Experimental Study on PIV Measurement and CFD Investigation of the Internal Flow Characteristics in a Reactor Coolant Pump
Abstract
:1. Introduction
2. Experimental Setup
2.1. RCP and Test Rig
2.2. PIV Measurement Setup
3. Numerical Methodology and Setting
3.1. Computational Domain
3.2. Turbulence Models and Numerical Method
3.2.1. Turbulence Models
3.2.2. Numerical Method
3.3. Independence Test of Mesh Density
4. Result and Discussion
4.1. Energy Performance Analysis
4.2. Flow Field Details in PIV Measurement
4.3. Comparative Analysis between CFD and PIV
- To facilitate the comparison, a standard wall function is used in the RANS calculation. Therefore, the numerical calculation results show that the capture of flow field information near the wall is obviously insufficient. In addition, in this paper, only the external energy performance is verified in the verification of the mesh sensitivity. After the analysis and verification of this paper, it is believed that in the future, both external characteristics and internal flow characteristics should be verified simultaneously;
- For PIV measurement, even though a water jacket is used to compensate for the refraction and scattering of light in the spherical casing caused by the large curvature, there will be a certain velocity measurement error in the near-wall area;
- Considering the economics of the calculation, the gap between the mouth ring is ignored in the numerical calculation. Although the gap between the mouth ring is small to ensure consistency, there is still a small amount of leakage;
- As the post-processing of PIV data adopts a moving average verification method for the original vector diagram, this method slightly smoothens the speed difference between the wake area vector and the surrounding vector [40,41]. In addition, the ability of the RANS method to identify the vortex region is magnified. These two factors have caused a large gap between the numerical calculation and the experimental measurement in the diffuser blade trailing edge region.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Acronyms | |
RCP | Reactor Coolant Pump |
NPP | Nuclear Power Plant |
PIV | Particle Image Velocimetry |
LDV | Laser Doppler Velocimetry |
CFD | Computational Fluid Dynamics |
DDES | Delayed Detached Eddy Simulation |
PWR | Pressurized Water Reactor |
RANS | Reynolds-Averaged Navier–Stokes |
RSM | Reynolds Stress Model |
MRF | Moving Reference Frame |
Symbols | |
Φd | Nominal flow coefficient |
Ψd | Nominal head coefficient |
nd | Nominal rotating speed |
ns | Specific speed |
D1 | Impeller inlet diameter |
D2 | Impeller outlet diameter |
b2 | Impeller outlet width |
Ψ | head coefficient |
References
- Shindell, D.; Ru, M.; Zhang, Y.; Seltze, K.; Faluvegi, G.; Nazarenko, L.; Schmidt, G.A.; Parsons, L.; Challapalli, A.; Yang, L.; et al. Temporal and spatial distribution of health, labor, and crop benefits of climate change mitigation in the United States. Proc. Natl. Acad. Sci. USA 2021, 118, e2104061118. [Google Scholar] [CrossRef]
- Climate Change 2022: Impacts, Adaptation and Vulnerability Summary for Policymakers; IPCC (Intergovernmental Panel on Climate Change): Geneva, Switzerland, 2022.
- Kober, T.; Schiffer, H.-W.; Densing, M.; Panos, E. Global energy perspectives to 2060—WEC’s World Energy Scenarios 2019. Energy Strategy Rev. 2020, 31, 100523. [Google Scholar] [CrossRef]
- John, B.; Shannon, B.-S.; Wesley, C.; Brent, D.; Erich, E.; Jonathan, H.; Augustine, K.; Laura, M.; Caitlin, M.; Christopher, N.; et al. Modeling nuclear energy’s future role in decarbonized energy systems. iScience 2023, 26, 105952. [Google Scholar] [CrossRef]
- Roman, D. Nuclear and New Energy Technology. Energies 2022, 15, 6046. [Google Scholar] [CrossRef]
- Sayed, M.S.; El-Mongy, S.A.; Tawfic, A.F.; Abdel-Rahman, M.A.E. Validation of the Optimized Parameters for Improvement of Gamma Spectrometers Performance and Efficacy. Phys. Part. Nucl. Lett. 2021, 18, 222–231. [Google Scholar] [CrossRef]
- Ali Mohamed, A.E.M.; Tawfic, A.F.; Abdelgawad, M.A.; Mahdy, M.; Omar, A. Gamma and neutrons shielding using innovative fiber reinforced concrete. Prog. Nucl. Energy 2022, 145, 104133. [Google Scholar] [CrossRef]
- Ali Mohamed, A.E.M.; Tawfic, A.F.; Abdelgawad, M.A.; Mahdy, M.; Omar, A. Potential uses of different sustainable concrete mixtures in gamma and neutrons shielding purposes. Prog. Nucl. Energy 2023, 157, 104598. [Google Scholar] [CrossRef]
- Gao, H.; Gao, F.; Zhao, X.; Chen, J.; Cao, X. Analysis of reactor coolant pump transient performance in primary coolant system during start-up period. Ann. Nucl. Energy 2013, 54, 202–208. [Google Scholar] [CrossRef]
- Ni, D.; Yang, M.; Zhang, N.; Gao, B.; Li, Z. Unsteady flow structures and pressure pulsations in a nuclear reactor coolant pump with spherical casing. J. Fluids Eng. Trans. ASME 2017, 139, 051103. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, H.; Pei, L.; Zhong, Z. Research on non-uniform pressure pulsation of the diffuser in a nuclear reactor coolant pump. J. Nucl. Eng. Technol. 2021, 53, 1020–1028. [Google Scholar] [CrossRef]
- Zhang, N.; Zheng, F.; Liu, X.; Gao, B.; Li, G. Unsteady flow fluctuations in a centrifugal pump measured by laser Doppler anemometry and pressure pulsation. Phys. Fluids 2020, 32, 125108. [Google Scholar] [CrossRef]
- Chen, B.; Li, X.; Zhu, Z. Investigations of energy distribution and loss characterization in a centrifugal impeller through PIV experiment. Ocean. Eng. 2022, 247, 110773. [Google Scholar] [CrossRef]
- Feng, J.; Benra, F.-K.; Dohmen, H. Investigation of periodically unsteady flow in a radial pump by CFD simulations and LDV measurements. J. Turbomach. 2011, 133, 011004. [Google Scholar] [CrossRef]
- Ni, D.; Zhang, N.; Gao, B.; Li, Z.; Yang, M. Dynamic measurements on unsteady pressure pulsations and flow distributions in a nuclear reactor coolant pump. Energy 2020, 198, 117305. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, S.; Yuan, H.; Shao, J. PIV measurement on internal instantaneous flows of a centrifugal pump. Sci. China Technol. 2011, 54, 270–276. [Google Scholar] [CrossRef]
- Ofuchi, E.M.; Henrique, S.; Ernesto, M.; Rigoberto, E.M.M. Investigation of the flow field in a centrifugal rotor through particle image velocimetry. Exp. Therm. Fluid Sci. 2023, 140, 110768. [Google Scholar] [CrossRef]
- Nicholas, P.; Larsen, P.S.; Jacobsen, C.B. Flow in a centrifugal pump impeller at design and off-design conditions-part I: Particle image velocimetry (PIV) and laser doppler velocimetry (LDV) measurements. J. Fluids Eng. Trans. ASME 2003, 125, 61–72. [Google Scholar] [CrossRef]
- Sugiyama, D.; Ichinose, A.; Takeda, T.; Miyagawa, K.; Negishi, H.; Tsunoda, A. Investigation of Internal Flow in Centrifugal Pump Diffuser using Laser Doppler Velocimetry (LDV) and Computational Fluid Dynamics. J. Phys. Conf. Ser. 2021, 1909, 012075. [Google Scholar] [CrossRef]
- Fu, S.; Zheng, Y.; Kan, K.; Chen, H.; Han, X.; Liang, X.; Liu, H.; Tian, X. Numerical simulation and experimental study of transient characteristics in an axial flow pump during start-up. Renew. Energy 2020, 146, 1879–1887. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, X.; Gao, B.; Wang, X.; Xia, B. Effects of modifying the blade trailing edge profile on unsteady pressure pulsations and flow structures in a centrifugal pump. Int. J. Heat. Fluid Flow 2019, 75, 227–238. [Google Scholar] [CrossRef]
- Ge, C.Y.; Wang, J.J.; Gu, X.P.; Feng, L.F. CFD simulation and PIV measurement of the flow field generated by modified pitched blade turbine impellers. Chem. Eng. Res. Des. 2014, 92, 1027–1036. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Yang, Y.; Wang, S.; Bai, L.; Zhou, L. CFD Simulation of Centrifugal Pump with Different Impeller Blade Trailing Edges. J. Mar. Sci. Eng. 2023, 11, 402. [Google Scholar] [CrossRef]
- Giridharan, G.A.; Lederer, C.; Berthe, A.; Goubergrits, L.; Hutzenlaub, J.; Slaughter, M.S.; Dowling, R.D.; Spence, P.A.; Koenig, S.C. Flow dynamics of a novel counterpulsation device characterized by CFD and PIV modeling. Med. Eng. Phys. 2011, 33, 1193–1202. [Google Scholar] [CrossRef]
- Ni, D.; Wang, F.; Gao, B.; Zhang, Y.; Huang, S. Experimental Investigation on the Effect of the Staggered Impeller on the Unsteady Pressure Pulsations Characteristic in a Pump. Energies 2022, 15, 8912. [Google Scholar] [CrossRef]
- Ni, D.; Chen, J.; Wang, F.; Zheng, Y.; Zhang, Y.; Gao, B. Investigation into Dynamic Pressure Pulsation Characteristics in a Centrifugal Pump with Staggered Impeller. Energies 2023, 16, 3848. [Google Scholar] [CrossRef]
- Zhang, N.; Jiang, J.; Gao, B.; Liu, X. DDES analysis of unsteady flow evolution and pressure pulsation at off-design condition of a centrifugal pump. Renew. Energy 2020, 153, 193–204. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, F.; Zhou, P. Evaluation of Subgrid-scale Models in Large-eddy Simulations of Turbulent Flow in a Centrifugal Pump Impeller. Chin. J. Mech. Eng. 2012, 15, 911–918. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, H.; Yin, J.; Ma, Z.; Gu, Q.; Lu, J.; Liu, H. Unsteady flow characteristics in centrifugal pump based on proper orthogonal decomposition method. Phys. Fluids 2021, 075122, 075122. [Google Scholar] [CrossRef]
- Salmani, F.; Rad, E.A.; Mahpeykar, M.R. Investigation effects of roughness in wet steam flow with Buckingham Pi-theorem. J. Therm. Anal. Calorim. 2022, 147, 3803–3813. [Google Scholar] [CrossRef]
- Wilcox, D.C. Turbulence Modeling for CFD, 3rd ed.; DCW Industries: La Canada Flintridge, CA, USA, 2006. [Google Scholar]
- Launder, B.E.; Spalding, D.B. Lectures in Mathematical Models of Turbulence; Academic Press: London, UK, 1972. [Google Scholar]
- Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1986, 1, 3–51. [Google Scholar] [CrossRef]
- Shih, T.-H.; Liou, W.W.; Shabbir, A.; Yang, Z.; Zhu, J. A new k-ϵ eddy viscosity model for high reynolds number turbulent flows. Comput. Fluids 1995, 24, 227–238. [Google Scholar] [CrossRef]
- Wilcox, D.C. Multiscale model for turbulent flows. AIAA J. 1988, 26, 1311–1320. [Google Scholar] [CrossRef]
- Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Ni, D.; Yang, M.; Gao, B.; Zhang, N.; Li, Z. Flow unsteadiness and pressure pulsations in a puclear reactor coolant pump. Strojniški Vestn.—J. Mech. Eng. 2016, 62, 231–242. [Google Scholar] [CrossRef]
- Ni, D.; Yang, M.; Gao, B.; Zhang, N.; Li, Z. Numerical study on the effect of the diffuser blade trailing edge profile on flow instability in a nuclear reactor coolant pump. Nucl. Eng. Des. 2017, 322, 92–103. [Google Scholar] [CrossRef]
- Ni, D.; Yang, M.; Gao, B.; Zhang, N.; Li, Z. Experimental and numerical investigation on the pressure pulsation and instantaneous flow structure in a nuclear reactor coolant pump. Nucl. Eng. Des. 2018, 337, 261–270. [Google Scholar] [CrossRef]
- Feng, J.; Benra, F.-K.; Dohmen, H.J. Unsteady Flow Visualization at Part-Load Conditions of a Radial Diffuser Pump: By PIV and CFD. J. Vis. 2009, 12, 65–72. [Google Scholar] [CrossRef]
- Zhou, L.; Shi, W.; Cao, W.; Yang, H. CFD investigation and PIV validation of flow field in a compact return diffuser under strong part-load conditions. Sci. China Technol. Sci. 2015, 58, 405–414. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.; Katterbauer, K.; Al Shehri, A.; Sun, S.; Hoteit, I. Phase equilibrium in the hydrogen energy chain. Fuel 2022, 15, 328. [Google Scholar] [CrossRef]
- He, Z.; Zhao, Z.; Zhang, X.; Feng, H. Thermodynamic properties of new heat pump working pairs: 1,3-Dimethylimidazolium dimethylphosphate and water, ethanol and methanol. Fluid Phase Equilibria 2010, 298, 83–91. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Nominal flow coefficient Φd | Qd/(u2R22) = 0.63 |
Nominal head coefficient Ψd | gHd/u22 = 0.25 |
Nominal rotating speed nd | 900 r/min |
Specific speed ns | = 107 (n: min−1) |
Impeller inlet diameter D1 | 221 mm |
Impeller outlet diameter D2 | 268 mm |
Impeller outlet width b2 | 84 mm |
Method | Φd | Ψ | Error (%) |
---|---|---|---|
EXP | 0.63 | 0.269 | 0 |
Standard k-ε | 0.63 | 0.279 | 3.58 |
Realizable k-ε | 0.63 | 0.282 | 4.61 |
RNG k-ε | 0.63 | 0.285 | 5.61 |
Standard k-ω | 0.63 | 0.283 | 4.95 |
BSL k-ω | 0.63 | 0.281 | 4.27 |
SST k-ω | 0.63 | 0.283 | 4.95 |
RMS-LPS | 0.63 | 0.283 | 4.95 |
Method | 0.8 Φd | Ψ | Error (%) |
---|---|---|---|
EXP | 0.504 | 0.3431 | 0 |
Standard k-ε | 0.504 | 0.3397 | −1.00 |
Realizable k-ε | 0.504 | 0.3428 | −0.08 |
RNG k-ε | 0.504 | 0.3414 | −0.50 |
Standard k-ω | 0.504 | 0.3413 | −0.53 |
BSL k-ω | 0.504 | 0.3476 | 1.29 |
SST k-ω | 0.504 | 0.3474 | 1.24 |
RMS-LPS | 0.504 | 0.3436 | 0.15 |
Method | 1.2 Φd | Ψ | Error (%) |
---|---|---|---|
EXP | 0.756 | 0.178 | 0 |
Standard k-ε | 0.756 | 0.193 | 7.77 |
Realizable k-ε | 0.756 | 0.193 | 7.77 |
RNG k-ε | 0.756 | 0.196 | 9.18 |
Standard k-ω | 0.756 | 0.194 | 8.24 |
BSL k-ω | 0.756 | 0.194 | 8.24 |
SST k-ω | 0.756 | 0.196 | 9.18 |
RMS-LPS | 0.756 | 0.197 | 9.64 |
RMS-LPS | 0.756 | 0.197 | 9.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, D.; Lu, H.; Huang, S.; Lu, S.; Zhang, Y. Experimental Study on PIV Measurement and CFD Investigation of the Internal Flow Characteristics in a Reactor Coolant Pump. Energies 2023, 16, 4345. https://doi.org/10.3390/en16114345
Ni D, Lu H, Huang S, Lu S, Zhang Y. Experimental Study on PIV Measurement and CFD Investigation of the Internal Flow Characteristics in a Reactor Coolant Pump. Energies. 2023; 16(11):4345. https://doi.org/10.3390/en16114345
Chicago/Turabian StyleNi, Dan, Hongzhong Lu, Shiyuan Huang, Sheng Lu, and Yang Zhang. 2023. "Experimental Study on PIV Measurement and CFD Investigation of the Internal Flow Characteristics in a Reactor Coolant Pump" Energies 16, no. 11: 4345. https://doi.org/10.3390/en16114345
APA StyleNi, D., Lu, H., Huang, S., Lu, S., & Zhang, Y. (2023). Experimental Study on PIV Measurement and CFD Investigation of the Internal Flow Characteristics in a Reactor Coolant Pump. Energies, 16(11), 4345. https://doi.org/10.3390/en16114345