New Insight into Enhancing Organic-Rich Shale Gas Recovery: Shut-in Performance Increased through Oxidative Fluids
Abstract
:1. Introduction
2. Mechanism of Shut-In Performance Increased by Oxidative Dissolution
2.1. Increment of the Density of Fracture Networks
2.2. Improvement of Fracture Network Conductivity
2.2.1. Auto Removal of APT in Fracture
2.2.2. Non-Uniform Surface-Etching Profile
2.3. Promotion of Gas Desorption and Diffusivity in the Matrix
3. Feasibility of Oxidative Fluids Injected to Increase Shut-In Performance
4. Implementation Clue for Oxidative Fluids Enhancing Organic-Rich Shale Gas Recovery
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Valko, P.; Lee, W. A better way to forecast production from unconventional gas wells. In Proceedings of the SPE Annual Technical Conference and Exhibition, Florence, Italy, 20–22 September 2010. [Google Scholar]
- Wang, H. What factors control shale-gas production and production-decline trend in fractured systems: A comprehensive analysis and investigation. SPE J. 2017, 22, 562–581. [Google Scholar] [CrossRef]
- Kenomore, M.; Hassan, M.; Malakooti, R.; Dhakal, H.; Shah, A. Shale gas production decline trend over time in the Barnett shale. J. Petrol. Sci. Eng. 2018, 165, 691–710. [Google Scholar] [CrossRef]
- Fathi, E.; Akkutlu, I.Y. Lattice Boltzmann method for simulation of shale gas transport in kerogen. SPE J. 2012, 18, 27–37. [Google Scholar] [CrossRef]
- Yang, B.; Kang, Y.; You, L.; Li, X.; Chen, Q. Measurement of the surface diffusion coefficient for adsorbed gas in the fine mesopores and micropores of shale organic matter. Fuel 2016, 181, 793–804. [Google Scholar] [CrossRef]
- Darabi, H.; Ettehad, A.; Javadpour, F.; Sepehrnoori, K. Gas flow in ultra-tight shale strata. J. Fluid Mech 2012, 710, 641–658. [Google Scholar] [CrossRef]
- Alharthy, N.S.; Al Kobaisi, M.; Kazemi, H.; Graves, R.M. Physics and modeling of gas flow in shale reservoirs. In Proceedings of the Abu Dhabi International Petroleum Conference and Exhibition, Abu Dhabi, United Arab Emirates, 11–14 November 2012. [Google Scholar]
- Chen, M.; Kang, Y.; Zhang, T.; Li, X.; Wu, K.; Chen, Z. Methane adsorption behavior on shale matrix at in-situ pressure and temperature conditions: Measurement and modeling. Fuel 2018, 228, 39–49. [Google Scholar] [CrossRef]
- Bai, J.; Kang, Y.; Chen, M.; Liang, L.; You, L.; Li, X. Investigation of multi-gas transport behavior in shales via a pressure pulse method, Chem. Eng. J. 2019, 360, 1667–1677. [Google Scholar]
- Baihly, J.D.; Altman, R.M.; Malpani, R.; Malpani, R.; Luo, F. Shale gas production decline trend comparison over time and basins. In Proceedings of the Annual Technical Conference and Exhibition, Florence, Italy, 19–22 September 2010. [Google Scholar]
- Cipolla, C.L.; Ceramics, C.; Lolon, E.P.; Mayerhofer, M.J. Reservoir modeling and production evaluation in shale-gas reservoirs. In Proceedings of the International Petroleum Technology Conference, Doha, Qatar, 7–9 December 2009. [Google Scholar]
- Curtis, M.E.; Sondergeld, C.H.; Ambrose, R.J.; Rai, C.S. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bull. 2012, 96, 665–677. [Google Scholar] [CrossRef]
- Chen, Q.; Kang, Y.L.; You, L.J.; Yang, P.F.; Zhang, X.Y.; Cheng, Q.Y. Change in composition and pore structure of Longmaxi black shale during oxidative dissolution. Int. J. Coal Geol. 2017, 172, 95–111. [Google Scholar] [CrossRef]
- You, L.J.; Kang, Y.L.; Chen, Q.; Fang, C.H.; Yang, P.F. Prospect of shale gas recovery enhancement by oxidation-induced rock burst. Nat. Gas. Ind. B 2017, 37, 53–61. [Google Scholar] [CrossRef]
- Gale, J.F.W.; Laubach, S.E.; Olson, J.E.; Eichhubl, P.; Fall, A. Natural fractures in shale: A review and new observations. AAPG Bull. 2014, 98, 2165–2216. [Google Scholar] [CrossRef]
- Fisher, M.K.; Wright, C.A.; Davidson, B.M.; Steinsberger, N.P.; Buckler, W.S.; Goodwin, A.; Fielder, E.O. Integrating fracture mapping technologies to improve stimulations in the Barnett shale. SPE Prod. Faci. 2005, 20, 85–93. [Google Scholar] [CrossRef]
- Gale, J.F.; Reed, R.M.; Holder, J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. AAPG Bull. 2007, 91, 603–622. [Google Scholar] [CrossRef]
- Gasparrini, M.; Sassi, W.; Gale, J.F. Natural sealed fractures in mudrocks: A case study tied to burial history from the Barnett Shale, Fort Worth Basin, Texas, USA. Mar. Petrol. Geo. 2014, 55, 122–141. [Google Scholar] [CrossRef]
- Wu, W.; Sharma, M.M. Acid fracturing in shales: Effect of dilute acid on properties and pore structure of shale. SPE Prod. Oper. 2016, 32, 51–63. [Google Scholar]
- Nelson, R. Geologic Analysis of Naturally Fractured Reservoirs, 2nd ed.; Gulf Professional Publishing: Woburn, MA, USA, 2001; Chapter 1; pp. 77–79. [Google Scholar]
- Ghanbari, E.; Abbasi, M.A.; Dehghanpour, H.; Bearinger, D. Flowback volumetric and chemical analysis for evaluating load recovery and its impact on early-time production. In Proceedings of the SPE Unconventional Resources Conference Canada, Calgary, AB, Canada, 5–7 November 2013. [Google Scholar]
- Carpenter, C. The role of induced unpropped fractures in unconventional oil and gas wells. J. Pet. Technol. 2016, 68, 58–65. [Google Scholar] [CrossRef]
- Xu, Y.; Ezulike, O.; Dehghanpour, H. Estimating compressibility of complex fracture networks in unconventional reservoirs. Int. J. Rock Mech. Min. 2020, 127, 104186–104199. [Google Scholar] [CrossRef]
- Sharma, M.M.; Manchanda, R. The role of induced un-propped (IU) fractures in unconventional oil and gas wells. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 28–30 September 2015. [Google Scholar]
- Manchanda, R.; Sharma, M.M.; Holzhauser, S. Time-dependent fracture-interference effects in pad wells. SPE Prod. Oper. 2014, 29, 274–287. [Google Scholar] [CrossRef]
- Xu, Y.; Dehghanpour, H.; Ezulike, O.; Virues, C. Effectiveness and time variation of induced fracture volume: Lessons from water flowback analysis. Fuel 2017, 210, 844–858. [Google Scholar] [CrossRef]
- Wu, W.; Zhou, J.; Kakkar, P.; Russell, R.; Sharma, M.M. An experimental study on conductivity of unpropped fractures in preserved shales. SPE Prod. Oper. 2019, 34, 280–296. [Google Scholar] [CrossRef]
- Tripathi, D.; Pournik, M. Effect of acid on productivity of fractured shale reservoirs. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, CO, USA, 25–27 August 2014. [Google Scholar]
- Lucas, G.M.S.; Moura, E.M.; Moreno, R.Z.; de Andrade, A.R. Understanding Unconventional Gas Reservoir Damages. In Proceedings of the OTC Brasil, Rio de Janeiro, Brazil, 4–6 October 2011. [Google Scholar]
- Yan, Q.; Lemanski, C.; Karpyn, Z.T.; Ayala, L.F. Experimental investigation of shale gas production impairment due to fracturing fluid migration during shut-in time. J. Nat. Gas Sci. Eng. 2015, 24, 99–105. [Google Scholar] [CrossRef]
- Pagels, M.; Willberg, D.M.; Edelman, E.; Zagorski, W.; Frantz, J. Quantifying fracturing fluid damage on reservoir rock to optimize production. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, Denver, CO, USA, 12–14 August 2013. [Google Scholar]
- Zhang, J.J.; Zhu, D.; Hill, A.D. Water-induced fracture conductivity damage in shale formations. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 3–5 February 2015. [Google Scholar]
- Dutta, R.; Lee, C.H.; Odumabo, S.; Ye, P.; Walker, S.C.; Karpyn, Z.T.; Ayala, H.L.F. Experimental investigation of fracturing-fluid migration caused by spontaneous imbibition in fractured low permeability sands. SPE Reserv. Eval. Eng. 2014, 17, 74–81. [Google Scholar] [CrossRef]
- Scott, H.E.; Patey, I.T.M.; Byrne, M.T. Return permeability measurements—Proceed with caution. In Proceedings of the SPE European Formation Damage Conference, Scheveningen, The Netherlands, 30 May–1 June 2007. [Google Scholar]
- Ge, H.K.; Yang, L.; Shen, Y.H.; Ren, K.; Meng, F.B.; Ji, W.M.; Wu, S. Experimental investigation of shale imbibition capacity and the factors influencing loss of hydraulic fracturing fluids. Pet. Sci. 2015, 12, 636–650. [Google Scholar] [CrossRef]
- Ghanbari, E.; Dehghanpour, H. Impact of rock fabric on water imbibition and salt diffusion in gas shales. Int. J. Coal Geol. 2015, 138, 55–67. [Google Scholar] [CrossRef]
- Singh, H. A critical review of water uptake by shales. J. Nat. Gas Sci. Eng. 2016, 34, 751–766. [Google Scholar] [CrossRef]
- You, L.; Xie, B.; Yang, J.; Kang, L.; Han, L.; Wang, L.; Yang, B. Mechanism of fracture damage induced by fracturing fluid flowback in shale gas reservoirs. Nat. Gas Ind. B 2019, 6, 366–373. [Google Scholar] [CrossRef]
- Cheng, Y. Impact of water dynamics in fractures on the performance of hydraulically fractured wells in gas-shale reservoirs. J. Can. Petrol. Technol. 2012, 51, 143–151. [Google Scholar] [CrossRef]
- Bertoncello, A.; Wallace, J.; Blyton, C.; Honarpour, M.; Kabir, C.S. Imbibition and water blockage in unconventional reservoirs: Well-management implications during flowback and early production. SPE Reserv. Eval. Eng. 2014, 17, 497–506. [Google Scholar] [CrossRef]
- Yaich, E.; Williams, S.; Bowser, A.; Goddard, P.; Souza, O.C.; Foster, R.A. A case study: The impact of soaking on well performance in the Marcellus. In Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, San Antonio, TX, USA, 20–22 July 2015. [Google Scholar]
- Fakcharoenphol, P.; Torcuk, M.; Kazemi, H.; Wu, Y.S. Effect of shut-in time on gas flow rate in hydraulic fractured shale reservoirs. J. Nat. Gas Sci. Eng. 2016, 32, 109–121. [Google Scholar] [CrossRef]
- Ghanbari, E.; Dehghanpour, H. The fate of fracturing water: A field and simulation study. Fuel 2016, 163, 282–294. [Google Scholar] [CrossRef]
- He, J.; Li, X.; Yin, C.; Zhang, Y.; Lin, C. Propagation and characterization of the micro cracks induced by hydraulic fracturing in shale. Energy 2020, 191, 116449. [Google Scholar] [CrossRef]
- Zhang, S.; Sheng, J.J. Effect of water imbibition on hydration induced fracture and permeability of shale cores. J. Nat. Gas Sci. Eng. 2017, 45, 726–737. [Google Scholar]
- Kang, Y.; Yang, B.; Li, X.; Yang, J.; You, L.; Chen, Q. Quantitative characterization of micro forces in shale hydration and field applications. Petrol. Explor. Dev. 2017, 44, 328–335. [Google Scholar] [CrossRef]
- Bai, J.; Kang, Y.; Chen, Z.; You, L.; Chen, M.; Li, X. Changes in retained fracturing fluid properties and their effect on shale mechanical properties. J. Nat. Gas Sci. Eng. 2020, 75, 103163–103174. [Google Scholar] [CrossRef]
- Chakraborty, N.; Karpyn, Z.T.; Liu, S.; Yoon, H. Permeability evolution of shale during spontaneous imbibition. J. Nat. Gas Sci. Eng. 2017, 38, 590–596. [Google Scholar] [CrossRef]
- Shen, Y.; Ge, H.; Meng, M.; Jiang, Z.; Yang, X. Effect of water imbibition on shale permeability and its influence on gas production. Energ. Fuel. 2017, 31, 4973–4980. [Google Scholar] [CrossRef]
- Fakcharoenphol, P.; Torcuk, M.; Bertoncello, A.; Kazemi, H.; Wu, Y.S.; Wallace, J.; Honarpour, M. Managing shut-in time to enhance gas flow rate in hydraulic fractured shale reservoirs: A simulation study. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–2 October 2013. [Google Scholar]
- Meng, M.; Ge, H.; Ji, W.; Wang, X. Research on the auto-removal mechanism of shale aqueous phase trapping using low field nuclear magnetic resonance technique. J. Petrol. Sci. Eng. 2016, 137, 63–73. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Wang, X.; Li, Y.; Wu, K.; Shi, J.; Yang, L.; Feng, D.; Zhang, T.; Yu, P. Water distribution characteristic and effect on methane adsorption capacity in shale clay. Int. J. Coal Geol. 2016, 159, 135–154. [Google Scholar]
- Wang, L.; Wang, D.; Cai, C.; Li, N.; Yang, M. Effect of water occupancy on the excess adsorption of methane in montmorillonites. J. Nat. Gas Sci. Eng. 2020, 80, 103393–103400. [Google Scholar] [CrossRef]
- Curtis, J.B. Fractured shale-gas systems. AAPG Bull. 2002, 86, 1921–1938. [Google Scholar]
- He, X.; Zhang, P.; Fand, D.; Mei, J.; He, G.; Lu, B. Production characteristics of normal pressure shale gas in Pengshui-Wulong area, southeast Chongqing. Pet. Geol. Recovery Effic. 2018, 25, 72–79. [Google Scholar]
- Yuan, W.; Pan, Z.; Li, X.; Yang, Y.; Zhao, C.; Connell, L.D.; Li, S.; He, J. Experimental study and modelling of methane adsorption and diffusion in shale. Fuel 2014, 117, 509–519. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, H.; Liu, G.; Shen, Y.; Huang, Z. Experimental study of fracturing fluid retention in rough fractures. Geofluids 2019, 2019, 2603296. [Google Scholar] [CrossRef]
- McClure, M. The potential effect of network complexity on recovery of injected fluid following hydraulic fracturing. In Proceedings of the SPE USA Unconventional Resources Conference, The Woodlands, TX, USA, 1–3 April 2014. [Google Scholar]
- Ehlig-Economides, C.A.; Economides, M.J. Water as proppant. In Proceedings of the SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 30 October–2 November 2011. [Google Scholar]
- Yang, B.; Zhang, H.; Kang, Y.; You, L.; She, J.; Wang, K.; Chen, Z. In situ sequestration of a hydraulic fracturing fluid in Longmaxi shale gas formation in the Sichuan Basin. Energ. Fuel. 2019, 33, 6983–6994. [Google Scholar] [CrossRef]
- You, L.; Zhang, N.; Kang, Y.; Xu, J.; Cheng, Q.; Zhou, Y. Zero Flowback Rate of Hydraulic Fracturing Fluid in Shale Gas Reservoirs: Concept, Feasibility, and Significance. Energ. Fuel. 2021, 35, 5671–5682. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Liu, D.; Yang, C.; Yang, Z.; Li, H.; Tang, Z. Experimental study of shale-fluids interaction during oxidative dissolution with hydrogen peroxide, sodium hypochlorite and sodium persulfate. Appl. Geochem. 2020, 113, 104503. [Google Scholar] [CrossRef]
- Yang, S.; Liu, D.; Li, Y.; Yang, C.; Yang, Z.; Chen, X.; Li, H.; Tang, Z. Experimental study on the oxidative dissolution of carbonate-rich shale and silicate-rich shale with H2O2, Na2S2O8 and NaClO: Implication to the shale gas recovery with oxidation stimulation. J. Nat. Gas Sci. Eng. 2020, 76, 103207. [Google Scholar] [CrossRef]
- Liang, X.; Sheng, J.J. Comparison of Chemical-Induced Fracturing by Na2S2O8, NaClO, and H2O2 in Marcellus Shale. Energ. Fuel. 2020, 34, 15905–15919. [Google Scholar] [CrossRef]
- Liang, X.; Sheng, J.J.; Liu, K. Acidic and oxidation reactions of Marcellus shale with Na2S2O8. J. Petrol. Sci. Eng. 2021, 200, 108382–108395. [Google Scholar] [CrossRef]
- Hull, K.L.; Jacobi, D.; Abousleiman, Y. Oxidative kerogen degradation: A potential approach to hydraulic fracturing in unconventionals. Energy Fuel 2019, 33, 4758–4766. [Google Scholar] [CrossRef]
- You, L.; Zhou, Y.; Kang, Y.; Cheng, Q.; Zhang, N. Experimental evaluation of oxidation sensitivity in organic-rich shale reservoir. J. Petrol. Sci. Eng. 2020, 192, 107230. [Google Scholar] [CrossRef]
- Cheng, Q.; You, L.; Kang, Y.; Zhou, Y.; Zhang, N. Oxidation reaction kinetic of organic-rich shale by hydrogen peroxide (H2O2) and its positive effects on improving fracture conductivity. J. Nat. Gas Sci. Eng. 2021, 89, 103875–103888. [Google Scholar] [CrossRef]
- Cheng, Q.; You, L.; Kang, Y.; Zhang, N.; Zhou, Y. Experimental investigation into the oxidative dissolution of organic matter in typical organic-rich shale from China. Mar. Petrol. Geo. 2021, 130, 105117–105127. [Google Scholar] [CrossRef]
- You, L.; Cheng, Q.; Kang, Y.; Chen, Q.; Dou, L.; Zhou, Y. Imbibition of Oxidative Fluid into Organic-Rich Shale: Implication for Oxidizing Stimulation. Energ. Fuel. 2018, 32, 10457–10468. [Google Scholar] [CrossRef]
- McCurdy, R. High rate hydraulic fracturing additives in non-Marcellus unconventional shales. In Proceedings of the Technical Workshops for the Hydraulic Fracturing Study: Chemical & Analytical Methods; United States Environmental Protection Agency: Washington, DC, USA, 2011; pp. 17–21. [Google Scholar]
- Morsy, S.; Hetherington, C.J.; Sheng, J.J. Effect of low-concentration HCl on the mineralogy, physical and mechanical properties, and recovery factors of some shales. J. Unconv. Oil Gas Resour. 2015, 9, 94–102. [Google Scholar] [CrossRef]
- Fontaine, J.S.; Johnson, N.J.; Schoen, D. Design, Execution, and Evaluation of a Typical Marcellus Shale Slickwater Stimulation: A Case History. In Proceedings of the SPE Eastern Regional/AAPG Eastern Section Joint Meeting, Pittsburgh, PA, USA, 11–15 October 2008. [Google Scholar]
- Lv, Z.; Wang, L.; Deng, S.; Chong, K.K.; Wang, Q.; Dumesnil, J. Sichuan Basin Longmaxi shale gas stimulation and completion case study. In Proceedings of the SPE Unconventional Resources Conference and Exhibition-Asia Pacific, Brisbane, Australia, 11–13 November 2013. [Google Scholar]
- Zeng, Y.; Chen, Z.; Bian, X. Breakthrough in staged fracturing technology for deep shale gas reservoirs in se sichuan basin and its implications. Nat. Gas Ind. 2016, 3, 45–51. [Google Scholar] [CrossRef]
- Grieser, W.V.; Wheaton, W.E.; Magness, W.D.; Blauch, M.E.; Loghry, R. Surface reactive fluid’s effect on shale. In Production and operations symposium. In Proceedings of the Production and Operations Symposium, Oklahoma City, OK, USA, 31 March–3 April 2007. [Google Scholar]
- Cash, R.J.; Zhu, D.; Huill, A.D. Acid fracturing carbonate-rich Shale: A feasibility investigation of Eagle Ford formation. In Proceedings of the SPE Asia Pacific Hydraulic Fracturing Conference, Beijing, China, 24–28 August 2016. [Google Scholar]
- Li, C. Calculation formula of rock fracture pressure under perforation completion condition. Oil Drill. Prod. Technol. 2002, 24, 37–38. [Google Scholar]
- Tuǧrul, A. The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey. Eng. Geol. 2004, 75, 215–227. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, J.; He, E.; Lu, L.; Wang, H. Development of the coupled elastoplastic damage constitutional model of acidized shale gas formation based on experimental study. J. Geophys. Eng. 2019, 16, 332–344. [Google Scholar] [CrossRef]
- Zhao, X.; He, E.; Guo, J.; Zhu, H.; Wang, H.; He, W. The study of fracture propagation in pre-acidized shale reservoir during the hydraulic fracturing. J. Petrol. Sci. Eng. 2020, 184, 106488. [Google Scholar] [CrossRef]
- Qiao, L.; Liu, J.; Feng, X. Study on damage mechanism of sand stone under hydro-physic-chemical effects. Chin. J. Rock Mech. Eng. 2007, 26, 2117–2124. [Google Scholar]
- Han, T.; Chen, Y.; Shi, J.; Yu, C.; He, M. Experimental study of mechanical characteristics of sandstone subjected to hydrochemical erosion. Chin. J. Rock Mech. Eng. 2013, 32 (Suppl. S2), 3064–3072. [Google Scholar]
- Ling, S.X.; Wu, X.Y.; Sun, C.W.; Liao, X.; Ren, Y.; Li, X.N. Experimental study of chemical damage and mechanical deterioration of black shale due to water-rock chemical action. J. Exp. Mech. 2016, 31, 511–524. [Google Scholar]
- Liu, Y. Damage Evolution and Rheological Behavior of Deep Rock Mass under Water-Rock Interaction. Ph.D. Thesis, Central South University, Changsha, China, 2012. [Google Scholar]
- Chen, Q. Swelling-Induced Fracturing of Organic-Rich Shales in the Replacement of Calcite/Dolomite by Calcium Sulfate. Ph.D. Thesis, Southwest Petroleum University, Chengdu, China, 2018. [Google Scholar]
- Liu, K.; Sheng, J.J. Experimental study of the effect of stress anisotropy on fracture propagation in Eagle Ford shale under water imbibition. Eng. Geol. 2019, 249, 13–22. [Google Scholar] [CrossRef]
- Yang, B. Study on Initiation and Propagation Behavior of Shale Fractures Induced by Water Imbibition. Ph.D. Thesis, Southwest Petroleum University, Chengdu, China, 2018. [Google Scholar]
- Meng, M.; Ge, H.; Ji, W.; Shen, Y.; Su, S. Monitor the process of shale spontaneous imbibition in co-current and counter-current displacing gas by using low field nuclear magnetic resonance method. J. Nat. Gas Sci. Eng. 2015, 27, 336–345. [Google Scholar] [CrossRef]
- Meng, M.; Ge, H.; Shen, Y.; Li, L.; Tian, T.; Chao, J. The effect of clay-swelling induced cracks on shale permeability during liquid imbibition and diffusion. J. Nat. Gas Sci. Eng. 2020, 83, 103514–103529. [Google Scholar] [CrossRef]
- Bostrom, N.; Chertov, M.; Pagels, M.; Willberg, D.; Chertova, A.; Davis, M.; Zagorski, W. The time-dependent permeability damage caused by fracture fluid. In Proceedings of the SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, LA, USA, 26–28 February 2014. [Google Scholar]
- Cheng, Q.; You, L.; Kang, Y.; Zhou, Y.; Xu, J. Effect of oxidative dissolution on water spontaneous imbibition in shale gas reservoirs. Chin. J. Pet. Geol. Recovery Effic. 2020, 27, 94–103. [Google Scholar]
- You, L.; Cheng, Q.; Kang, Y.; Tian, J.; Yang, B. Experimental study on spontaneous water imbibition in fracture networks of shale rocks. J. China Univ. Pet. 2018, 42, 82–89. [Google Scholar]
- Yang, L.; Ge, H.; Shi, X.; Cheng, Y.; Zhang, K.; Chen, H.; Zhang, K.; Chen, H.; Shen, Y.; Zhang, J.; et al. The effect of microstructure and rock mineralogy on water imbibition characteristics in tight reservoirs. J. Nat. Gas Sci. Eng. 2016, 34, 1461–1471. [Google Scholar] [CrossRef]
- Kennedy, M.J.; Pevear, D.R.; Hill, R.J. Mineral surface control of organic carbon in black shale. Science 2002, 295, 657–660. [Google Scholar] [CrossRef]
- Bergamaschi, B.A.; Tsamakis, E.; Keil, R.G.; Eglinton, T.I.; Montluçon, D.B.; Hedges, J.I. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments. Geochim. Cosmochim. Acta 1997, 61, 1247–1260. [Google Scholar] [CrossRef]
- Cai, J.; Song, M.; Lu, L.; Bao, Y.; Ding, F.; Xu, J. Organo-clay complexes in source rocks—A natural material for hydrocarbon generation. Chin. J. Mar. Geol. Quat. Geol. 2013, 33, 123–131. [Google Scholar] [CrossRef]
- You, L.; Xu, J.; Kang, Y.; Cheng, Q.; Zhou, Y. Water absorption of organic shale with oxidation. J. Southwest Pet. Univ. 2019, 41, 106. [Google Scholar]
- Teklu, T.W.; Abass, H.H.; Hanashmooni, R.; Carratu, J.C.; Ermila, M. Experimental investigation of acid imbibition on matrix and fractured carbonate rich shales. J. Nat. Gas Sci. Eng. 2017, 45, 706–725. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, S.; Yang, L.; Ma, X.; Zou, Y.; Lin, H. Experimental investigation on fracture surface strength softening induced by fracturing fluid imbibition and its impacts on flow conductivity in shale reservoirs. J. Nat. Gas Sci. Eng. 2016, 36, 893–905. [Google Scholar] [CrossRef]
- Ambrose, R.J.; Hartman, R.C.; Diaz-Campos, M.; Akkutlu, I.Y.; Sondergeld, C.H. Shale Gas-in-Place Calculations Part I: New Pore-Scale Considerations. SPE J. 2012, 17, 219–229. [Google Scholar] [CrossRef]
- Shabani, M.; Moallemi, S.A.; Krooss, B.M.; Amann-Hildenbrand, A.; Zamani-Pozveh, Z.; Ghalavand, H.; Littke, R. Methane sorption and storage characteristics of organic-rich carbonaceous rocks, Lurestan province, southwest Iran. Int. J. Coal Geol. 2018, 186, 51–64. [Google Scholar] [CrossRef]
- Zhang, T.; Ellis, G.S.; Ruppel, S.C.; Milliken, K.; Yang, R. Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org. Geochem. 2012, 47, 120–131. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Bustin, R.M. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Petrol. Geo. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Zhu, X.J.; Cai, J.G.; Wang, X.J.; Zhang, J.Q.; Xu, J.L. Effects of organic components on the relationships between specific surface areas and organic matter in mudrocks. Int. J. Coal Geol. 2014, 133, 24–34. [Google Scholar] [CrossRef]
- Xiong, J.; Liu, X.; Liang, L.; Zeng, Q. Adsorption of methane in organic-rich shale nanopores: An experimental and molecular simulation study. Fuel 2017, 200, 299–315. [Google Scholar] [CrossRef]
- Xiong, J.; Liu, X.; Liang, L.; Zeng, Q. Methane adsorption on carbon models of the organic matter of organic-rich shales. Energ. Fuel. 2017, 31, 1489–1501. [Google Scholar] [CrossRef]
- Kuila, U.; McCarty, D.K.; Derkowski, A.; Fischer, T.B.; Topór, T.; Prasad, M. Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mudrocks. Fuel 2014, 135, 359–373. [Google Scholar] [CrossRef]
- Li, J.; Zhou, S.X.; Li, Y.J.; Ma, Y.; Yang, Y.N.; Li, C.C. Effect of organic matter on pore structure of mature lacustrine organic-rich shale: A case study of the Triassic yanchang shale, ordos basin, China. Fuel 2016, 185, 421–431. [Google Scholar] [CrossRef]
- Chen, M.; Kang, Y.; Zhang, T.; You, L.; Li, X.; Chen, Z.; Wu, K.; Yang, B. Methane diffusion in shales with multiple pore sizes at supercritical conditions. Chem. Eng. J. 2018, 334, 1455–1465. [Google Scholar] [CrossRef]
- Jing, Z.; Mahoney, S.A.; Rodrigues, S.; Balucan, R.D.; Underschultz, J.; Esterle, J.S.; Rufford, T.E.; Steel, K.M. A preliminary study of oxidant stimulation for enhancing coal seam permeability: Effects of sodium hypochlorite oxidation on subbituminous and bituminous Australian coals. Int. J. Coal Geol. 2018, 200, 36–44. [Google Scholar] [CrossRef]
- Jing, Z.; Balucan, R.D.; Underschultz, J.R.; Steel, K.M. Oxidant stimulation for enhancing coal seam permeability: Swelling and solubilisation behavior of unconfined coal particles in oxidants. Fuel 2018, 221, 320–328. [Google Scholar] [CrossRef]
- Chen, M.; Lu, Y.; Kang, Y.; You, L.; Chen, Z.; Liu, J.; Li, P. Investigation of enhancing multi-gas transport ability of coalbed methane reservoir by oxidation treatment. Fuel 2020, 278, 118377–118388. [Google Scholar] [CrossRef]
- Lu, Y.; Kang, Y.L.; Chen, M.J.; Tu, Y.; You, L.; Li, X. Response of multi-scale mass transport to oxidation treatment in subbituminous coalbed methane reservoir. J. Nat. Gas Sci. Eng. 2020, 78, 103315–103328. [Google Scholar] [CrossRef]
- Lu, Y.; Kang, Y.; Chen, M.; You, L.; Tu, Y.; Liu, J. Investigation of oxidation and heat treatment to improve mass transport ability in coals. Fuel 2021, 283, 118840–118856. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, J.; Cutler, J.; Royce, T.; Nelson, S.; Qu, Q. Field Case Histories of a Non-Damaging Guar Alternative for Linear Gel Application in Slickwater Fracturing. In Proceedings of the SPE European Formation Damage Conference & Exhibition. Noordwijk, The Netherlands, 5–7 June 2013. [Google Scholar]
- Lin, X.; Zhang, S.; Wang, Q.; Feng, Y.; Shuai, Y. Improving the fracturing fluid loss control for multistage fracturing by the precise gel breaking time design. J. Nat. Gas Sci. Eng. 2015, 25, 367–370. [Google Scholar] [CrossRef]
- Gao, S.; Hu, Z.; Guo, W.; Zuo, L.; Shen, R. Water absorption characteristics of gas shale and the fracturing fluid flowback capacity. Nat. Gas Ind. 2013, 33, 71–76. [Google Scholar]
- King, G. Hydraulic fracturing 101: What every representative, environmentalist, regulator, reporter, investor, university researcher, neighbor and engineer should know about estimating frac risk and improving frac performance in unconventional gas and oil wells. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 6–8 February 2012. [Google Scholar]
- Alkouh, A.; McKetta, S.; Wattenbarger, R.A. Estimation of Effective Fracture Volume Using Water Flowback and Production Data for Shale Gas Wells. In Proceedings of the SPE Annual Techinical Conference and Exhibition, New Orleans, LA, USA, 30 September–2 October 2013. [Google Scholar]
- Pagels, M.; Hinkel, J.J.; Willberg, D.M. Measuring capillary pressure tells more than pretty pictures. In Proceedings of the SPE International Symposium and Exhibition on Formation Damage Control, Lafayette, LA, USA, 15–17 February 2012. [Google Scholar]
- Chen, Q.; You, L.; Kang, Y.; Dou, L.; Sheng, J.J. Gypsum-crystallization-induced fracturing during shale–fluid reactions and application for shale stimulation. Energ. Fuel. 2018, 32, 10367–10381. [Google Scholar] [CrossRef]
- You, L.; Kang, Y.; Zhou, Y.; Chen, Q.; Cheng, Q.; Xu, J.; Chen, Y. Concept, mechanism and significant of oxidation sensitivity of oil and gas reservoirs. Acta Petrolei Sinica 2021, 42, 186–197. [Google Scholar]
Sample ID | Diameter, mm | Length, mm | Experimental Fluids | Confined Pressure, MPa | Elastic Modulus, MPa | Compressive Strength, MPa | Poisson Ratio |
---|---|---|---|---|---|---|---|
1-A | 25 | 48.5 | Distilled water | 30 | 28,289 | 267 | 0.37 |
1-B | 25 | 48.0 | 10 wt.% H2O2 | 30 | 19,756 | 213 | 0.35 |
2-A | 25 | 49.0 | Distilled water | 30 | 26,627 | 238 | 0.30 |
2-B | 25 | 47.0 | 5 wt.% NaClO | 30 | 26,246 | 197 | 0.22 |
3-A | 25 | 49.0 | Distilled water | 10 | 27,660 | 278 | 0.15 |
3-B | 25 | 47.5 | 20 | 26,498 | 294 | 0.27 | |
4-A | 25 | 49.0 | 10 wt.% H2O2 | 10 | 28,372 | 266 | 0.24 |
4-B | 25 | 48.0 | 20 | 25,633 | 267 | 0.28 | |
5-A | 25 | 48.5 | 5 wt.% NaClO | 10 | 27,353 | 275 | 0.19 |
5-B | 25 | 48.5 | 20 | 22,424 | 192 | 0.10 |
Stage | Application | Function and Mechanism | Oxidants | |
---|---|---|---|---|
Exploration | Kerogen analysis | Selective oxidation | Dissolution | Ruthenium ion (Ru8+), Potassium permanganate (KMnO4) |
Clay mineral analysis | Remove OM | Dissolution | H2O2 | |
Exploitation | Drilling | Drilling with superheated steam | Generate high temperature | H2O2 |
Completion | Eliminate the filter cake | Dissolution | Highly active oxidant like WF-O etc. | |
Broken down | Dissolution and Bactericide | Chlorine dioxide (ClO2), H2O2 | ||
Formation stimulation | Remove formation damage | Generate high temperature | H2O2 | |
Fracturing | Generate high pressure | H2O2 | ||
Dissolution | ClO2 | |||
Gel breaking | Ammonium persulfate ((NH4)2S2O8) | |||
Enhance oil and gas recovery | Water flooding | Dissolution | ClO2 | |
Air flooding | Generate high temperature | Oxygen (O2) | ||
Thermal oil recovery | Generate high temperature | H2O2 | ||
Environmental protection | Wastewater treatment | Dissolution and Bactericide | KMnO4, Ozone (O3), ClO2, Sodium hypochlorite (NaClO), and Fenton reaction (H2O2/Fe2+) |
Type of Shale Gas Wells | Flowback Efficiency of Fracturing Fluid | Engineering Characteristics of Shale Formations | Target of Oxidizing Stimulation | Mechanism of Oxidizing Stimulation | Application of Oxidative Fluids | Shut-in Strategy |
---|---|---|---|---|---|---|
LGP-HFR | >30% | (1) Poor hydraulic fracturing performance; (2) Poor water retention capacity. | Formation stimulation: increase the density of fracture networks. | (1) Reduce rock fracture pressure, promoting fracture initiation and propagation; (2) Promote gas desorption and diffusivity. | Injection of oxidative fluids into all the pumped fracturing fluids. | (1) Shut-in immediately after the fracturing operation; (2) Flowback operation once the fluid pressure in the fracture drops to the minimum horizontal principal stress of the formation. |
HGP-LFR (I) | <30% and >10% | (1) Good hydraulic fracturing performance; (2) Good water retention capacity. | Formation damage control: improve the conductivity of fracture networks. | (1) Promote proppant migration and distribution; (2) Reduce stress dependence of unpropped fractures; (3) Promote auto removal of aqueous phase trapping; (4) Promote gas desorption and diffusivity. | Injection of oxidative fluids into the partially pumped fracturing fluids. | Fast flowback and then production after the fracturing operation followed the conventional shut-in strategy. |
HGP-LFR (II) | <10% | (1) Great hydraulic fracturing performance; (2) Great water retention capacity. | Injection of oxidative fluids into all the pumped fracturing fluids. | (1) Shut-in immediately after the fracturing operation; (2) Well open and production once the fluid pressure in the fracture drops to the minimum horizontal principal stress of the formation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Q.; You, L.; Jia, N.; Kang, Y.; Chang, C.; Xie, W. New Insight into Enhancing Organic-Rich Shale Gas Recovery: Shut-in Performance Increased through Oxidative Fluids. Energies 2023, 16, 4325. https://doi.org/10.3390/en16114325
Cheng Q, You L, Jia N, Kang Y, Chang C, Xie W. New Insight into Enhancing Organic-Rich Shale Gas Recovery: Shut-in Performance Increased through Oxidative Fluids. Energies. 2023; 16(11):4325. https://doi.org/10.3390/en16114325
Chicago/Turabian StyleCheng, Qiuyang, Lijun You, Na Jia, Yili Kang, Cheng Chang, and Weiyang Xie. 2023. "New Insight into Enhancing Organic-Rich Shale Gas Recovery: Shut-in Performance Increased through Oxidative Fluids" Energies 16, no. 11: 4325. https://doi.org/10.3390/en16114325
APA StyleCheng, Q., You, L., Jia, N., Kang, Y., Chang, C., & Xie, W. (2023). New Insight into Enhancing Organic-Rich Shale Gas Recovery: Shut-in Performance Increased through Oxidative Fluids. Energies, 16(11), 4325. https://doi.org/10.3390/en16114325