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Abstract

:

The efficiency of Ni/TiO2 catalysts for renewable diesel production was evaluated in the present study. Two series of catalysts were synthesized and characterized using various physicochemical techniques (N2 physisorption, XRD, SEM, XPS, H2-TPR, and NH3–TPD). In the first series of catalysts, successive dry impregnations (SDI) were used for depositing 10, 20, 30, 50, and 60 wt.% Ni. The yield towards renewable diesel is maximized over the catalyst with 50 wt.% Ni loading. Selecting this optimum loading, a second series of catalysts were synthesized via three additional preparation methods: wet impregnation (WI) and deposition–precipitation using either ammonia (DP-NH3) or urea (DP-Urea) as the precipitation agent. The catalysts’ efficiency in the production of green diesel is influenced by the preparation method following the order: DP-Urea > DP-NH3 > WI ≈ SDI. The metallic surface area and the balanced acidity mainly determine the performance of the catalysts.
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1. Introduction


The widespread use of fossil fuels is the main cause of the energy and environmental crisis that our planet is facing. A potential remedy would be to replace them with biomass and other sustainable energy sources [1]. In fact, biofuels produced from biomass is a good substitute that also helps to lessen the disparity in energy output among the various regions. Since the ratio of oxygen to carbon and hydrogen atoms in the biomass triglyceride molecules is lower than that in other categories of biomass, vegetable oils, micro-algal oils, waste cooking oils, and animal fats make up a particularly appealing group of biomass. Indeed, the carbon chains of triglyceride biomass are comparable to the hydrocarbons found in petro-diesel [2].



Natural triglycerides, however, cannot be utilized as fuels for modern vehicles directly. They have to be upgraded. The most popular method is via transterification into fatty acid methyl esters to produce biodiesel [3]. However, significant issues with biodiesel’s production, storage, and use prevent it from being used in mixes with petro-diesel at more than 20% [4]. These issues necessitate extensive research into alternative methods of upgrading natural triglycerides. The selective deoxygenation (SDO) method is a promising new technology [5,6,7]. This method effectively removes oxygen while avoiding the fragmentation of triglyceride side chains. It occurs at moderate temperatures (240–360 °C) and H2 pressures (10–80 bar) following three distinct reactions shown in Scheme 1: decarboxylation (deCO2), decarbonylation (deCO), and hydrodeoxygenation (HDO). As a result, C15–C18 n-alkanes are synthesized and this is what is called green or renewable diesel.



The mechanism of the SDO process (Scheme S1) is well documented [6,8]. In summary, the double bonds on triglyceride side chains are rapidly hydrogenated and subsequently hydrolyzed to form free fatty acids (FFAs). The latter might be reduced to aldehydes or decarboxylated to hydrocarbons with one fewer carbon atom (deCO2). Aldehydes might be decarbonylated to produce hydrocarbons with one fewer carbon atom (deCO) or reduced to the equivalent alcohols. These alcohols may be esterified with FFAs to form esters of high molecular weight or hydrodeoxygenated to form hydrocarbons containing the same amount of carbon atoms (HDO). The heavy esters may also react slowly through the SDO process. It should be noted that in the SDO network, the deCO pathway takes precedence over nickel catalysts.



At the industrial scale, the production of green diesel from natural triglycerides is performed through either co-processing with petroleum fractions [9,10,11,12,13,14,15] or stand-alone processing [16]. In the stand-alone approach, which is more environmentally friendly, noble-metal-supported catalysts have been proven to be quite efficient but economically problematic for industrial applications [17,18,19,20,21]. Typical sulfide hydrotreatment catalysts [22,23,24] are particularly reactive and selective, but they necessitate the addition of a sulfur component to the reaction mixture. This makes the process more complex and increases the likelihood of sulfur contamination in the end products [25,26].



In light of the above, several research efforts have gradually switched to the creation of less expensive and more efficient metallic nickel-based catalysts (non-sulfide) [25]. The study and development of such catalysts, which have been examined by our group [8] as well as other research teams [6,27], is still ongoing. It has been demonstrated that metallic nickel catalysts primarily accelerate decarbonylation/decarboxylation (deCOx) pathways.



The SDO efficiency of the metallic Ni catalysts is determined by two important factors. The first is the demand for a high active surface of nickel in the supported catalyst, which can be achieved by a high nickel loading combined with a support exhibiting a high surface area. The support selection is the second important factor. Research has been performed on various supports for the SDO of fatty molecules [6,28,29,30,31]. It is necessary for the support to have quite a large surface area in order for the nickel nanoparticles to be satisfactorily dispersed. Moreover, the support should be characterized by a moderate acidity, which both promotes SDO and avoids cracking [8]. Titania is expected to satisfy these requirements while remaining a stable substrate under the harsh conditions of the SDO process.



The majority of the nickel supported on titania catalysts described in the literature [32,33,34,35,36,37,38,39,40,41] concern catalysts with modest Ni loadings (up to 20%), which have been prepared using simple synthesis approaches, such as wet or dry impregnation. Furthermore, to the best of our knowledge, no research has been conducted on the effect of the preparation technique of Ni/TiO2 catalysts on their performance for the conversion of fatty molecules to biofuels.



In light of the above, a comprehensive study of natural triglyceride SDO compared with titania-supported Ni catalysts is performed in this work, with the goal of determining the optimal active phase loading and the best catalyst synthesis approach. The investigation was carried out in two parts. Firstly, Ni/TiO2 catalysts with Ni loadings between 0 and 60 wt.% were investigated. Using the optimal Ni content, the influence of the preparation method on the physicochemical properties and the catalytic efficiency was studied in the second part. Four methods of preparation were compared: successive dry impregnation (SDI), wet impregnation (WI), and deposition–precipitation (DP) at ambient and high temperatures.



The catalysts were studied using various characterization techniques and tested in a high-pressure semi-batch reactor for the SDO of sunflower oil (SO). It should be stressed that the present contribution differs significantly from the majority of those that appeared in the relevant bibliography in two ways, as the catalysts were evaluated in solvent-free conditions, and a very high oil volume to catalyst mass ratio was used. For a comparable investigation in a fixed bed reactor, these circumstances equate to an LHSV value of 11.1 h−1. They are very harsh when compared with the similar ones described in prior comparative research.



Finally, concerning the feedstock, three important factors led to the selection of SO. Firstly, SO is often utilized as a feed for biodiesel production in several countries. Therefore, in the frame of legislation about renewable energy, a sunflower-based approach is desirable and advantageous in terms of cost. Recent studies have indicated that green diesel might be a primary option for tackling the energy transition [42], and that green diesel production is economically favorable or cost-effective when compared with biodiesel production [43,44,45]. Secondly, although SO is an edible oil, nowadays, genetic engineering provides modified sunflower plants that can be cultivated on arid territories producing no food-grade SO [46]. Thirdly, sunflower seeds contain a high percentage of oil (approximately 50%).




2. Materials and Methods


2.1. Reagents and Materials


The following reagents were used in the catalyst synthesis: nickel nitrate (Ni(NO3)2 × 6H2O, Alfa Aesar, Tewksbury, MA, USA), ammonium hydroxide solution (NH4OH 30%, Riedel-de Haen, Charlotte, NC, USA), urea ((NH2)2CO, Duchefa Biochemie, Haarlem, The Netherlands), ethylenediamine (Sigma–Aldrich, St. Louis, MA, USA), acetone (Sigma–Aldrich) and distilled water. TiO2 (Alfa Aesar), in the anatase form, was the support. The sunflower oil was purchased locally. The details about its chemical composition and properties were disclosed previously [47]. Finally, details concerning the synthesis of the Ni(en)3(NO3)2 complex were recently reported [48].




2.2. Synthesis of the Catalysts


The first series of Ni/TiO2 catalysts, varying in nickel content, was synthesized following the SDI technique, using Ni(en)3(NO3)2 as the Ni precursor. The literature shows that such chelated nickel complexes lead to catalysts with very high dispersion of the supported particles [49,50,51,52]. The catalysts of this series are symbolized throughout the whole article as xNiTi SDI, where x denotes the nickel loading (wt.% Ni).



The catalysts of the second series, having the same amount of nickel content (50 wt.%) and differing in their preparation method, were synthesized through the following methodologies: wet impregnation (WI), deposition–precipitation at room temperature using ammonia as the precipitating agent (DP-NH3) and deposition–precipitation at high temperatures using urea as the precipitating agent (DP-Urea). It is well known that the DP technique permits the mounting of a significant quantity of active phase on the support while maintaining a low particle size [53,54,55]. Thus, we took advantage of the great experience our group has gained in recent years in the implementation of this technique [56,57,58,59], with the aim of synthesizing nickel catalysts on titania with a very high active surface. The catalysts of this series are symbolized, respectively, as 50NiTi WI, 50NiTi DP-NH3, and 50NiTi DP-Urea. Full experimental details about the synthesis protocol are included in Supplementary Materials. The quantities of materials used are listed in Table S1.




2.3. Activation of the Catalysts


The above-mentioned calcined catalysts were activated as follows. They were put in a fixed bed reactor and the temperature was raised at a rate of 10 °C/min under Ar (with a flow rate of 30 mL/min) up to 400 °C. They were then maintained at that temperature for 2.5 h under H2 (with a flow rate of 40 mL/min) to be reduced. They were cooled to room temperature after reduction and passivated by remaining in the reactor for 0.5 h, under 1% v/v O2 in the Ar stream (with a flow rate of 20 mL/min).




2.4. Characterization of the Catalysts


Various techniques were adopted for the characterization of the physicochemical properties of the catalysts. Nitrogen adsorption–desorption was used for the determination of specific surface area, pore volume, and pore size distribution of the catalysts. Microphotographs obtained with scanning electron microscopy (SEM) revealed the morphology of the catalysts. X-ray diffraction (XRD) was employed for the identification of the various crystal structures of the supported phase as well as the determination of the mean crystallite sizes. Using temperature programmed reduction with H2 (H2-TPR), the reduction profile of the catalysts was studied. Moreover, using temperature programmed desorption of ammonia (NH3-TPD), we studied the acidity of the catalysts (total acidity and various acid sites). X-ray photoelectron spectroscopy (XPS) was used for the surface analysis of the catalysts and the dispersion estimation. Full experimental details concerning the implementation of the above techniques have been recently reported [48].




2.5. Evaluation of the Catalysts


The catalysts’ efficiency in the conversion of SO to renewable diesel via SDO was evaluated in a semi-batch reactor (300 mL, Autoclave Engineers, Erie, PA, USA) in the absence of a solvent. Reaction conditions: temperature 310 °C, H2 pressure 40 bar, oil amount to catalyst weight 100 mL/1 g, and stirring rate 2000 rpm. After the addition of the catalyst and oil, the temperature was raised at a rate of 10 °C/min to the desired value, while argon (100 mL/min) was used for purging the reactor’s empty volume. Subsequently, the argon flow was replaced by a stream of hydrogen (100 mL/min), and the H2 pressure was kept at 40 bar for the 9 h of the reaction.



The collection of a liquid sample every one hour enabled continuous monitoring of the reaction. A gas chromatograph (Shimadzu GC-2010 plus, Kyoto, Japan) equipped with a flame ionization detector (FID) and the suitable column (ZB-5HT, INFERNO, ZEBRON, l = 30 m, d = 0.52 mm, tf = 0.10 μm) working in split mode (split ratio: 40) was used to evaluate the composition of the samples. The temperature pattern employed was as follows: 50 °C for 2.5 min, then increase to 180 °C at a rate of 10 °C/min; hold the temperature at 180 °C for one minute, then raise to 230 °C at a rate of 7 °C/min; hold the temperature at 230 °C for one minute, then raise to 390 °C at a rate 14 °C/min; and, finally, hold the temperature at 390 °C for 6 min. The injector temperature was 350 °C and that of the detector was 420 °C. The reactor liquid samples were diluted (1:20) with n-heptane. The latter also served as an external standard for quantification. The distinct liquid sample products were identified using a gas chromatograph–mass spectrometer (Shimadzu GCMS-QP2010 Ultra).





3. Results


3.1. Catalyst Characterization


Scanning electron microscopy was used to study the morphology of the catalysts. The corresponding micrographs presented in the Supplementary Materials (Figure S1) show that the preparation methods performed at room temperature (SDI and DP-NH3) result in spherical nanoparticles with a size of ~32 nm. However, increased preparation temperature leads to the formation of flake-like structures. More precisely, in the case of 50NiTi WI, both spherical nanoparticles and flake-like structures coexist (preparation temperature: 90 °C), while in the case of 50NiTi DP-Urea, only flake-like structures are formed (preparation temperature: 110 °C). The mechanism of the formation of such flake-like structures has been described in detail previously [60].



The catalysts’ texture was studied using N2-physisorption at liquid N2 temperature. The corresponding isotherms are shown in Figures S2 and S3. Figure 1 illustrates the pore size distribution curves of the catalysts studied. Inspection of this figure shows that the catalysts prepared via successive dry impregnation (Figure 1a) possess pores in the mesoporous region (1.7 nm < pore width < 50 nm). The deposition of the nickel phase on the titania surface decreases the population of mesopores, thus provoking a decrease in the specific surface area and pore volume (Table 1) as the nickel loading increases. Such behavior has been described several times in the literature [61,62]. In the catalysts with low nickel loadings (≤20 wt.%), a uniform distribution of nickel phase on the titania surface can be concluded by the similarity of the shape of the pore size distribution curves with that of bare TiO2. The uniform distribution of the nickel phase is also confirmed by the decrease in mean pore diameter values (Dp) presented in Table 1. At higher nickel loadings, the deposited nickel phase seems to block the shifting of small mesopores; thus, the maxima of the distribution curves towards larger values in accordance with the corresponding Dp values (Table 1).



In Figure 1b, the pore size distribution curves of the catalysts containing 50 wt.% nickel and prepared via four different preparation methods are illustrated. Following the traditional impregnation synthesis (50NiTi SDI and 50NiTi WI), an almost single-peaked distribution curve with the maxima at a pore width equal to 10 nm and a very small fraction of larger mesopores were observed. However, when a deposition precipitation method is adopted, the population of both kinds of mesopores increases, presenting multi-peak distribution curves (50NiTi DP-NH3 and 50NiTi DP-Urea). This phenomenon is more pronounced in the 50NiTi DP-Urea catalyst. In this case, the high population of the meso- and macropores appears; these are probably formed by the nickel phase being deposited onto the external surface of the TiO2 grains. Passing from the simplest preparation method (SDI) to a more complicated one (DP-Urea), a continues increase in SSA, PV, and Dp of the catalysts with 50 wt.% Ni is observed (Table 1). Thus, it is expected that the 50NiTi DP-Urea catalyst should be the most suitable for the SDO of SO to green diesel.



Figure 2 presents the XRD patterns of the catalysts studied. All catalyst patterns show reflections at 2θ: 25.20, 37.52, 38.46, 47.89, 53.76, 54.86, 62.47, and 75.80°, which are characteristic of the anatase phase of titania (JCPDS 96-900-9087). The peaks at 2θ: 44.38, 51.8, and 76.17° are attributed to the supported metallic nickel nanocrystals (JCPDS 04–0850) and those at 2θ: 37.1, 43.1, and 62.5° are characteristic of NiO crystals (JCPDS 65–2901).



Figure 2a shows that in the 10NiTi SDI and 20NiTi SDI catalysts, the metallic nickel (Ni0) is very well dispersed on the TiO2 surface (wide XRD peaks) and only minor amounts, if any, of NiO are formed. This observation confirms the corresponding conclusion drawn from the N2 physisorption study. At higher Ni loadings, the XRD peaks of the Ni0 phase become sharp and intensive showing an increase in the mean crystal size (DNi0). The corresponding values calculated using the Scherrer equation and the XRD peak at 2θ = 51.8° (Table 1) confirms the increase in DNi0 with Ni loading.



Figure 2b represents the XRD patterns of the Ni catalysts with 50 wt.% Ni loading prepared via various methods. When an impregnation method was used, only metallic nickel was detected. In contrast, in the catalysts prepared via the deposition–precipitation method, NiO is also detected. The fraction of the latter is higher in the case of the 50NiTi DP-Urea catalyst. These findings suggest that strong nickel phase–support interactions are exhibited in the catalysts prepared via the DP method, while these interactions become stronger when urea is used as the precipitating agent. The strong interactions enhance the dispersion of the Ni phase as it is confirmed by the diminution of DNi0 values (Table 1) in the order: 50NiTi SDI > 50NiTi WI > 50NiTi DP-NH3 > 50NiTi DP-Urea.



Figure 3 presents the H2–TPR profiles of the calcined samples studied. As can be seen from Figure 3a, where the reduction profiles of the TiO2 support and the catalyst precursor samples (calcined) prepared via SDI are presented, the support does not show a significant H2 consumption up to 950 °C. However, the literature shows that a broad low-intensity reduction peak centered at ∼570 °C is usually observed and is attributed to a reduction in the surface Ti+4 to Ti+3 [63,64]. In contrast, the nickel-containing samples consume H2 because of the reduction in the NiO phase. This consumption increases with the Ni loading. The reduction in the NiO in the 10NiTi SDI sample begins at about 270 °C and its TPR profile appears at a main reduction peak centered at about 340 °C, followed by a wide reduction area up to temperatures higher than 600 °C. This reduction behavior indicates that various NiO species strongly interacting with the support surface were formed upon catalyst preparation [65]. According to the literature [66], at low Ni loadings (up to 10 wt.%), nickel reacts with the TiO2 surface forming non-stoichiometric NiTiOx compounds, which are responsible for high Ni dispersion and catalyst stability. In the 20NiTi SDI sample, the reduction begins at lower temperature (~250 °C) and in the corresponding TPR profile two main peaks appear with maxima at 300 and 340 °C, as well as the aforementioned wide reduction area. This finding indicates that part of the NiO weakly interacts with the support surface as the catalyst Ni loading increases from 10 to 20 wt.% [65]. The appearance of the wide reduction region at high temperatures in both samples explains the existence of NiO detected via XRD as the corresponding catalysts were activated at 400 °C. A further increase in Ni loading (30–60 wt.%) leads to an increase in the fraction of the easily reduced NiO species weakly interacting with the support surface and the disappearance of the species with very strong interaction with the TiO2 surface. In these cases, the activation temperature of 400 °C seems to be appropriate for complete reduction in NiO, as confirmed by the XRD results (Figure 2a). The reduction in the interaction strength between the NiO and the TiO2 surface with the Ni loading drawn by the H2-TPR study also explains the reduction in the Ni dispersion (increase in DNi0 values, Table 1) induced from the XRD data.



As seen in Figure 3b, the preparation method has a significant effect on the H2-TPR profiles. The precursor catalysts synthesized via impregnation (SDI and WI) are easily reduced, exhibiting a peak at temperatures lower than 300 °C [65]. This shows that a weak interaction is exerted between the NiO and the TiO2 surface. When a DP preparation method is applied, the NiO species reduction becomes more difficult, especially when urea is used as the precipitation agent. These results indicate that stronger “supported phase–support” interactions are created in the latter cases provoking high Ni dispersion, which is in agreement with the XRD results.



It is well known that the acidity of bifunctional SDO catalysts is a key factor for their performance upon triglyceride hydrotreatment. More precisely, Wang et al. [67] proved a synergy between the acid sites and metallic nickel sites for methyl laurate hydrodeoxygenation to hydrocarbons. On the other hand, it is widely accepted that high acidity favors fragmentation of the side chains of triglycerides shifting the process from the SDO to hydrocracking [8] and coke formation on the catalyst surface [68]. Thus, a balanced catalyst acidity is required for obtaining an efficient SDO catalyst. In order to evaluate the catalysts’ acidity in the present study, NH3-TPD experiments were conducted (Figure 4). The corresponding curves show three main NH3 desorption peaks at low (~150 °C), medium (~300 °C), and high (~550 °C) temperatures attributed to weak, moderate, and strong acid sites, respectively [67]. Figure 4a shows the NH3-TPD curves recorded over the SDI catalysts and TiO2 support. The total acid sites and the population of each kind of site were calculated via deconvolution of these curves and are provided in Table S2. An inspection of the corresponding curves and Table S2 reveals that the Ni catalysts exhibit all the kinds of acid sites mentioned above. In contrast, bare TiO2 has a lack of moderate acid sites. It is also important to note that Ni deposition on the titania surface reduces the population of strong acid sites, while total acidity is remarkably reduced at high Ni loadings. Based on this finding, the high Ni-loading catalysts are expected to be quite efficient for the SDO of SO.



Figure 4b shows that the preparation method influences the acidity of the prepared catalysts. Although catalysts prepared via DP methods exhibit slightly higher total acidity than those prepared via impregnation ones, their acidity remains balanced (Table S2). The 50NiTi DP-Urea catalyst possesses the highest density of acid sites among the catalysts with 50 wt.% Ni.



Surface analysis of the catalysts with 50 wt.% Ni was performed using XPS. Figure 5 shows representative deconvoluted XPS spectra of Ni2p (Figure 5a) and non-deconvoluted Ti2p (Figure 5b) levels recorded over the 50NiTi DP-Urea catalyst. The Ni2p peak revealed three components, Ni0, NiO at binding energies of Ni2p3/2 at 852.7 ± 0.1 eV and 852.3 ± 0.1 eV, respectively, [59] and NiTiO3 deduced from the broader feature at binding energy 856.1 ± 0.1 eV [69]. The Ti2p spectrum consists of a double peak with a spin orbit splitting of 5.75 eV and the binding energy of Ti2p3/2 is at 458.8 ± 0.1 eV assigned to Ti4+. The component peaks are broader than those expected for TiO2 indicating a second chemical state at lower binding energy, correlated with the NiTiO3 [70]. Using the intensities of Ni2p and Ti2p peaks, the surface atomic ratios of 50NiTi catalysts were calculated (Table 1). These values were found to be in agreement with the SNi0 values calculated from XRD results.




3.2. Catalyst Evaluation


The SDO performance of the catalysts was evaluated using refined SO, as feedstock, in a high-pressure (4 MPa) semi-batch reactor fed with H2 (100 mL/min), at 310 °C for 9 h, under solvent-free conditions. A representative chromatographic analysis of the liquid product is given in Figure S4. The main components were green diesel (n-alkanes: n-C15–n-C18), acids (mainly, palmitic and stearic), esters (methyl-, propyl-, palmitic-, and stearic-stearate), and unconverted SO. In addition, small quantities of 2-decaoxy-ethyl stearate, distearine, and 1-decaoctanol were found. The production of the aforementioned molecules is in agreement with the SDO mechanistic scheme (Scheme S1) proposed in the literature for the metallic nickel catalysts [56,57,58,59,59,71,72,73,74]. The absence of low molecular weight liquid products confirms that hydrocracking does not take place over the catalysts studied.



The quantitative composition of the liquid phase obtained is presented in Figure 6. This figure shows the influence of Ni loading and the synthesis method on the liquid product composition. Under the reaction conditions adopted, bare titania converts the SO (42%) into free fatty acids (FFAs: 36%), esters (6%), and n-alkanes in the diesel range at a negligible amount (~1%). The latter are only produced over the Ni-containing catalysts. An increase in the Ni loading leads to an increase in the SO conversion. The n-alkanes yield increases with the Ni content of the catalyst up to 30 wt.% Ni, remaining almost unchanged at higher loadings. This behavior can be attributed to the catalyst characteristics presented above. More precisely, as can be seen in Figure 7, the n-alkanes yield increases linearly with the nickel surface area (SNi0) reaching a plateau above the catalyst with 30 wt.% Ni, although the catalysts with higher Ni loading present higher SNi0 values. The plateau observed could be explained by the substantial decrease in the total acidity of the catalysts with higher Ni loading (Figure 4a).



Taking into account the above, the catalyst with 50 wt.% Ni, being in the plateau of Figure 7, was selected to be prepared using different methods in order to be further improved. Figure 6 shows that the synthesis method significantly influences the catalytic behavior of the 50NiTi catalyst series. The catalysts prepared via DP methods produced much higher amounts of n-alkanes compared with those prepared via impregnation. More specifically, the DP-Urea method resulted in the best catalyst among them with 50 wt.% Ni loading. This catalyst had the maximum total acidity (Figure 4b) as well as the maximum nickel surface area, determined via both XRD and XPS results (Table 1). As the total acidity of the catalysts of this series does not differ significantly, the n-alkanes yield is expected to be determined by their nickel surface area. This is indeed the case as it is shown in Figure 8, where a linear correlation is observed between the n-alkanes (green diesel) yield and the nickel dispersity, depicted by the Ni/Ti surface atomic ratio determined via XPS.



Kinetic studies were performed over all catalysts synthesized. Kinetic curves concerning the most efficient catalyst (50NiTi DP-Urea) are depicted in Figure 9. Similar curves were obtained for all catalysts. FFAs were initially produced; their concentration maximized at the first hour of reaction and then gradually declined. The ester concentration increased during up to 6 h of reaction and then it remained almost constant. On the contrary, the hydrocarbon concentration increased continuously. These results show that both FFAs and esters are intermediate products, while hydrocarbons are the final ones. This is in accordance with the mechanistic scheme proposed for triglyceride SDO over nickel catalysts (Scheme S1). Moreover, these results reveal that the SDO of the intermediate esters is the slowest step of the process [75].



In order to distinguish the main reaction path followed upon the SDO of SO over the catalysts studied, the (C15 + C17)/(C16 + C18) ratio was calculated after 9 h of reaction. The corresponding values are presented schematically in Figure S5. It can be seen that this ratio is much higher than the unity over all catalysts, indicating that n-alkanes with an odd number of C atoms are the main component of the green diesel produced. This indicates that the deCOx pathway is the predominant pathway (Scheme S1) in accordance with the literature. The increase in the above ratio with the catalyst efficiency to produce hydrocarbons confirms that the nickel active sites preferentially accelerate the deCOx pathway [6,8,27].



Closing this discussion, it should be noted that there is an increased interest in the development of metallic catalysts, especially those based on cheap transition metals such as Ni. The development of catalysts is considered a key factor for efficient green diesel production. To this aim, an intensive research effort has been conducted in recent years. The relevant studies are reviewed in very interesting critical reviews [6,8,27,68,76]. They have shown that catalysts with good H-H dissociation ability, high population of oxygen vacancies, high dispersion of active phase, and balanced acidity ensure superior green diesel production. The above characteristics can be regulated by the suitable selection of catalyst support, preparation method, and active phase loading. The present work demonstrates that TiO2 is a promising support for high-loading Ni catalysts suitable for green diesel production. The recent literature demonstrates that high Ni loading is indeed necessary to obtain efficient catalysts on various supports [48,56,57,58,59,71,72,73,74,75,77,78].





4. Conclusions


Ni catalysts supported on titania are very promising in the transformation of natural triglycerides into green diesel through selective deoxygenation. They proved quite efficient in the very harsh conditions of the SDO reaction (very large ratio of oil/catalyst and absence of solvent). The appropriate Ni content of the Ni/TiO2 catalysts for the conversion of sunflower oil to renewable diesel proved to be 50 wt.%. The corresponding catalyst exhibits the optimum combination of high Ni0 surface and mild acidity. The most suitable synthesis method is the deposition–precipitation method at high temperatures using urea as the precipitating agent since it results in a catalyst with a very high metallic nickel surface and balanced acidity.
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Scheme 1. The SDO reactions scheme. 
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Figure 1. Pore size distribution of (a) xNiTi SDI catalysts; (b) 50NiTi catalysts synthesized via different techniques. 
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Figure 2. XRD patterns of: (a) xNiTi SDI catalysts; (b) 50NiTi catalysts synthesized via different methods. (A: anatase). 
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Figure 3. H2–TPR profiles: (a) xNiTi SDI catalysts; (b) 50NiTi catalysts prepared via different methods. 
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Figure 4. NH3–TPD curves: (a) xNiTi SDI catalysts; (b) 50NiTi catalysts prepared via different methods. 
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Figure 5. Representative XPS spectra of the 50NiTi DP-Urea catalyst: (a) Ni2p; (b) Ti2p peaks. 
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Figure 6. Composition of the liquid reaction mixture after 9 h in the presence of the various catalysts studied. 
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Figure 7. Dependence of green diesel (n-alkanes) yield on the nickel surface area of the catalysts prepared via SDI. 
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Figure 8. Green diesel (n-alkanes) yield vs. Ni/Ti surface atomic ratio determined via XPS. 
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Figure 9. Kinetic curves obtained for the SDO of SO over the 50NiTi DP-Urea catalyst. 
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Table 1. Textural and structural characteristics of the catalysts.
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	Catalyst
	SSA (m2g−1)
	1SNi0 (m2g−1)
	PV (cm3g−1)
	Dp (nm)
	DNi0 (nm)
	(Ni/Ti)XPS





	TiO2
	232
	--
	0.68
	9.72
	--
	--



	10NiTi SDI
	217
	5.9
	0.51
	8.03
	11.4
	--



	20NiTi SDI
	181
	9.5
	0.42
	7.84
	14.2
	--



	30NiTi SDI
	153
	12.6
	0.37
	8.24
	17.3
	--



	50NiTi SDI
	106
	15.3
	0.27
	8.53
	22.0
	25.5



	60NiTi SDI
	98
	15.5
	0.24
	8.69
	25.9
	--



	50NiTi WI
	117
	14.7
	0.37
	10.31
	19.7
	24.7



	50NiTi DP-NH3
	133
	19.8
	0.42
	10.56
	17.4
	30.1



	50NiTi DP-Urea
	156
	28.6
	0.63
	13.06
	11.5
	37.2







1SNi0: Ni0 surface area per catalyst gram, assuming spherical Ni0 nanocrystals with a radius equal to ½ DNi0, calculated via the Scherrer equation applied at the XRD peak at 2θ: 51.8°.
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