.498 | 1.262 | 3.267 | 118.083 | 21.389 |
R43 | 10.562 | 74.428 | 1.267 | 3.275 | 119.485 | 21.47 |
R44 | 10.833 | 74.663 | 1.163 | 3.202 | 121.709 | 21.559 |
R45 | 10.885 | 74.815 | 1.277 | 3.206 | 125.201 | 21.738 |
R46 | 10.917 | 74.806 | 1.29 | 3.222 | 126.555 | 21.815 |
R47 | 10.742 | 74.612 | 1.534 | 3.26 | 128.061 | 21.88 |
R48 | 10.974 | 74.811 | 1.299 | 3.247 | 128.651 | 21.936 |
R49 | 10.646 | 74.842 | 1.812 | 3.238 | 130.761 | 21.946 |
R50 | 10.921 | 74.712 | 1.473 | 3.256 | 130.937 | 22.036 |
R51 | 10.748 | 74.632 | 1.742 | 3.285 | 132.768 | 22.089 |
R52 | 10.893 | 74.89 | 1.735 | 3.244 | 135.237 | 22.202 |
R53 | 10.762 | 74.806 | 2.036 | 3.261 | 138.37 | 22.279 |
R54 | 10.967 | 74.613 | 1.824 | 3.295 | 139.795 | 22.428 |
R55 | 10.843 | 74.883 | 2.18 | 3.243 | 142.809 | 22.445 |
R56 | 10.814 | 74.79 | 2.212 | 3.267 | 143.226 | 22.461 |
R57 | 10.836 | 74.871 | 2.3 | 3.27 | 145.731 | 22.553 |
R58 | 10.926 | 74.896 | 2.272 | 3.27 | 147.463 | 22.652 |
R59 | 10.981 | 74.611 | 2.383 | 3.286 | 151.221 | 22.788 |
R60 | 10.955 | 74.764 | 2.474 | 3.293 | 152.841 | 22.832 |
R61 | 10.951 | 74.784 | 2.558 | 3.292 | 154.469 | 22.87 |
R62 | 10.965 | 74.823 | 2.609 | 3.295 | 156.061 | 22.923 |
R63 | 10.947 | 74.884 | 2.749 | 3.296 | 158.628 | 22.974 |
R64 | 10.959 | 74.885 | 2.86 | 3.296 | 161.317 | 23.038 |
R65 | 10.974 | 74.885 | 2.86 | 3.296 | 161.745 | 23.059 |
R66 | 10.974 | 74.832 | 2.996 | 3.299 | 164.668 | 23.114 |
R67 | 10.965 | 74.803 | 3.086 | 3.296 | 166.255 | 23.129 |
R68 | 11 | 74.839 | 3.13 | 3.299 | 168.325 | 23.2 |
R69 | 10.996 | 74.96 | 3.266 | 3.298 | 171.378 | 23.252 |
R70 | 10.996 | 74.96 | 3.298 | 3.298 | 172.069 | 23.262 |
No. | R (mm) | θ (in Degrees) | h1 (mm) | h2 (mm) | f (×103) | j (×103) |
---|---|---|---|---|---|---|
A1 | 8.91 | 37.963 | 0.763 | 0.701 | 54.032 | 14.585 |
A2 | 9.823 | 39.472 | 0.825 | 0.733 | 55.068 | 14.929 |
A3 | 9.201 | 42.812 | 0.949 | 0.849 | 56.34 | 15.02 |
A4 | 9.428 | 42.577 | 0.85 | 1.039 | 57.8 | 15.357 |
A5 | 9.232 | 41.039 | 0.791 | 1.202 | 58.394 | 15.517 |
A6 | 9.555 | 45.229 | 0.795 | 1.096 | 58.939 | 15.577 |
A7 | 9.115 | 40.535 | 0.781 | 1.405 | 59.682 | 15.786 |
A8 | 9.123 | 40.536 | 0.79 | 1.405 | 59.728 | 15.786 |
A9 | 9.129 | 38.568 | 0.768 | 1.589 | 60.649 | 15.992 |
A10 | 9.133 | 38.569 | 0.764 | 1.591 | 60.663 | 16 |
A11 | 9.225 | 40.605 | 0.787 | 1.631 | 61.698 | 16.198 |
A12 | 9.14 | 43.919 | 0.768 | 1.666 | 62.654 | 16.369 |
A13 | 9.327 | 41.824 | 0.796 | 1.847 | 64.187 | 16.657 |
A14 | 9.169 | 41.804 | 0.772 | 1.963 | 64.571 | 16.777 |
A15 | 9.305 | 42.353 | 0.944 | 1.986 | 66.013 | 16.851 |
A16 | 9.234 | 41.507 | 0.785 | 2.273 | 67.349 | 17.255 |
A17 | 9.382 | 44.776 | 0.719 | 2.176 | 68.447 | 17.433 |
A18 | 9.39 | 44.772 | 0.712 | 2.176 | 68.464 | 17.441 |
A19 | 9.41 | 42.552 | 0.868 | 2.386 | 69.969 | 17.564 |
A20 | 9.462 | 44.621 | 0.877 | 2.378 | 71.331 | 17.735 |
A21 | 9.433 | 44.733 | 0.741 | 2.536 | 72.379 | 18.014 |
A22 | 9.525 | 43.179 | 0.8 | 2.697 | 73.858 | 18.146 |
A23 | 9.441 | 44.713 | 0.713 | 2.73 | 74.32 | 18.301 |
A24 | 9.236 | 50.59 | 0.74 | 2.66 | 75.218 | 18.329 |
A25 | 9.311 | 46.35 | 0.913 | 2.919 | 76.81 | 18.531 |
A26 | 9.311 | 46.358 | 0.912 | 2.919 | 76.812 | 18.532 |
A27 | 9.46 | 49.509 | 0.879 | 2.769 | 78.166 | 18.662 |
A28 | 9.509 | 48.326 | 0.988 | 2.84 | 79.068 | 18.732 |
A29 | 9.52 | 49.523 | 1.139 | 2.847 | 80.546 | 18.829 |
A30 | 9.287 | 51.436 | 0.78 | 3.163 | 81.427 | 19.136 |
A31 | 9.582 | 49.099 | 0.812 | 3.075 | 82.189 | 19.21 |
A32 | 9.638 | 52.119 | 0.975 | 3.181 | 86.36 | 19.639 |
A33 | 9.39 | 59.371 | 1.062 | 3.262 | 88.042 | 19.742 |
A34 | 9.787 | 55.966 | 0.825 | 3.225 | 89.848 | 20.052 |
A35 | 9.888 | 56.394 | 1.004 | 3.206 | 91.859 | 20.204 |
A36 | 10.008 | 60.059 | 0.782 | 3.238 | 93.81 | 20.463 |
A37 | 10.036 | 63.314 | 0.787 | 3.281 | 95.318 | 20.633 |
A38 | 10.145 | 59.197 | 0.952 | 3.263 | 96.495 | 20.701 |
A39 | 10.316 | 62.041 | 0.826 | 3.266 | 98.495 | 20.942 |
A40 | 10.302 | 63.218 | 1.142 | 3.273 | 100.913 | 21.126 |
A41 | 10.479 | 59.556 | 1.118 | 3.285 | 102.134 | 21.154 |
A42 | 10.416 | 64.221 | 1.252 | 3.224 | 102.741 | 21.237 |
A43 | 10.633 | 66.831 | 0.948 | 3.27 | 103.938 | 21.454 |
A44 | 10.337 | 64.637 | 1.589 | 3.274 | 106.14 | 21.475 |
A45 | 10.816 | 66.006 | 0.943 | 3.273 | 106.557 | 21.628 |
A46 | 10.74 | 65.901 | 1.05 | 3.296 | 107.059 | 21.665 |
A47 | 10.782 | 67.207 | 1.125 | 3.288 | 108.842 | 21.765 |
A48 | 10.928 | 67.021 | 1.142 | 3.283 | 111.648 | 21.896 |
A49 | 10.821 | 65.076 | 1.504 | 3.282 | 113.973 | 21.957 |
A50 | 10.663 | 65.922 | 1.774 | 3.282 | 115.562 | 22.019 |
A51 | 10.856 | 65.527 | 1.616 | 3.285 | 117.03 | 22.09 |
A52 | 10.757 | 67.772 | 1.673 | 3.287 | 117.593 | 22.134 |
A53 | 10.878 | 67.85 | 1.578 | 3.288 | 118.978 | 22.192 |
A54 | 10.652 | 67.341 | 1.986 | 3.283 | 120.552 | 22.194 |
A55 | 10.966 | 68.093 | 1.635 | 3.297 | 123.344 | 22.345 |
A56 | 10.831 | 67.831 | 1.917 | 3.283 | 124.978 | 22.366 |
A57 | 10.859 | 67.092 | 2.013 | 3.285 | 127.292 | 22.419 |
A58 | 10.959 | 68.085 | 1.869 | 3.285 | 128.625 | 22.474 |
A59 | 10.964 | 68.019 | 1.939 | 3.298 | 131.113 | 22.556 |
A60 | 10.935 | 67.929 | 2.041 | 3.297 | 132.712 | 22.586 |
A61 | 10.872 | 68.073 | 2.221 | 3.282 | 135.089 | 22.591 |
A62 | 10.975 | 68.137 | 2.235 | 3.295 | 140.86 | 22.736 |
A63 | 10.999 | 67.946 | 2.266 | 3.297 | 142.731 | 22.765 |
A64 | 10.966 | 68.095 | 2.379 | 3.294 | 145.273 | 22.786 |
A65 | 10.981 | 68.136 | 2.371 | 3.295 | 145.903 | 22.803 |
A66 | 10.972 | 68.029 | 2.453 | 3.298 | 148.258 | 22.822 |
A67 | 10.98 | 67.607 | 2.527 | 3.3 | 150.35 | 22.823 |
A68 | 10.993 | 68.208 | 2.511 | 3.295 | 152.023 | 22.87 |
A69 | 10.991 | 68.276 | 2.577 | 3.295 | 154.775 | 22.894 |
A70 | 10.999 | 68.276 | 2.608 | 3.3 | 156.818 | 22.921 |
Researcher | Type of VG | Flow Condition (ReDh) | (%) | |
---|---|---|---|---|
Present work (CFD simulations of the selected models) | R6 | Curved trapezoidal winglet | 634.49 | 91.62 |
R16 | 99.83 | |||
R31 | 111.94 | |||
R50 | 112.28 | |||
A9 | 95.99 | |||
A21 | 103.09 | |||
A34 | 116.40 | |||
A50 | 117.09 | |||
Joardar and Jacobi 1 VG pair [55] | Delta winglet | 634.49 | 30.10 | |
Joardar and Jacobi 3 VG pair [55] | Delta winglet | 634.49 | 36.85 | |
Sharma et al. [65] | Curved VG | 200–700 | 80.0 | |
Naik and Tiwari [66] | Rectangular winglet | 2000–4000 | 10.0 | |
Khan and Li [49] | Rectangular and delta winglet | 380–1140 | 14.4 | |
Gentry and Jacobi [67] | Delta winglet | 400–2000 | 50.0 | |
Sarangi et al. [68] | Curved trapezoidal winglet | 300–600 | 71.0 |
Re | HE Variants | CFD | HE Variants | CFD | BLM | 1VG | 3VG | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
j (×103) | f (×103) | j (×103) | f (×103) | j (×103) | f (×103) | j (×103) | f (×103) | j (×103) | f (×103) | |||
280.62 | R6 | 21.17 | 90.99 | A9 | 21.72 | 93.69 | 13.41 | 79.47 | 16.69 | 95.03 | 17.67 | 116.07 |
R16 | 23.06 | 115.29 | A21 | 23.16 | 108.62 | |||||||
R31 | 26.64 | 134.55 | A34 | 26.24 | 127.82 | |||||||
R50 | 30.35 | 174.20 | A50 | 29.65 | 152.00 | |||||||
443.44 | R6 | 18.18 | 77.77 | A9 | 18.63 | 79.73 | 10.19 | 61.70 | 12.75 | 78.33 | 13.78 | 96.26 |
R16 | 19.26 | 93.09 | A21 | 19.68 | 89.81 | |||||||
R31 | 22.80 | 116.27 | A34 | 22.03 | 108.38 | |||||||
R50 | 25.09 | 152.19 | A50 | 24.61 | 134.42 | |||||||
634.49 | R6 | 15.68 | 59.53 | A9 | 16.20 | 61.40 | 8.11 | 52.17 | 10.79 | 72.23 | 12.59 | 84.65 |
R16 | 17.60 | 74.25 | A21 | 17.75 | 72.53 | |||||||
R31 | 20.70 | 101.21 | A34 | 20.39 | 90.95 | |||||||
R50 | 22.85 | 135.59 | A50 | 22.38 | 119.17 | |||||||
850.51 | R6 | 13.00 | 56.74 | A9 | 13.42 | 57.98 | 6.81 | 44.99 | 9.87 | 68.15 | 11.75 | 77.89 |
R16 | 14.80 | 73.77 | A21 | 14.99 | 70.28 | |||||||
R31 | 17.13 | 93.41 | A34 | 16.39 | 87.45 | |||||||
R50 | 18.02 | 125.76 | A50 | 17.74 | 116.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, R.; Mishra, D.P.; Wasilewski, M.; Brar, L.S. Application of Response Surface Methodology and Artificial Neural Network to Optimize the Curved Trapezoidal Winglet Geometry for Enhancing the Performance of a Fin-and-Tube Heat Exchanger. Energies 2023, 16, 4209. https://doi.org/10.3390/en16104209
Sharma R, Mishra DP, Wasilewski M, Brar LS. Application of Response Surface Methodology and Artificial Neural Network to Optimize the Curved Trapezoidal Winglet Geometry for Enhancing the Performance of a Fin-and-Tube Heat Exchanger. Energies. 2023; 16(10):4209. https://doi.org/10.3390/en16104209
Chicago/Turabian StyleSharma, Rishikesh, Dipti Prasad Mishra, Marek Wasilewski, and Lakhbir Singh Brar. 2023. "Application of Response Surface Methodology and Artificial Neural Network to Optimize the Curved Trapezoidal Winglet Geometry for Enhancing the Performance of a Fin-and-Tube Heat Exchanger" Energies 16, no. 10: 4209. https://doi.org/10.3390/en16104209
APA StyleSharma, R., Mishra, D. P., Wasilewski, M., & Brar, L. S. (2023). Application of Response Surface Methodology and Artificial Neural Network to Optimize the Curved Trapezoidal Winglet Geometry for Enhancing the Performance of a Fin-and-Tube Heat Exchanger. Energies, 16(10), 4209. https://doi.org/10.3390/en16104209