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Abstract: It is well known that thermal conductivity measurement is a challenging task, due to the
weaknesses of the traditional methods, such as the high cost, complex data analysis, and limitations
of sample size. Nowadays, the requirement of quality of life and tightening energy efficiency
regulations of buildings promote the demand for new construction materials. However, limited
by the size and inhomogeneous structure, the thermal conductivity measurement of wall samples
becomes a demanding topic. Additionally, we find the thermal parameter values of the samples
measured in the laboratory are different from those obtained by theoretical computation. In this paper,
a novel signal-transmissive wall is designed to provide the problem solving of signal connectivity in
5G. We further propose a new thermal conductivity predictor based on the Harmony Search (HS)
algorithm to estimate the thermal properties of laboratory-made wall samples. The advantages of our
approach over the conventional methods are simplicity and robustness, which can be generalized to
a wide range of solid samples in the laboratory measurement.

Keywords: thermal conductivity; specific heat; artificial intelligence; harmony search; optimization
methods; large sample measurement; 5G passive antenna system; sandwich wall

1. Introduction

With the development of modern technology, as well as the demands of zero-energy
buildings, the thermal performance assessment of new building walls has gained more and
more research attention during the past decade. The contradiction between the improve-
ment of quality of life and addressing the ongoing energy crisis has led to the emergence
of new construction materials. For example, the fifth generation of mobile technology
(5G) has created smart and networked communication environments that connect people,
devices, data, applications, transport systems, and cities [1–4]. As a result of the high
operational radio frequencies and increasingly stringent energy efficiency regulations for
buildings, more than 70% of cell phone users in the buildings are dissatisfied with the
current fourth- and fifth-generation cellular technologies. New types of energy-efficient
buildings indeed incorporate structures, such as low-emissive windows and multi-layered
thermal insulation, which are highly effective in blocking radio signals. A novel type
of signal-transmissive wall with the embedded passive antennas has been developed to
address the challenge of wireless connectivity in both the current low-energy and future
zero-energy buildings [5].

The distributed antennas are embedded on both wall sides connected via appropriate
microwave circuits. In other words, this signal-transmissive wall allows radio signal to
penetrate into the low-energy buildings in the urban setting. However, the impact on the
thermal performance becomes a significant challenge and plays a crucial role in determining
the feasibility of this new antennas-embedded wall [6–9]. Furthermore, we have found
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that the thermal parameter values obtained through laboratory measurement differed from
those obtained through theoretical computation. There are some certain limitations of
the traditional thermal conductivity measurement approaches, for example, the intricate
heat insulation and long measurement time of steady-state methods and the high costs
induced by the instruments of transient methods [10–15]. Additionally, unlike the small-
size laboratory samples, it is difficult to utilize the traditional instruments for measuring
the parameters, such as conductivity and specific heat of the signal-transmissive wall due
to the thick inhomogeneous structure. Therefore, an effective method to find whether
the wall retains high thermal insulation is desired. Based on the artificial intelligence
(AI) optimization algorithm, this paper proposes a novel thermal conductivity assessment
technique with the advantages of low cost, robustness, and simplicity.

To analyze the thermal performance of the signal-transmissive wall, the laboratory test
was carried out on two identical multi-layered structure samples, the reference (conven-
tional wall) and the antenna-embedded model. In our AI predictor, the Harmony Search
(HS) algorithm, a population-based random search method, was employed to find the
optimal value of thermal conductivity. It had the ability to work without any prior domain
knowledge and constraints imposed on the given problem, such as gradient information of
the objective functions.

In contrast to other population-based optimization techniques, it employed only one
candidate pool, Harmony search Memory (HM), to evolve [16,17]. Due to few mathematical
requirements, the HS had a significant advantage in terms of computational simplicity
that could bring the benefit of reducing the corresponding computational burden in heat
transfer calculation. Moreover, its stochastic nature resulted in the flexibility, randomness,
and robustness, which were suitable for the inhomogeneous model analysis.

In this paper, we first introduce the two laboratory models (the sandwich reference wall
and the signal-transmissive wall samples) in Section 2. The traditional thermal conductivity
measurement methods are reviewed in Section 3. In Section 4, the proposed thermal
conductivity predictor is presented and explained. The experimental results and analysis
are provided in the following section. Section 6 summarizes and concludes our paper with
remarks and improvements.

2. Laboratory Samples

Two bare load-bearing wall samples with sandwich structures were compared to study
the thermal performance of the proposed signal-transmissive wall. The one without a 5G
antenna was considered as the reference sample, and its general structure is shown in
Figure 1. The wall with a section of 15.00 cm × 15.00 cm consisted of a layer of rock wool
insulation that was 20.50 cm thick. The two layers of sandwiched concrete were 7.50 cm
and 15.00 cm thick, respectively.

Another sample was the signal-transmissive wall sample, which included an inte-
grated ultrawideband back-to-back spiral antenna system within the sandwiched
structure [18]. As illustrated in Figure 2, the antenna system consisted of two identi-
cal spiral antennas and a semi-rigid dual coaxial cable, which were installed at the center
of the wall. In this sample, the spiral antenna was composed of a copper two-arm spiral,
which was 0.035 mm thick and had an outer radius of 17.4 mm and an inner radius of
1.08 mm. The antenna was mounted on a Rogers RT/Duroid 5880 PCB that was 0.5 mm
thick and a Styrofoam board that was 10 mm thick. The semi-rigid dual coaxial cable
consisted of a rubber block and two coaxial cables. Each coaxial cable comprised a stainless
steel outer connector, a PTFE (Teflon) dielectric block, and a stainless steel center connector.
The two center connectors were connected to the spiral arms, while the remaining elements
of the dual coaxial cable touched the PCBs. The PCB was embedded in the Styrofoam board
to the same level as the concrete [19].
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Table 1. Properties of two samples.

Layer Material Length (cm) Width (cm) Height (cm) Density (kg/m3)

Layer 1 (top) Concrete 15 15 15 2197.9
Layer 2 (middle) Rock wool 15 15 20.5 56.15
Layer 3 (bottom) Concrete 15 15 7.5 2197.9

3. Conventional Thermal Conductivity Measurement Approaches

Thermal conductivity refers to a material’s capacity to conduct heat and indicates the
rate at which temperature differences transmit through a material [7]. Aided by increasingly
advanced instruments, many methods have been employed for the thermal conductivity
measurements of various materials, including homogeneous, inhomogeneous, and even
liquid materials spanning a broad temperature range. This section presents two types of
widely used traditional measurement schemes: steady- and transient-state methods.

3.1. Steady-State Methods

The thermal conductivity can be achieved based on steady-state measurements, which
measure the temperature difference at a given distance while the heat flow passes through
the sample. In the measurement, the steady-state condition is obtained when the tem-
perature gradient across the sample is constant over time. The four widely employed
methods are the comparative cut bar technique, the absolute technique, the radial heat flow
method, and the parallel thermal conductance technique [13]. The steady-state methods
have several advantages over the others because of their simplicity and versatility for a
wide range of materials [14,15,20]. They typically require fewer experimental parameters
and can be easily automated, making them more efficient and cost-effective. For example,
the guarded hot plate method only requires the temperature difference between the hot and
cold plates. However, the main drawback of the steady-state methods is the error caused
by heat losses in the laboratory setup, which is due to the heat transfer of radiation and
convection. Additionally, errors caused by sample thickness can affect the accuracy of the
measurement results as well.

3.2. Transient State Methods

The transient state methods apply a heat pulse to the sample and measure the resulting
transient temperature change on one or more locations in the sample. The measurements
are usually carried out using temperature sensors, such as a thermocouple and a resistance
thermometer. This non-destructive approach can be utilized to measure the thermal
properties of a broad range of materials in solid, liquid, and gaseous states. The popular
transient state approaches are the transient line source method, the pulsed power technique,
the hot-wire method, the transient plane source method, and the laser flash method [21–23].
For example, the transient plane source method uses a special mathematical model, a
continuous plane heat source, and a small sensor (plane source) sandwiched between the
two halves of sample. The heat is transferred through the sample, causing a temporary
change at the surface of the plane source. This change can be detected by a sensor located
on the opposite side of the plane source. The transient schemes have certain advantages
over the steady-state methods in terms of heat losses, contact resistance of temperature
sensors, and measurement time. On the other hand, they have many drawbacks, including
the sample geometry limitation, complexity and high cost of equipment. For instance,
to obtain accurate results using the transient state method, a small size sample with a
homogeneous structure is usually required because the heat flows uniformly through
the material, and any variations in the sample’s composition and structure can affect the
measurement results. In other words, the transient state methods are not suitable for
thermal conductivity measurement of anisotropic or inhomogeneous samples, e.g., the
reference and signal-transmissive wall samples used in this paper. Additionally, transient
methods often require the use of expensive instruments.
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4. Novel Thermal Conductivity Estimation Method

As previously mentioned, both the steady- and transient-state methods have their
own inherent drawbacks that limit the practical thermal conductivity measurement in
laboratories. To address this issue, we proposed a novel thermal conductivity measurement
method called the AI-based conductivity predictor in this paper. Our technique was based
on predicting the thermal conductivity of large samples with inhomogeneous material.
By leveraging the harmony search method, a branch of artificial intelligence algorithms,
it could provide simpler and more reliable measurements in large size sample thermal
property estimation.

4.1. Laboratory Measurement Setup

The reference and antenna-embedded samples consisted of the same multi-layered
structure, as given in Table 1. Compared with the reference model, there was an antenna
installed in the signal-transmissive wall. To imitate the real-world conditions, the bottom
concrete layer was treated as the exterior wall that was exposed to lower temperatures.
In the laboratory measurement, the cooling thermostats (type: Lauda RE 1050 eco silver)
were utilized to control the temperature at the bottom surfaces of the models. The other
faces, including the top surface of the concrete, were left uncovered (without insulation),
which meant that their temperature depended on the ambient temperature. The laboratory
temperature was monitored by a data logger and kept at 22 ◦C, which was considered as
both the initial model temperature and the boundary condition in the MATLAB simula-
tions. This approach can help to control the heat flow and boundary condition, thereby
minimizing the measurement errors.

The cooling bed connected with the thermostats was a square with a 40 cm inner
length (larger than that of the samples), and its edge had 10 cm height. Because the cooling
bed size was larger than that of the sample section, there was unintended heat transfer
generated through radiation from the uncovered area of the cooling bed to the samples.
This could lead to a change in the ambient temperature through convection. To achieve the
ideal measurement environment and boundary conditions, the samples were first lifted to
the height of the cooling bed sides by adding a high-conductivity steel base that had the
same shape as the sample section. Next, the uncovered cooling plate area and steel base
were insulated using rock wool and extruded polystyrene (XPS) as shown in Figure 3. Steel
was the perfect type of material for the base due to its heat conduction performance and
low cost. After adding the insulation layer, the top surface temperature of the base was
almost that of the cooling bed. Additionally, it was confirmed that heat transfer from the
insulated cooling bed could be neglected.
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The object of our work was to compare the thermal conductivities of these two samples
to obtain the thermal properties of the signal-transmissive wall. Therefore, we compared
their thermal performances by analyzing temperature profiles with the cooling temperature
−5 ◦C at the sample bottoms. There were 12 sampling points located at the bottom, two
layer intersections, and the top of the samples, as illustrated in Figure 4. Two data loggers,
Hioki LR8431-20 (range of measurements: −200 ◦C to 2000 ◦C, max. resolution: 0.1 ◦C
and accuracy: ±0.5 ◦C) and Pico TC-08 (range of measurements: −250 ◦C to 1370 ◦C, max.
resolution: 0.025 ◦C and accuracy: ±0.5 ◦C), were employed to acquire the temperatures at
these sampling points. Because we aimed at comparing the performance of heat transfer,
the positions of the sampling points were the same in both the reference and the signal-
transmissive wall models.
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The thermal data indicated that the trigger time was 22 November 2022, at 4:11:03 P.M.
The measurement results obtained at 0, 500, 1000, 1500, 2000, and 2500 min are presented
in Figure 5, where the x axis and y axis represent the sample height and temperature,
respectively. The temperatures of the sampling points were around 23 ◦C (room temper-
ature) at the initial state (0 min). However, the lower sampling points experienced rapid
temperature changes within 2500 min. For instance, the temperature at the sampling point
located at a height of 12.5 cm (the intersection between the first concrete and rock wool
layer) decreased from 23 ◦C at 0 min to 6.2 ◦C after 500 min and remained at 5.3 ◦C after
1000 min. The thermal performances of the two samples appeared to be the same with
consideration of the ambient temperature differences, which have been verified using the
COMSOL in [19]. However, some thermal property parameters of the handmade samples
in the laboratory significantly deviated from their theoretical values. For example, the
density of rock wool was 140 kg/m3 in theory, while the laboratory measurement value
was 56.15 kg/m3. Therefore, it was essential to find the true values of these parameters. To
further study the thermal properties, we proposed a new method based on the laboratory
measurement results. It will be presented in the next section.



Energies 2023, 16, 4211 7 of 16

Energies 2023, 16, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 5. Temperature profiles of two samples. 

4.2. AI-Based Conductivity Predictor 
The basic flowchart of our AI-based scheme is shown in Figure 6. In the practical 

measurement, the bottom concrete was considered as the exterior wall, which was ex-
posed to a low temperature controlled by cooling thermostats. The other faces including 
the top surface (concrete) were open. As shown in Figure 7, the temperature sampling 
points were set in the model bottom, two intersections between different materials, and 
the center of the rock wool. With the temperature data acquired by thermal data logger, 
an HS-based AI method was developed to find the optimal thermal conductivity values 
so that the measured temperature profile could match that from the MATLAB simulations. 

 
Figure 6. The thermal conductivity estimation method. 

Figure 5. Temperature profiles of two samples.

4.2. AI-Based Conductivity Predictor

The basic flowchart of our AI-based scheme is shown in Figure 6. In the practical
measurement, the bottom concrete was considered as the exterior wall, which was exposed
to a low temperature controlled by cooling thermostats. The other faces including the top
surface (concrete) were open. As shown in Figure 7, the temperature sampling points were
set in the model bottom, two intersections between different materials, and the center of
the rock wool. With the temperature data acquired by thermal data logger, an HS-based
AI method was developed to find the optimal thermal conductivity values so that the
measured temperature profile could match that from the MATLAB simulations.

There were ten temperature sampling points distributed in the model bottom, two
intersections between different materials, and the center of sample, as shown in Figure 7.
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Figure 7. Temperature sampling points.

In the simulations, the Partial Differential Equation (PDE) toolbox of MATLAB was
used to evaluate the fitness of the candidates obtained by our HS algorithm, and the
Dirichlet boundary condition was set on the model. Figure 8 shows the model at the
initial state (room temperature) and the model with a triangular element mesh. Because
of the type of thermal couples, Hmax in the PDE toolbox was set to be 0.1 in order to
control the size of the triangles on the mesh. From the temperature sampling locations in
Figure 7 obtained by the laboratory measurement, we could acquire the corresponding
nodes in the PDE model as given in Table 2. Both the thermal performance comparison
measurement and the PDE simulation results indicated that the surface temperatures on
the top of the model were the same as those of the environment. There were two possible
reasons. First, obtaining accurate surface temperatures with thermal couples was difficult
since they were highly dependent on the ambient temperature. Second, the thickness of the
model determining the top surface temperatures was not affected by the bottom cooling
temperature. Thus, we only needed to consider ten sampling points as shown in Figure 7.
It could help to reduce the computational burden in the MATLAB simulation. According
to Table 2, the fitness function of our HS method is

f =
T

∑
j=1

10

∑
i=1

∣∣ai,j − bi,j
∣∣ (1)

where a, b, i, j, and T represent the simulation temperature, measurement temperature,
number of sampling points, number of measurement (simulation) step, and measurement
(simulation) time, respectively. The HS algorithm was applied to find the optimal solutions
of the thermal conductivities of the concrete and rock wool, as well as the specific heats of
the concrete and the rock wool by minimizing the above objective function.
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Table 2. The sampling points.

Number of Sampling Points
in Measurement

Node on Mesh
in Simulation

Number of Sampling Points
in Measurement

Node on Mesh
in Simulation

1 n10 6 n5 (n6)
2 n36 (n37) 7 n49
3 n1 (n2) 8 n12
4 n9 9 n54 (n42)
5 n24 (n32) 10 n7 (n8)

4.3. Harmony Search Algorithm

The field of AI has rapidly advanced during the recent years, and it has the poten-
tial to revolutionize numerous industries by making processes more efficient, improving
decision-making, and enabling new types of products and services [24–26]. Actually, AI
has been proved to be a powerful tool for optimization problems by analyzing tremendous
amounts of data and identifying patterns [27,28]. The HS, inspired by the music impro-
visation process, is a metaheuristic global optimization method, which has gained great
research attention and been widely used to handle different engineering problems [29,30].
When composing harmony, musicians typically experiment with various combinations of
musical pitches that they have stored in the memory. This type of efficient search for a
perfectly harmonious state is similar to the process used for finding the optimal solutions
in engineering. Therefore, harmony improvisation has inspired the emergence of this novel
type of Natural Inspired Computation (NIC) algorithm [31], the HS algorithm. Table 3
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gives a comparison of the harmony improvisation and the optimization task [32]. Figure 9
shows the flowchart of the HS method involving four main steps as follows.

Table 3. Comparison of optimization task and harmony improvisation.

Comparison Issues Harmony Improvisation Optimization Task

Objects Aesthetic standard Fitness function
Best results Wonderful melody Global optimum
Elements Pitches Values of parameters

Process units Every practice Every generation
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Step 1. Initialize a candidate pool HS Memory (HM). The HM comprises a set of
solutions generated randomly or based on prior knowledge to the given optimization
problem that need to be solved. For a problem with the dimension of n, an HM with the
candidate number of J can be represented as follows:

HM =


m1

1, m1
2, · · · , m1

n
m2

1, m2
2, · · · , m2

n
...

mJ
1, mJ

2, · · · , mJ
n

 (2)

where
[
mi

1, mi
2, · · · , mi

n
]

(i = 1, 2, 3, · · · , J) is a candidate solution. Note that storing past
search experiences of HM plays an essential role in the optimization performance of the
HS method.

Step 2. Generate a new solution [m′1, m′2, · · · , m′n] based on the HM. Each component
of this solution, m′ j, is obtained based on Harmony Memory Considering Rate (HMCR),
which represents the probability of choosing a component from the HM. For example,
when the HMCR is set to 1, it means that the new solution is randomly generated with
100% probability, rather than using the HM to select a component. If m′ j is from the HM,
it is selected from the jth dimension of a random HM member. This component will be
further changed with the consideration of the pitching adjust rate (PAR), which decides
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the probability of a candidate from the HM to be mutated. The improvisation process of
[m′1, m′2, · · · , m′n] is similar to the production of offspring in the Genetic Algorithm (GA)
with the operators of mutation and crossover [33,34]. However, the GA usually creates
new chromosomes by combining the genetic information of only one (mutation) or two
(crossover) existing parent solutions, while the improvisation of new solutions in the HS
method enables the utilization of all the HM candidates.

Step 3. Update the HM. The new solution obtained from Step 2 is evaluated using a
fitness function. The new one will replace the worst candidate in the HM if it yields better
fitness. Otherwise, it will be discarded and not stored in the HS.

Step 4. Repeat Step 2 to Step 3 until a stop criterion is met.
Similar to the GA and other NIC techniques, the HS method is a stochastic population-

based search approach. It does not require any prior domain knowledge beforehand, such
as the gradient information of the objective functions [17]. Nevertheless, different from
other population-based techniques, it employs only a single search memory to evolve.
Therefore, the HS algorithm has the distinguished advantage of computational simplicity
because it imposes few mathematical requirements. However, it also has some inherent
drawbacks, e.g., the balance of exploration and exploitation. In summary, its characteristics
of correlation among variables and multi-candidate consideration contribute to its flexibility,
making it well suited for solving diverse optimization problems in engineering [16,35].

To demonstrate the effectiveness of our HS method, a four-dimensional (the same
number of variables as the conductivity predictor) sphere function within the search range
[0, 1000] is used.

The sphere function is as follows:

f(x) =
n

∑
i=1

x2
i (3)

In this function, the optimal solution is 0 with the solution (xi = 0). Figure 10 illustrates
the convergence procedure in 1000 generations. The parameters used in the HS method
for both the benchmark function and the thermal conductivity predictor are given in
Table 4. Apparently, the HS can converge significantly fast in this four-dimensional function
optimization case.
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Table 4. Parameters used in the HS method.

Parameters Values

Initial pool size 4
HMCR 0.8

PAR 0.8
Max variation step 10%

5. Results and Analysis
5.1. Results Based on Proposed HS Algorithms

As discussed previously, our measurement method employed the HS optimization
algorithm to find the optimal values of the thermal conductivities by minimizing the
objective function. The HS method works by iteratively refining the four-dimensional
solution until a stopping criterion is met, which can be the qualified solution or a given
number of iterations. Due to the characteristics of the HS algorithm, the maximum number
of generations, 1000, was chosen as the stop criteria in our simulations. The convergence
procedure is illustrated in Figure 11.
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Table 5 provides the candidate parameters including the searching ranges and optimal
values obtained by the HS algorithm. The optimal thermal conductivities of concrete and
rock wool were 0.8961 and 0.104 (W/mK), respectively, which deviated from the theoretical
values of 2 and 0.035 (W/mK) [19]. One possible explanation for this discrepancy was that
the samples used for the measurements were handmade in a laboratory. Comprehensive
simulation results indicated that for a large number of iterations, the convergence was inde-
pendent of the searching ranges. In our sample, three thermal resistances were connected
in series, and the total thermal resistance could be calculated by

Rtotal = Rconcrete1 + Rrock wool + Rconcrete2 (4)

The total thermal conductivity was

ktotal =
ltotal

lconcrete1
kconcrete

+ lrock wool
krock wool

+ lconcrete2
kconcrete

(5)

where l represents the thickness of the layer. Based on the above function, the total
thermal conductivity (ktotal) was 0.1935 W/mk, which was the same as that of the antenna-
embedded sample.



Energies 2023, 16, 4211 13 of 16

Table 5. Candidate information and optimal solutions.

Dimension Parameters in Sample Searching Ranges Optimal Values

1 Concrete thermal conductivity 0~20 (W/mK) 0.8961 (W/mK)
2 Concrete specific heat 800~1200 (J/kgK) 1165 (J/kgK)
3 Rock wool thermal conductivity 0~2 (W/mK) 0.104 (W/mK)
4 Rock wool specific heat 400~1000 (J/kgK) 709 (J/kgK)

We compared the temperature changes at the center of the intersection between the
first concrete and rock wool layer until reaching the steady state, both in the measurement
and in the simulations (point 4 in Figure 7). In Figure 12, there are 100 sampling intervals
with the duration of 300 s between two intervals. Obviously, the values of the thermal
conductivity and specific heat obtained by our proposed method were very close to the
actual ones.
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5.2. Analysis and Discussion

Figure 13 shows the MATLAB simulation of heat transfer based on the thermal prop-
erty parameters of concrete and rock wool obtained through the proposed HS method
(listed in Table 5). The 2D model had a width of 0.15 m, and layer heights were identical
to those of the real sample. The temperature at the bottom edge of the model was set to
−1 ◦C, which corresponded to the temperature measured at the bottom of our laboratory
sample. The three subplots in Figure 13 illustrate the model temperature changes over the
simulation time after 20, 40, and 600 min. Obviously, the temperature of the bottom layer
changed rapidly and reached a stable state almost within 20 min, while the rock wool’s
good thermal insulation enabled the temperature of the top layer to remain unchanged.
This heat transfer simulation by MATLAB was almost consistent with the temperature
profile displayed in Figure 5.

As previously mentioned, the HS method had the advantages of efficient search,
robustness, and easy implementation. In the simulation, we also found that the optimized
results were insensitive to the specified searching range. It indicated that the HS algorithm
was suitable for predicting material thermal property parameters in cases where the real
values were unknown. Our thermal property prediction model was based on measurement
data, which may be subject to errors resulting from the accuracy of thermal data loggers.
As given in the previous section, the accuracy of the two data loggers was ±0.5 ◦C, which
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could potentially influence the optimized results. The HS method was shown to be robust
against these types of errors, making it appropriate for solving real-world engineering
problems. Our proposed algorithm initialized with a five-member memory pool that could
help to reduce the computational burden in MATLAB. However, the HS algorithm had a
significant disadvantage in slow convergence, particularly after it reached a local optimum.
As shown in Figure 11, the algorithm only improved fitness slightly after 300 generations.
Through trial and error simulations, we found that the algorithm could not converge even
after 10,000 iterations, with only a little improvement in fitness.
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Our AI-based scheme has several advantages over conventional methods, including
simplicity, no need for prior knowledge, and low cost. However, there are still some
inherent limitations and drawbacks. For instance, the values of the predicted thermal
properties highly depended on the accurate mapping from the positions of thermal couples
to their corresponding mesh modes in the simulation model. Hence, the shape of the
thermal couples was an essential issue in measurement setup. The difficulty of acquiring
surface temperature meant that the sampling points should be placed inside the model. As
a result, the proposed method was applicable to solid samples even with complex structures
but not suitable for multilayer ones without low-density material in the middle layer.

6. Conclusions

The contradiction between the quality of life and the energy crisis promotes the
study of new construction materials. The new signal-transmissive wall can handle the
outdoor-to-indoor communication connectivity in 5G. However, the influence on thermal
performance determines its feasibility, which is a very challenging issue. Limited by the
size and inhomogeneous structure, the thermal conductivity measurement of wall samples
becomes a demanding issue. On the other hand, the actual thermal property values of
handmade laboratory samples are significantly different from those calculated in theory.
With the steady-state methods, it is difficult to control the heat loss to ensure the heat
flows in one direction, particularly in cases of large volumes of samples in laboratory
measurements. Due to the complexity of the measurement setup and limitations in sample
size and structure, it is hard to employ the transient state methods to yield satisfactory
measurement results. Our paper presents a new thermal insulation assessment approach
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for the handmade samples in the laboratory, which has the remarkable advantages of low
cost, robustness, and simplicity. In this AI-based scheme, the HS algorithm is utilized
to find the optimal values of the thermal properties. Compared with the conventional
schemes, it is relatively simple to set up and can be used to measure a wide range of
solid material thermal properties regardless of thickness and structure. On the other hand,
it does have some drawbacks including the accuracy limitation of thermal couples and
premature issue of the HS method. In the future work, we will extend the applications to
other thermal performance problems with more complex structures. However, this novel
method also has some drawbacks, such as the sensitivity of the thermal couples under the
experimental conditions and the potential errors caused by the heat losses not considered
in the PDE model. How to overcome the shortcomings will be another potential research
topic for us to investigate.
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