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Abstract: This review explores the performance and reliability of power semiconductor devices
required to enable the electrification of heavy goods vehicles (HGVs). HGV electrification can
be implemented using (i) batteries charged with ultra-rapid DC charging (350 kW and above);
(ii) road electrification with overhead catenaries supplying power through a pantograph to the HGV
powertrain; (iii) hydrogen supplying power to the powertrain through a fuel cell; (iv) any combination
of the first three technologies. At the heart of the HGV powertrain is the power converter implemented
through power semiconductor devices. Given that the HGV powertrain is rated typically between
500 kW and 1 MW, power devices with voltage ratings between 650 V and 1200 V are required for
the off-board/on-board charger’s rectifier and DC-DC converter as well as the powertrain DC-AC
traction inverter. The power devices available for HGV electrification at 650 V and 1.2 kV levels are
SiC planar MOSFETs, SiC Trench MOSFETs, silicon super-junction MOSFETs, SiC Cascode JFETs,
GaN HEMTs, GaN Cascode HEMTs and silicon IGBTs. The MOSFETs can be implemented with
anti-parallel SiC Schottky diodes or can rely on their body diodes for third quadrant operation. This
review examines the various power semiconductor technologies in terms of losses, electrothermal
ruggedness under short circuits, avalanche ruggedness, body diode and conduction performance.

Keywords: transportation electrification; power electronic devices; wide bandgap semiconductors;
heavy goods vehicles

1. Introduction

As of 2019, according to the national grid UK, long haul transportation with Heavy
Goods Vehicles (HGVs) contributed 16% of the total greenhouse gas emissions due to
transportation [1]. If the UK is to meet its net zero targets, the electrification of HGVs cannot
be avoided. The electrification of HGVs remains one of the more challenging objectives
in the decarbonisation of road transportation. This is because the power levels (500 kW
and above) and range (hundreds of miles) typical of HGVs requires significantly large
batteries with long charging times. Be that as it may, there is progress in the development
of battery-powered HGVs. For example, Volvo recently commercialised an electric truck,
called the Volvo FM Electric, with a powertrain of up to 490 kW and range of 380 km. The
truck is powered by a battery pack with a capacity as high as 540 kWh, which, assuming a
gravimetric energy density (of Lithium Ion Batteries) equal to 0.25 kWh/kg [2], translates
into a battery mass of approximately 2.1 tonnes. This is 5% of the gross-vehicle-weight. For
comparison, 415 litres of diesel have a mass of 357 kg (0.8% of the gross vehicle weight)
while providing a range of over 1000 km, assuming 8 miles per gallon [3]. More importantly,
unlike the current fossil fuel-powered HGVs where the mass of the fuel is reduced as it is
consumed over the journey, the mass of the battery is independent of the state-of-charge.
This is no longer a problem in passenger electric vehicles where battery packs ranging
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between 50 kWh and 100 kWh are commercially available with good mileage on a full
charge (between 300 and 500 miles depending on specific driving conditions).

Electric buses are also becoming mainstream [4–6]. Eighty seat capacity electric buses
with 250 kW powertrains and over 660 kWh battery capacity have been commercialised
with a gross weight of 27.6 tonnes and proclaimed mileage of up to 250 miles. However,
when it comes to HGVs with gross weights of above 30 tonnes (up to 44 tonnes) that are
required to cover long haul distances, electrification is significantly more challenging in
spite of the advances made by companies such as Volvo. Some studies have demonstrated
that battery capacities ranging from 150 kWh (for 12 tonne vehicles) to 800 kWh (for heavier
vehicles) are required for HGV electrification [7]. Various powertrain technologies for
reducing the carbon footprint of the HGV industry have been explored. These include
hybrid electric powertrains that combine traction power from internal combustion engines
with battery-powered electric motors with and without a plug-in charging capability [8].
Other options for HGV electrification include fuel cell HGVs powered by hydrogen [9,10]
or overhead catenaries powering HGVs through pantographs, called the Electric Road
System (ERS) [11,12]. The advantage of the hybrid HGV is its avoidance of the battery
requirement problem; however, the disadvantage is that it is not fully decarbonised since
there is still an internal combustion engine. The advantage of the ERS is its avoidance
of the battery and charging problem together with the fact that it operates without any
carbon emissions.

Power electronics is a critical factor in HGV electrification. It enables the energy
interchange between the electrical power system and the HGV battery as well as managing
and controlling the flow of electrical power between the HGV battery and the traction
motors. Whether HGVs are powered by batteries, overhead catenaries or hydrogen, the
power electronics required for implementing the drivetrain traction converter remains
the same. If the HGV is battery powered, then ultra-fast DC chargers (above 100 kW
charging power) are required for charging within reasonable timeframes [13–15]. The
larger power levels in the powertrain means that either the voltage capacity, current
capacity or both will have to be increased. This has significant implications for the choice
of power semiconductor devices used. Battery chargers comprise rectifiers, (which are
AC/DC converters for converting three-phase AC mains power to DC power) and DC/DC
converters for interfacing with the HGV battery. Traction converters are bi-directional
DC/AC converters usually implemented as three-phase two-level voltage source converters
with six switching units comprised of transistors and anti-parallel diodes. During forward
traction, power flows from the DC battery to the AC motor via the transistors and during
regenerative braking, power flows back to the battery from the motor through the diodes.
Lower-rated power electronic DC/DC converters are also required to interface the high
voltage battery with low voltage electrical loads in the vehicle. Figure 1 shows a schematic
figure illustrating the various power flows and the converters that enable them.
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Given the power ratings mentioned previously, devices with voltage ratings between
650 V and 1.2 kV are typical for EV power electronics. The most critical qualities these
power devices must meet for HGV electrification are loss performance and reliability.
Efficiency is important for maximizing the EV mileage, while reliability is important for
safe operation. Depending on the voltage ratings, these devices can be silicon super-junction
MOSFETs, silicon IGBTs, SiC Planar or Trench MOSFETs, SiC Cascode JFETs, enhancement
mode GaN HEMTs or GaN Cascode HEMTs. These devices have different advantages and
drawbacks as far as reliability and performance is concerned. The goal of this paper is to
review the latest generation power semiconductor devices and their suitability for HGV
electrification applications, as well as loss performance and reliability. Section 2 of the
paper introduces the different power converters and devices used in electric HGV charging
and traction applications. Section 3 assesses the measured switching losses of the different
devices (except for the GaN devices), reliability and robustness performance (including
short circuit, avalanche ruggedness, gate oxide robustness, body diode performance and
conduction). Section 4 concludes the paper.

2. Power Converters and Devices

The main power electronic systems in electric HGVs are the onboard/off-board charg-
ers and the traction converter. Other than batteries, this is where the main engineering
challenges are regarding HGV electrification. In this section, the main common con-
verter topologies for EV charging and power traction inverters are reviewed, providing an
overview of the device technologies required for implementing these converters.

2.1. EV Charging

EV charging can be categorised into level 1 chargers (around 3 kW single phase AC),
level 2 chargers (between 7 kW single phase AC and 22 kW 3-phase AC) and level 3 (50 kW
DC and above). Level 3 charging standards include CHAdeMO (pioneered by Japan and
common in Asia) and CCS (pioneered in Europe and the US). Due to the large battery sizes
involved with electric HGVs, only high-power DC charging options are realistic. Assuming
a 600 kWh battery, a 350 kW rapid DC charger will require more than 1 h for full charging.
HGV charging stations of 350 kW charging power and above can be connected either to
the low voltage distribution network (400 V) or the medium voltage distribution network
(11 kV or 33 kV). There are advantages and disadvantages regarding the power electronics
associated with both approaches.

2.1.1. High Power Charging from the 400 V Network

The primary advantage with connecting to the 400 V AC system is that low-voltage-
rated power devices can be used with more established and conventional converter topolo-
gies. The charger comprises of a rectifier followed by a DC/DC converter. The two popular
rectifier topologies, shown below in Figure 2a,b, are the Vienna rectifier [16–19] and the
active front-end rectifier [20–23]. Both rectifiers are capable of power factor correction.
Connected to the 400 V ac mains, the diodes (D1 to D6) in the front end of the Vienna
rectifier should be rated at 1.2 kV. With switching frequencies as high as 50 kHz, these can
only be SiC Schottky Barrier Diodes (SBDs) for an acceptable switching loss performance.
The transistors in the Vienna rectifier should be rated at 650 V. In the case of the AFE rectifier
in Figure 2b, the power devices should be rated at 1.2 kV since the devices are blocking the
entire DC link voltage, unlike in the Vienna rectifier, where they are blocking half the DC
link. The primary disadvantage with charging from the 11 kV network is the additional
thermal loading on the 400 V distribution transformers. Reinforcing these transformers
in dense urban networks will be costly and highly disruptive, especially since they are
already servicing domestic and commercial/industrial load centres.



Energies 2023, 16, 4380 4 of 25Energies 2023, 16, 4380 4 of 26 
 

 

  
(a) (b) 

Figure 2. (a) Vienna rectifier; (b) Active front end rectifier. 

2.1.2. High Power Charging from 11 kV or 33 kV Network 
The primary advantage in charging from the 11 kV and 33 kV network is that the low 

voltage 11 kV/400 V distribution transformers can be avoided. These transformers are nu-
merous and are usually located in dense urban environments where upgrading will be 
difficult. Furthermore, incorporating EV charging with a medium voltage DC transmis-
sion (MVDC) allows other advantages for the AC system if different AC nodes in the sub-
transmission and distribution network are interconnected [24–28]. These advantages in-
clude more flexible and reconfigurable AC power flow systems and additional resilience 
to faults since active and reactive power flow can be enabled between different AC distri-
bution systems if power electronic converters are implemented and controlled. In this 
case, the EV charger system can be integrated with MVDC transmission and soft-open-
points. The main disadvantage of charging from 11 kV or 33 kV networks is the complex-
ity and cost of the power electronic converter, which must be designed to handle such 
high voltages. Due to the high voltages, either multi-level converter topologies and/or se-
ries connected devices must be used for the EV charger [29–32]. These multilevel convert-
ers include cascaded H-bridge or multi-level NPC converters, possibly with series con-
nected devices for each level, depending on the number of levels. Figure 3a shows an 
MMC rectifier connected to a 3-phase AC system, while Figure 3b shows an MMC-based 
DC/DC converter connecting an MVDC infeed to parallel connected EV baĴeries. In the 
MMCs shown in Figure 3, the voltage rating of the power devices used will depend on 
the number of levels in the converter. The higher the number of levels, the lower the re-
quired voltage blocking capability of the power device and vice versa. For example, as-
suming the MMC is connected to a 33 kV AC system and the MVDC transmission voltage 
is 54 kV DC, then using 1.7 kV rated SiC MOSFETs will require 57 levels, assuming 56.72% 
of the voltage rating of the device is used. If the voltage rating of the device is increased 
to 3.3 kV, then the number of submodules required to implement the MMC reduces to 29 
(also assuming 58.44% of the voltage rating is used).  

Figure 2. (a) Vienna rectifier; (b) Active front end rectifier.

2.1.2. High Power Charging from 11 kV or 33 kV Network

The primary advantage in charging from the 11 kV and 33 kV network is that the
low voltage 11 kV/400 V distribution transformers can be avoided. These transformers
are numerous and are usually located in dense urban environments where upgrading
will be difficult. Furthermore, incorporating EV charging with a medium voltage DC
transmission (MVDC) allows other advantages for the AC system if different AC nodes
in the sub-transmission and distribution network are interconnected [24–28]. These ad-
vantages include more flexible and reconfigurable AC power flow systems and additional
resilience to faults since active and reactive power flow can be enabled between different
AC distribution systems if power electronic converters are implemented and controlled. In
this case, the EV charger system can be integrated with MVDC transmission and soft-open-
points. The main disadvantage of charging from 11 kV or 33 kV networks is the complexity
and cost of the power electronic converter, which must be designed to handle such high
voltages. Due to the high voltages, either multi-level converter topologies and/or series
connected devices must be used for the EV charger [29–32]. These multilevel converters
include cascaded H-bridge or multi-level NPC converters, possibly with series connected
devices for each level, depending on the number of levels. Figure 3a shows an MMC
rectifier connected to a 3-phase AC system, while Figure 3b shows an MMC-based DC/DC
converter connecting an MVDC infeed to parallel connected EV batteries. In the MMCs
shown in Figure 3, the voltage rating of the power devices used will depend on the number
of levels in the converter. The higher the number of levels, the lower the required voltage
blocking capability of the power device and vice versa. For example, assuming the MMC is
connected to a 33 kV AC system and the MVDC transmission voltage is 54 kV DC, then
using 1.7 kV rated SiC MOSFETs will require 57 levels, assuming 56.72% of the voltage
rating of the device is used. If the voltage rating of the device is increased to 3.3 kV, then
the number of submodules required to implement the MMC reduces to 29 (also assuming
58.44% of the voltage rating is used).

High-voltage-rated devices (above 2.5 kV) are limited to silicon bipolar transistors
(Thyristors and IGBTs) and SiC MOSFETs [33]. Since most Thyristors only have turn-on
capability and need to be turned off by the voltage commutation of the AC system (except
GTOs and IGCTs), they are not suitable for EV charging applications. IGBTs with ratings as
high as 4.5 kV and 6.5 kV are commercially available; however, they usually have long tail
currents and long gate delays, which makes them inapplicable for EV chargers where a
high switching frequency is required for compact design. Silicon IGBTs are typically used in
high voltage direct current voltage source converter (HVDC VSC) systems where offshore
wind power is transmitted onshore. The switching frequencies used in such systems are
significantly smaller (hundreds of Hz); hence, the switching losses are not a critical design
factor. In MVDC VSC systems for EV charging stations, considerably higher switching
frequencies (several kHz) will be used, hence, the switching losses means that only SiC
MOSFETs’ technologies are applicable in such systems.
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2.2. Traction Inverters

Based on existing diesel engine specifications currently used in Internal Combustion
Engine (ICE)-powered HGVs, the powertrain of electric HGVs can require as high as
500 kW of electrical power. For an EV powertrain with a 400 V DC bus, this will mean
an approximately 1.2 kA DC current and a peak AC current of 1 kA into the motor stator
windings per phase. For a DC bus voltage of 800 V, the DC bus current will be 600 A,
while the peak AC current will be approximately 500 A per phase. Powertrains with
DC bus voltages of 400 V will require the traction converter to be implemented using
650 V rated power devices, while powertrains with 800 V DC buses will require 1.2 kV
power devices. There is consensus that moving EV powertrains from 400 V DC bus
voltage to 800 V DC bus voltage is beneficial for reducing losses and increasing battery
charging times [34–36]. For both voltage classes, paralleling of multiple devices will be
required for enabling large current capability. However, more devices will be required
for the lower DC bus voltage. The switching frequencies used in such converters will be
between 5 and 20 kHz. While 650 V and 1.2 kV silicon IGBTs have historically been used
to implement EV traction inverters, SiC MOSFETs are increasingly gaining popularity for
such applications [37–43]. At the 1.2 kV voltage level, SiC MOSFETs have a considerably
reduced switching loss compared to the silicon IGBT. Likewise, SiC Schottky Barrier diodes
will have significantly reduced switching losses compared to silicon PiN diodes [44]. In
terms of cost and reliability, silicon IGBTs still outperform SiC MOSFETs. Hence, there is a
trade-off between the switching efficiency on one hand and cost/reliability on another.

3. Performance and Reliability Assessment

In this section, some of the latest generation SiC MOSFETs and silicon devices have
been tested. Experimental measurements are performed on commercially available 650 V
and 1.2 kV SiC MOSFETs and IGBTs from different manufacturers. Devices rated at 1.2 kV
have been selected assuming a DC link voltage of 800 V corresponding to the battery
voltage, whereas 650 V rated devices are selected assuming a DC link voltage/battery
voltage of 400 V. The 650 V devices can also be used in the Vienna rectifier connected to
the 400 V three-phase mains. The tests performed assess the performance and reliability
of the devices in hard switched applications. The loss performance can be assessed using
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conduction and switching measurements of the transistors and body diodes, while the
reliability/robustness performance can be assessed using short circuit tests, gate oxide tests,
avalanche ruggedness, etc. A fair comparison between devices under identical conditions
can enable systems engineers to identify the trade-offs involved in device selection.

3.1. Switching Performance

The switching energy of a power transistor is measured using a double pulse set-
up [45]. The double pulse experimental set up is shown in Figure 4a, while Figure 4b shows
the equivalent circuit where the device under the test transistor (DUT) is identified as Q1
and the freewheeling diode is identified as D1. The other elements of the circuit are a load
inductor L, DC-link capacitor CDC connected to a DC power supply of voltage VDC and
a gate driving circuit with a supply voltage VGG, which is used for turning the transistor
ON/OFF using an external gate resistance RG

EXT. This type of test circuit usually allows
one to adjust the temperature of the DUT, allowing dynamic characterisation at different
temperatures. It is also common to drive the transistor using a positive gate voltage VGG
for turning on the device and a negative gate voltage VEE for turning off the device. This
helps with the issue of parasitic turn-on [46,47].
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during the test and allows the use of a power supply with a lower current rating than the 

Figure 4. (a) Measurement set-up for switching energy measurements [48], where: (1) DC Power
Supply, (2) Test Enclosure, (3) Waveform Generator, (4) Current Probe Amplifier, (5) Oscilloscope,
(6) DC Link Discharge Resistor, (7) Differential Voltage Probes (8) Gate Driver, (9) Current Probe,
(10) Test circuit, including the DUT and freewheeling diode, (11) Inductor, (12) DC Link Capacitor;
(b) equivalent circuit of experimental measurement set-up.

The circuit works by first adjusting the power supply/DC link capacitor to the test
voltage, which should be the DC bus voltage of the HGV. The DC link provides the current
during the test and allows the use of a power supply with a lower current rating than the
load current being tested [45]. As the DUT transistor turns on (first pulse), the inductor (L)
is charged. The duration of the ON time tON is determined by the target load current of the
switching energy test Itest, according to Equation (1).

Itest =
VDCtON

L
(1)

As the DUT is turned off, the current commutates to the diode at a rate that depends
on the turn-off switching speed of the DUT (controlled by the external gate resistance
RG

EXT). The turn-off energy ESW-OFF of the transistor is measured here. The DUT transistor
is subsequently switched on for a second time and the turn-on switching energy ESW-ON
is measured for that switching transient. The switching energies are calculated using
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Equation (2), where tSW is the switching time (which can be the turn-on switching time or
turn-off switching time).

ESW =
∫ tSW

0
IDSVDS dt (2)

An idealised double pulse test sequence is shown in Figure 5, whereas an experimental
example of the turn-on and turn-off current and voltage waveforms for a 1200 V SiC Planar
MOSFET are shown in Figure 6a,b. The measurements were performed using a DC link
voltage of 800 V, load current of 30 A, junction temperature of 25 ◦C, a low side external
gate resistance of 68 Ω and a gate driver with voltages of +20 V and −5 V for turning the
transistor on and off, respectively.
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Figure 6. (a) Turn-on transients for VGS, IDS and VDS for 1.2 kV SiC MOSFET switched with 30 A.
(b) Turn-off transients for VGS, IDS and VDS for 1.2 kV SiC MOSFET switched with 30 A.

The DPT configuration is paramount for evaluating the switching performance of de-
vices, and there are different commercial tests setups and support equipment available from
different manufacturers [49–51] indicating the relevance of these types of measurements.

An investigation on the switching performance of different 650 V and 900 V device
technologies was performed in [52]. The devices include SiC planar MOSFETs, SiC trench
MOSFETs, SiC cascode JFETs, Si super-junction MOSFETs and Si IGBTs. These devices are
suitable for 400 V DC link voltages and Figure 7a,b shows the turn-on dI/dt and turn-off
dV/dt at different gate resistances for a load current of 20 A and a DC link voltage of 400 V.
Figure 8a shows the measured switching energies of all the 650 V/900 V rated technologies
switched with a 400 V DC link and 20 A load current, using a SiC Schottky barrier diode as
the freewheeling diode. In summary, the SiC Cascode JFETs and SiC Planar MOSFET were
the best performing devices with the lowest switching losses and highest switching rates
(dV/dt and dI/dt).
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Switching characterisation of 650 V devices using a DPT configuration was also
performed in [43] with a focus on automotive traction applications. A summary of the
results is shown in Figure 8. In Figure 8a, the IGBT is switched with a PiN diode and a SiC
SBD as freewheeling diodes to highlight the importance of the SiC SBD and how it affects
the transistor switching energy. Figure 8b compares the switching energy measurements
of the silicon IGBT with a freewheeling PiN diode with the same IGBT, as well as with a
freewheeling Schottky diode as a function of the gate resistance at different temperatures.
From Figure 8b, it is apparent that using the PiN diode increases the transistor losses
compared to the SiC SBD.

For DC link voltages of 800 V, the devices selected are 1.2 kV rated. Clamped induc-
tive switching measurements have been performed on 1.2 kV SiC MOSFETs and latest
generation fast silicon IGBTs. The SiC MOSFETs were a 1.2 kV SiC Planar MOSFET from
Wolfspeed with datasheet reference C2M0080120D, 1.2 kV SiC Symmetrical Trench MOS-
FET from ROHM with datasheet reference SCT3080KLHRC11, 1.2 kV Asymmetrical Trench
MOSFET from Infineon with datasheet reference AIMW120R080M1, a 1.2 kV SiC Cas-
code JFET from United SiC Technologies with datasheet reference UJ3C120080K3S and
a silicon IGBT from Infineon with datasheet reference IKW15N120CS7. The IGBT used
is a comparatively fast IGBT optimised for hard switching. All devices are of a similar
current rating and were switched using a Schottky barrier diode as a freewheeling diode.
The turn-on current and voltage waveforms for all the SiC devices are demonstrated in
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Figure 9a, while the total measured switching energy for all devices are shown in Figure 9b
at three different junction temperatures (25 ◦C, 75 ◦C and 150 ◦C) while switching 30 A. The
results in Figure 9 demonstrate that the SiC devices have a similar switching performance,
which has approximately 50% lower switching energy than the silicon IGBT. These results
highlight that while silicon IGBTs may be able to compete with SiC MOSFETs at 650 V in
terms of switching energy, at 1.2 kV, their switching energies become significantly higher.
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3.2. Short Circuit Robustness

The short circuit (SC) ruggedness of a power device is an important reliability metric, as
it quantifies the capacity of the power device to withstand sudden energy surges resulting
from anomalous operations leading to short circuits [53–55]. Devices operating under
normal conditions will either block the voltage in the OFF state (with ideally zero current,
but, in reality, there is a leakage current on the order of nanoamperes) or conduct current
in the ON state (with ideally zero voltage drop, but, in reality, there is a voltage drop of a
few volts). Under short circuit conditions, however, there is simultaneously high voltage
across the device while it is conducting the full load current. This means that there is a very
significant instantaneous power dissipation and high junction temperature. Short circuits
can occur when two devices in the same phase leg are turned on (called a hard switching
fault) or when there is a short circuit across the load (called Fault Under Load). The short
circuit withstand time (SCWT) is the maximum time duration that a device can endure
under short circuit conditions before electrothermal failure. The short circuit critical energy
is the maximum short circuit energy the DUT can dissipate without failure.

Figure 10a shows a picture of the test rig for short circuit measurements, while
Figure 10b shows the equivalent circuit of the test rig [56]. An example of the SC test
characteristics is shown in Figure 10c. The circuit comprises of a DC power supply and
DC link capacitor bank for emulating the HGV DC bus and a control IGBT module, which
typically has a current rating several times (at least 10 times) larger than the current rating
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of the DUT transistor. The DC power supply charges up the DC link capacitor while the
DUT and the control IGBT are off. The much larger output capacitance of the control
IGBT means that the majority of the DC link voltage falls across the DUT as is the case
in series-connected capacitors. The control IGBT turns on, and is followed by the DUT.
The energy stored in the DC link capacitor bank is discharged through the control IGBT
into the DUT. The control IGBT, which in this case is a 1.7 kV/1 kA silicon IGBT from
Infineon with datasheet reference FF1000R17IE4, disconnects the DUT from the DC link
if there is a short circuit failure. The on time of the DUT is increased by 500 nanosecond
pulse steps until it fails. This has been conducted at three junction temperatures, namely
25 ◦C, 75 ◦C and 150 ◦C, using a Rogowski coil to measure the short-circuit current. The
SC measurements are performed on three devices in each technology to ensure statistical
integrity and that rogue devices do not disguise the analysis. The selected devices are
650 V rated and include a SJ MOSFET, Silicon IGBT, SiC Cascode JFET, SiC Trench MOSFET
and SiC Planar MOSFET. The tests were performed at 400 V DC link voltage, and failure
analysis details are provided in [57].
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Figure 10. (a) Picture of the short circuit test rig, where the main elements are identified [56].
(b) Short circuit test circuit schematic [56]; (c) voltage and current waveforms of the DUT during a
short-circuit event.

Figure 11a shows the last-pass (last SC measurement before failure) short circuit
current transient for all device technologies at a case temperature of 25 ◦C, while Figure 11b
shows similar measurements at 150 ◦C. As the short circuit current is drawn from a voltage
source, it is limited by the temperature-dependent short circuit resistance of the DUT.
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Figure 11. (a) Last pass short circuit current for different technologies at case temperature of 25 ◦C.
(b) Last pass short circuit current for different technologies at case temperature of 150 ◦C.

As can be observed from Figure 11, different device technologies have different peak
currents due to differences in the short circuit resistance. The temperature coefficient of
the short circuit resistance determines how steep the decline from the peak short current is
with time. The silicon SJ MOFET and IGBT have the highest peak SC currents, with the
SiC devices having smaller currents. This is due to the higher short circuit resistance of
the SiC MOSFETs. Figure 12a,b shows the SCWT and Critical SC Energy for the different
technologies at the different junction temperatures. The best performing devices in terms
of SCWT are the Si SJ MOSFET and the SiC Trench MOSFET, followed by the Si IGBT, SiC
Planar and SiC Cascode JFETs.
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Several studies into the short circuit performance of SiC MOSFETs have demonstrated
reduced SCWT compared to silicon MOSFETs due to increased thermal impedance (from
smaller die sizes) and reduced oxide robustness (from the increased interface and fixed
oxide charge) [58–61]. An important factor in determining the SCWT is the die area, since
the peak junction temperature will reduce with an increasing die area. This is because
thermal impedance is inversely proportional to die size; hence, a larger area device will
more likely have a longer SCWT. Figure 13a shows the SCWT as a function of the die
size for each of the device technologies. Except for the SiC Trench MOSFET, the SCWT is
proportional to die size. The SiC Trench MOSFET appears to have very good short circuit
ruggedness, given that it has a smaller chip area compared to the SJ MOSFET and Si IGBT.
Figure 13b shows the SCWT as a function of the switching energy in each device technology
where there is a trade-off between SCWT and switching energy.
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The high performance of the Silicon SJ MOSFET is due to a large die size which comes
with higher switching energy, since device capacitances increase with die size. The SiC
Cascode JFET which has the best switching performance also has the lowest SCWT (hence,
it is least short-circuit-rugged). The short circuit performance of 650 GaN HEMTs has been
reported in the literature, with very short durations (less than 1 µs) for DC link voltages
of 400 V [62–64]. Oscillations during the short circuit event in GaN Cascodes have been
reported in [63,65].

3.3. Gate Oxide Reliability Performance

Gate oxide reliability refers to the ability of the MOSFET/IGBT gate to retain its
insulating properties required for controlling the device. In power electronics, particularly
for automotive applications, there are strict reliability standards set out by industrial
organisations such as the Joint Electron Device Engineering Council (JEDEC) [66] and
the Automotive Electronics Council (AEC) [67]. These standards stipulate that power
semiconductor devices must pass a series of tests, one of which includes high temperature
gate bias (HTGB). HTGB involves biasing the gate of the power device with its rated
drive voltage for 1000 h at a high temperature (175 ◦C). For the device to pass, none of
its parameters (threshold voltage, gate leakage current, drain leakage current, on-state
resistance, etc.) should deviate from the pre-test values by more than a predefined amount.
These tests have been performed in silicon devices (MOSFETs and IGBTs) over several
years; hence, most issues pertaining to the gate oxide reliability in silicon devices have
been resolved. However, new devices such as SiC MOSFETs have faced some challenges,
particularly regarding the issue of Bias Temperature Instability (BTI). BTI refers to a process
where the threshold voltage of the device shifts (usually by millivolts) depending on the
magnitude and polarity of a gate stress voltage. Several researchers have reported on
BTI in SiC MOSFETs [68–73], demonstrating that VTH is less stable compared to silicon
devices. When a positive VGS stress is applied to the MOSFET, VTH shifts upwards because
of negative charge trapping; when a negative VGS stress is applied, VTH shifts downwards
because of positive charge trapping. Unlike Si MOSFETs, the charge trapping and release
time constants are much shorter; hence, the post-stress-measured VTH depends on the
time between the stress removal and VTH measurement. This has resulted in new HTGB
guidelines and test procedures and guidelines specific to wide bandgap devices [74,75].

Gate oxide reliability is even more important for HGV applications because paralleling
several power devices requires good current sharing and electrothermal stability. Variations
of VTH across parallel devices can cause reliability problems due to poor current sharing
under extreme conditions, for example, in short circuits [76,77]. In the study performed
in this review, BTI is assessed in the power devices by performing HTGB measurements
using the classic measure–stress–measure sequence with bipolar preconditioning before
each sequence; i.e., VTH is measured before VGS stress and after VGS stress at pred-defined



Energies 2023, 16, 4380 13 of 25

intervals. Bipolar preconditioning simply means that a VGS pulse of both positive and neg-
ative polarity is applied to the device gate for a defined duration (usually 10 milliseconds).
This is different from the VGS stress and is conducted to set an initial charge state in the
gate oxide which is to act as a reference for subsequent measurements.

Figure 14a shows a picture of the test set-up including the gate driver, the DUT
and other ancillary components for enabling the test, including a National Instruments
DAQ Board to generate the control pulses and an adjustable gate driver for performing
the gate stress. Figure 14b shows the equivalent circuit of the test set-up in Figure 14a
under a VTH measurement mode. VTH is measured by connecting the gate and drain
of the MOSFET while forcing a 1 mA drain-source current through the channel using a
source measurement unit (SMU). In these measurements, the SMU is a model 2602 B from
Keithley that is controlled using LabVIEW. Figure 14c shows the test set-up in the VGS
stress mode where the drain and source are connected (to ensure VDS is zero), and the gate
is connected to a gate driver which supplies the stress VGS voltage at a given magnitude
and frequency. Figure 14d shows the stress–measure–stress gate pulse sequence, including
the pre-conditioning, which is implemented to reset the charges on the MOSFET gate.
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Figure 14. (a) Experimental setup for gate bias stress tests; (b) threshold voltage measurement mode
(c) gate stress mode; (d) test sequence, including pre-conditioning.

The BTI analysis presented here is conducted for a DC stress pulse (constant VGS
stress), unipolar VGS stress pulses at 60 kHz (VGS is switched from 0 to a rated value)
and the bipolar VGS stress pulses at 60 kHz (VGS is switched from −5 V to a rated value).
The results are shown in Figure 15a for the SiC Trench MOSFET and Figure 15b for the
SiC Planar MOSFET. Both devices are compared to measurements obtained from a silicon
MOSFET. It should be noted here that a SiC Cascode JFET comprises a low voltage silicon
MOSFET as the input; hence, BTI tests performed on a SiC Cascode JFET investigate the
gate characteristics of the low voltage silicon MOSFET. It is clear from Figure 15a,b that the
VTH shifts in Silicon MOSFETs are negligible compared to that in both SiC MOSFETs, which
can increase by up to 9% after 1000 s of DC and pulsed stresses. The shift in the VTH of the
SiC MOSFETs is due to negative charge trapping, which increases with time. As the shift is
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evident after post-test bipolar preconditioning, it can be considered to be a permanent shift
in VTH.
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Figure 16 shows the results of the oxide breakdown voltage tests. This is conducted by
simply increasing the gate voltage on the gate oxide until it breaks down and becomes un-
able to support the voltage without a rapid increase in the gate leakage current. Figure 16a
shows the test results for a SiC Planar and a Trench MOSFET compared with a silicon SJ
MOSFET at 25 ◦C, while Figure 16b shows similar test results at 150 ◦C. Figure 16 shows
that the silicon MOSFET gate oxide is more robust at higher voltages compared to the
selected SiC MOSFETs, which break down at 23 V for the selected Planar MOSFET and 27 V
for the selected Trench MOSFET. The silicon MOSFET oxide retains its insulating properties
beyond 40 V. These measurements demonstrate that the fixed oxide and interface trapped
charge in SiC MOSFETs means that the gate oxide is not as robust against high voltages, as
is the case in silicon MOSFETs. VTH is also more stable in silicon MOSFETs compared to
SiC MOSFETs.
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3.4. Avalanche Ruggedness Performance

Some applications require devices to operate repetitively under unclamped inductive
switching (UIS) conditions, for example, in automotive fuel injection systems. Although
devices in EV chargers and traction inverters do not require the repetitive operation of
devices under UIS, it is nevertheless necessary to evaluate the avalanche ruggedness of
power devices under UIS because some failure modes result in the latching of the MOSFET
parasitic BJT. Examples include cosmic ray-induced failures, anti-parallel diode failure
or hard commutation of the body diode with high dV/dt and dI/dt. There have been



Energies 2023, 16, 4380 15 of 25

several studies into the avalanche ruggedness of SiC MOSFETs, all of which allude to the
wide bandgap properties as being advantageous for improved performance [78–82]. The
avalanche ruggedness of power MOSFETs is tested by subjecting the devices to unclamped
inductive switching. The failure mode is either (i) the latching of the parasitic BJT in
the MOSFET causing thermal runaway through current hot-spots or (ii) thermal limit
breaching of the average device junction temperature. The first failure mode results from
the large avalanche power dissipated in the device over a short duration, while the second
failure mode results from the smaller avalanche power dissipated in the device over a
longer duration. All the 650 V devices in this study have been tested under UIS using the
circuit shown in Figure 17a [52]. The DC supply voltage VDC was 50 V, and the inductor L
was 6 mH, except for the GaN cascode HEMT, which was tested using a 1 mH inductor.
Figure 17b shows the typical avalanche characteristics observable in a UIS measurement.
The gate voltage (VGS) of the DUT is turned on, thereby causing the current to rise at a
rate given by VDC/L. After a pre-defined time interval, the DUT is turned off, causing
the energy stored in the magnetic field of the inductor to discharge into DUT while it is
off. As the DUT is off and there is no channel for the current to flow through, the DUT
goes into an avalanche as the current flows through the impact ionisation. During this
period, the drain-source voltage of the DUT is at its breakdown value, which is usually
higher than the datasheet rating of the device, depending on how much the manufacturers
have de-rated. This causes a junction temperature surge such as the one observed in a
short circuit. To measure the avalanche ruggedness of the DUT, the VGS pulse duration is
increased, therefore increasing the avalanche current and power, until the DUT fails. This
is conducted at different initial junction temperatures to gauge the thermal activation of
the parasitic BJT for each device technology. The maximum energy the DUT can dissipate
under the avalanche quantifies the avalanche ruggedness of the MOSFET technology.
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Figure 17. (a) Electrical schematic for UIS tests [52]; (b) typical UIS test waveforms, including power
dissipation and chip temperature [52].

For studying the UIS performance, the following 650 V rated devices were selected:
two Si super-junction MOSFETs with datasheet references IPW65R080CFDA and
SIHG33N60EF, a SiC planar MOSFET with reference C3M006065D, a SiC Cascode JFET
with datasheet reference UJ3C065080K3S, a SiC trench MOSFET with reference SCT3080AL
and a GaN Cascode HEMT with datasheet reference TP65H050WS.
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Figure 18a shows the last pass avalanche current transients of all of the DUTs (except
the Si SJ MOSFET), while Figure 18b shows the corresponding avalanche voltage transients
of the DUTs. It should be noted that the maximum avalanche energy of the Si SJ MOSFET
could not be reached (the limits of the test set-up were exceeded); hence, the measurements
are not indicative of its avalanche ruggedness, which is the highest for all of the technologies.
It is interesting to note that the different MOSFET technologies, although all rated at 650 V
according to their respective datasheets, have different actual breakdown voltages. The SiC
Trench MOSFET has the highest breakdown voltage at approximately 1500 V, followed by
the SiC Planar MOSFET at 1000 V, the Si SJ MOSFET at 915 V, the Cascode JFET at 900 V
and the silicon MOSFET at 830 V.
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The GaN cascode does not have UIS capability and fails at very low avalanche currents
(even for 1 mH inductor at ambient temperature). The current and voltage transients of
the last pass and failure (at a current of 1 A) are shown in Figure 19, whereas the failure
mechanism is discussed in [83].
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Figure 20a shows the peak avalanche current normalised by the 25 ◦C current rating
of the device while Figure 20b shows the measured critical avalanche energy at 25 ◦C,
75 ◦C and 150 ◦C. The results for the Si SJ MOSFET are not presented because the critical
avalanche energy of the device exceeded the capacity of the test circuit. Hence, the Si
SJ MOSFET demonstrated their best avalanche ruggedness performance. The results
demonstrate that the silicon devices (MOSFET and silicon SJ) are more avalanche rugged
than the SiC MOSFETs as their maximum avalanche currents and energies are larger than
the SiC MOSFETs. This is due to lower thermal impedance resulting from larger die size,
hence, lower instantaneous junction temperatures. As the chip sizes of SiC devices are 5 to
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10 times smaller than Si devices [56,84,85], from a material evaluation point of view, some
studies [56,85] consider the avalanche energy density. However, from the application point
of view, the avalanche energy is a more relevant metric.
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3.5. Body Diode Performance

Body diodes are important for dead-time operation and regenerative breaking when
the traction converter operates as a rectifier, converting the AC power generated by the
electrical machine into DC power to recharge the battery. Body diode characteristics also
contribute to the switching performance of power devices, since the stored charge will
contribute to switching losses [86,87]. Between 650 V and 1.2 kV, it is customary to use
SiC Schottky Barrier Diodes (SBDs) because of the excellent switching performance. SiC
SBDs have very little stored charge since they are a majority carrier unipolar device, unlike
PiN diodes that are minority carrier bipolar devices. Another advantage of SiC SBDs is
that the switching losses are temperature invariants, unlike Silicon PiN diodes that have
switching losses that increase with temperature due to the positive temperature coefficient
of the minority carrier lifetime [88]. However, MOSFET body diodes can also be used
instead of SiC SBDs, with the advantage of a reduced component account and improved
power module compactness. However, body diodes are PiN diodes since the voltage
blocking drift region is between the p-body anode and the heavily doped N+ cathode.
This means that there is some stored charge, although not as much as silicon PiN diodes
because of the reduced minority carrier lifetime in SiC compared to silicon [86]. Figure 21a
shows the measured forward voltage characteristics for 1.2 kV SiC Planar MOSFET, SiC
Trench MOSFETs, SiC Cascode JFETs and a reference SiC SBD. The results in Figure 21a
demonstrate the third quadrant forward characteristics of the SiC SBD, and the SiC Cascode
JFET demonstrate a better conduction performance compared to the Planar and Trench SiC
MOSFETs. The absence of the PN junction in the SiC SBD means that by tuning the Schottky
metal work function, low forward voltages can be achieved compared with MOSFET body
diodes. The good performance of the third quadrant characteristics of the SiC Cascode
JFET is because the diode characteristics are that of the low voltage Silicon MOSFET and
not a SiC MOSFET (hence the narrower bandgap of silicon compared to SiC ensures a
lower junction voltage). The smaller bandgap of silicon compared to SiC means that the
junction voltage is lower because of the higher intrinsic carrier concentration. Low junction
voltage is good for conduction loss. However, when it comes to switching loss, the reverse
recovery characteristics of the body diode are important. Figure 21b shows the reverse
recovery characteristics of the body diodes extracted from switching measurements. The
peak negative current at turn-off is a combination of some stored charge and PN junction
capacitance. The ringing in the measurements is due to electromagnetic resonance between
the device junction capacitance and parasitic inductance in the current flow path. A peak
negative current of 15 A is measured for a forward current of 30 A. This will contribute
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to the turn-on switching losses of the transistor into which the diode is commutating
the current.
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Figure 22 shows the reverse recovery characteristics of 650 V SiC Planar, Trench, Cas-
code devices in comparison with a silicon super-junction MOSFET [52]. The performance of
the body diodes of the SiC MOSFETs at 650 V is improved with a reduced peak negative cur-
rent. It can be observed from Figure 22 that the body diode performance of the SiC devices
is considerably better, with a significantly smaller peak negative current compared to the
silicon SJ MOSFET. The switching frequency of the application will ultimately determine
which technology yields a better body diode performance. At low switching frequencies
where body diode conduction losses dominate, it would be advisable to use a technology
with a low forward voltage (SiC SBD or silicon MOSFET body diode). At high switching
frequencies where switching losses dominate, it would be advisable to use a technology
with a low stored charge and reverse currents (SiC SBD, SiC MOSFET body diode at 650 V
and SiC SBD at 1.2 kV).
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3.6. Conduction Performance

Conduction losses are very important, as they are the dominant losses in power
electronic converters operated with low to intermediate switching frequencies. In EV
powertrains, the fundamental frequency of the converter will determine the rotational
speed of the motor, which in turn depends on the demanded power and the number of
motor poles. Typical motor speeds can range from 8000 to 20,000 rpm and fundamental
frequencies between 500 Hz and 1 kHz [89]. Assuming a minimum switching frequency
that is 10 times the fundamental frequency, this means a device switching frequency of
approximately 10 kHz at top speed. While SiC MOSFETs will yield better switching losses
than Si IGBTs, the comparison of the conduction losses between the two technologies is
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less straight forward, especially at 1.2 kV. Under low speed and high torque conditions,
for example during starting or a motor stall, the power devices will operate with low
fundamental frequencies and close to a full load (high current). Under these conditions,
conduction losses are dominant. In high-speed low torque conditions, conduction losses
are less dominant. In this paper, using power device datasheets, the conduction losses
have been calculated for the different power device technologies at 650 V and 1.2 kV
ratings. The devices under comparison all have similar current ratings. The conduction
losses are calculated using the device forward characteristics (or on-resistance vs. current
characteristics) at 150 ◦C to 175 ◦C for a 100 A and 25 A load current. The high junction
temperature is used to account for worst case conditions. Figure 23a shows the results of
these calculations for 1.2 kV rated devices, while Figure 23b shows the results for 650 V
rated devices. The results for 1.2 kV devices demonstrate that the silicon IGBT has the best
projected performance (lowest conduction loss) at 100 A, while the SiC MOSFETs perform
marginally better at 25 A. SiC MOSFETs usually have lower conduction losses compared
to similarly rated silicon IGBTs at low currents, while the IGBTs have lower conduction
losses at high currents. This is because the IGBTs have a knee-voltage Vknee due to the PN
junction at the collector, while MOSFETs do not have this knee voltage. The equations for
the conduction losses for MOSFETs and IGBTs are shown below, where RCE is the slope
∆VCE/∆ICE.

PCON_MOSFET = i2DSRDS (3)

PCON_IGBT = iCE(VCE−on) = iCE(Vknee + iCERCE) (4)
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Figure 23b shows that for 650 V devices at 150 to 175 ◦C junction temperatures,
silicon IGBTs have comparable losses with the SiC MOSFETs at 100 A and 25 A load
currents. Figure 23b includes GaN e-HEMTs (with datasheet reference GS66516T) as well
as a silicon superjunction MOSFET(CoolMOSTM). The results in Figure 23 demonstrate
that silicon IGBTs are comparable to advanced WBG devices in terms of conduction losses
and even outperform them at high load currents at a 1.2 kV level. It has been proposed
by some researchers to combine SiC MOSFETs and IGBTs in hybrid switches to exploit
the advantages of both technologies [90–92]. In these hybrid switches, the SiC MOSFETs
will perform the switching and low current conduction operation, while the silicon IGBTs
will perform the full load current operation. This solution also has cost benefits, given that
silicon IGBTs are considerably cheaper than SiC MOSFETs.
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4. Conclusions

Power electronic devices are critical for HGV electrification. HGV chargers and
traction inverters require highly reliable and energy efficient power devices for energy
conversion. The voltage classes of the devices used are between 650 V and 1200 V. The
devices include SiC Trench MOSFETs, SiC Planar MOSFETs, SiC Cascode JFETs, silicon
SJ MOSFETs, silicon IGBTs, GaN e-HEMTs and GaN Cascode HEMTs. There are many
metrics involved in power device selection, including efficiency, reliability and cost. In this
review, the latest generation devices from leading manufacturers have been assessed in
terms of efficiency and their reliability. The switching energies of 650 V and 1200 V rated
devices were measured along with their short circuit ruggedness, gate oxide robustness,
third quadrant performance and avalanche ruggedness under UIS. Table 1 summarises
the findings.

Table 1. Summary of device performance on efficiency and reliability.

Device Switching
Losses

Conduction
Losses

SC
Ruggedness

Avalanche
Ruggedness

Gate
Reliability

3rd Quadrant
Performance

Si MOSFET + ++ +++ +++ +++ +

Si SJ MOSFET + ++ +++ +++ +++ +

Si IGBT + +++ ++ + +++ −
SiC MOSFETs +++ ++ ++ ++ ++ +++

SiC Cascode JFET +++ ++ ++ ++ +++ ++

GaN e-HEMT +++ ++ − − + +++

GaN Cascode +++ ++ − − +++ +

Note: the relative performance is rated from − to +++.

For EV charger applications where high switching frequencies are used in Vienna
rectifiers and soft-switched DC/DC converters, the high switching losses and longer gate
delays in IGBTs make them not optimal for this application. GaN Cascode HEMTs and e-
HEMTs would be good candidates given their excellent switching characteristics; however,
the poor performance in short circuit conditions and lack of avalanche ruggedness makes
them electrothermally fragile. Silicon SJ MOSFETs have higher switching losses than SiC
MOSFETs and Cascode JFETs given the higher capacitances due to larger die sizes. SiC
Cascode JFETs have excellent switching performance; however, they are limited in short
circuit ruggedness compared to SiC Trench MOSFETs. It should be noted that SiC Cascode
JFETs completely avoid oxide robustness and threshold voltage shifting problems in SiC
MOSFETs. In this application, the SiC Planar, Trench MOSFETs and Cascode JFETs best
meet the requirements of reliability and efficiency. At the 650 V level (for Vienna rectifiers
and traction inverters at 400 V DC bus), the body diode of the SiC MOSFET can be used;
however, at the 1.2 kV level (for DC/DC converters and a traction inverter for 800 V DC
bus), it is advisable to use SiC SBDs.

For the HGV traction inverter, although Silicon MOSFETs and IGBTs provide the best
performance in terms of the gate oxide robustness and avalanche ruggedness, they have
higher switching losses compared to SiC MOSFETs and GaN devices. However, if switching
frequencies are low enough for conduction losses to dominate, then the switching loss is
inconsequential. Silicon IGBTs have a better conduction loss performance at the full load
current, while SiC MOSFETs and GaN devices have a marginally better conduction loss per-
formance at low load currents. An optimal solution could be a hybrid switch that contains
Si IGBTs in parallel with SiC MOSFETs. GaN e-HEMTs and GaN Cascodes have a limited
commercial availability at the 1200 V rating; hence, they are not widely considered for
800 V traction inverter applications. The conduction loss performance of GaN is not better
than IGBTs or SiC MOSFETs. Furthermore, the limited short circuit robustness, avalanche
ruggedness and electrothermal performance in current GaN technologies means they are
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not reliable enough to implement high power traction inverters, especially given the heat
management requirements. SiC Cascode JFETs have excellent switching performances but
a marginally reduced short circuit and avalanche performance compared to SiC Planar
and Trench MOSFETs. The best solution for the traction inverter in terms of losses and
reliability remains the silicon IGBT with an anti-parallel SiC SBD for reverse conduction.

Upcoming challenges: This review has characterised the main power device tech-
nologies suitable for HGV applications. Nevertheless, considering the converter imple-
mentation, other challenges include EMI/EMC [93–95], investigating the impact of high
voltage commutation rates on motor insulation reliability [96–98], power module/converter
designs involving multiple chips in parallel and optimised busbars [99–101], thermal man-
agement and increased power densities [102,103], short circuit detection [104,105] and
application-specific qualification methodologies/guidelines, as suggested by the JEDEC
JC-70 guidelines and the ECPE guidelines for the qualification of power modules used in
motor vehicles (AQG 324) [106]. The increased commercial availability of higher voltage
devices (1.7 kV to 3.3 kV rated) may open new avenues for higher voltage charger designs
and even higher inverter bus voltages. The investigations summarised in this review are
also applicable to electric and hybrid ships, as well as agricultural machinery.
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