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Abstract

:

Short-term load forecasting is critical to ensuring the safe and stable operation of the power system. To this end, this study proposes a load power prediction model that utilizes outlier correction, decomposition, and ensemble reinforcement learning. The novelty of this study is as follows: firstly, the Hampel identifier (HI) is employed to correct outliers in the original data; secondly, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is used to extract the waveform characteristics of the data fully; and, finally, the temporal convolutional network, extreme learning machine, and gate recurrent unit are selected as the basic learners for forecasting load power data. An ensemble reinforcement learning algorithm based on Q-learning was adopted to generate optimal ensemble weights, and the predictive results of the three basic learners are combined. The experimental results of the models for three real load power datasets show that: (a) the utilization of HI improves the model’s forecasting result; (b) CEEMDAN is superior to other decomposition algorithms in forecasting performance; and (c) the proposed ensemble method, based on the Q-learning algorithm, outperforms three single models in accuracy, and achieves smaller prediction errors.
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1. Introduction


Electric load forecasting is an important aspect of modern power system management and a key research focus of power companies [1]. It comprises long-term, medium-term, and short-term forecasting, depending on the specific goals [2]. Notably, short-term load forecasting plays an important role in power generation planning and enables relevant departments to establish appropriate power dispatching plans [3,4], which is crucial for maintaining the safe and stable operation of the power system and enhancing its social benefits [5]. In addition, it facilitates the growth of the power market and boosts economic benefits [6]. Therefore, devising an effective and precise method for short-term load forecasting is of significant importance.



With the need for accurate energy forecasting in mind, various forecasting methods have been developed. Early studies produced several models for short-term power load forecasting, including the Auto-Regressive (AR), Auto-Regressive Moving Average (ARMA), and Auto-Regression Integrated Moving Average (ARIMA) models. A case in point is the work of Chen et al. [7], who employed the ARMA model for short-term power load forecasting. This method utilizes observed data as the initial input, and its fast algorithm produces predicted load values that are in line with the trend in load variation. However, it falls short in terms of accounting for the factors that affect such variation, thus leaving room for enhancement in prediction accuracy.



In recent years, scholars have turned to machine learning [8] and deep learning [9] to improve electric load forecasting accuracy and uncover complex data patterns. Among traditional machine learning algorithms, Support Vector Machine (SVM) [10] is the most widely used in the field of electric load forecasting. Its advantages include the need for relatively few training samples and interpretable features. Hong [11] and Fan et al. [12] have demonstrated the high accuracy of SVM in short-term electric load forecasting. However, as the smart grid continues to develop, power load data have become increasingly numerous and multifaceted, and SVM is confronted with the challenge of slow computing in such situations. Compared to traditional machine learning methods, deep learning methods exhibit stronger fitting capacity and produce better results. Currently, a diverse set of deep learning approaches have been implemented for load forecasting, including the Gated Recurrent Unit (GRU) [13], Temporal Convolutional Network (TCN) [14], Long-Short-Term Memory (LSTM) [15], as well as other deep learning methods [9,16]. Compared to traditional Recurrent Neural Networks (RNN) and LSTM, GRU presents better forecasting results and faster running speed in short-term load forecasting. Wang et al. [17] used the GRU algorithm to extract and learn the time characteristics of load consumption. Their results showed that the predictive accuracy improved by more than 10% compared to RNN. Cai [18] found the GRU uses fewer parameters in the model and the important features were preserved, resulting in faster running speeds compared to LSTM. Imani [19] utilized Convolutional Neural Network (CNN) to extract the nonlinear relationships of residential loads and achieved remarkably precise outcomes. Song et al. [20] devised a thermal load prediction model by utilizing TCN networks, which facilitated the extraction of complex data features and enabled precise load prediction.



Since single prediction models are insufficient in terms of applicability scenarios and prediction accuracy to achieve optimal results [21], a considerable amount of literature has employed hybrid models for prediction. Hybrid models combine data preprocessing, feature selection, optimization algorithms, decomposition algorithms, and other technologies to fully utilize the benefits of disparate methods and improve load power prediction accuracy. Research has revealed that the decomposition method and the ensemble learning method are particularly advantageous among the hybrid models [22].



According to frequency analysis, the electric load exhibits clear cyclical patterns that result from the underlying superposition of multiple components with varying frequencies [23]. Therefore, decomposing time series has become a widely employed method in the area of electric load forecasting. Sun [24] proposed a short-term load forecasting model utilizing Ensemble Empirical Mode Decomposition (EEMD) and neural networks, considering wind power grid connections, and verified better decomposition effects of EEMD than wavelet decomposition. Liu Hui et al. [25] utilized Variational Modal Decomposition (VMD) to decompose load sequences and developed a hybrid forecasting model for accurate prediction, achieving an accuracy of 99.15%. Irene et al. [26] employed a hybrid prediction model combining Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) to enhance the accuracy of energy consumption prediction.



The ensemble learning method combines multiple sets of data with multiple individual learners, whether independent or identical, which have different distributions to improve predictive performance [27]. Popular ensemble learning algorithms include boosting, bagging, and stacking algorithms. Ensemble learning methods are commonly conducted by stacking-based or weight-based strategies [28]. Rho et al. [29] used a stacking ensemble approach to merge short-term load forecasting models to more accurately predict building electric energy consumption. Massaoudi et al. [30] proposed a stacked XGB-LGBM-MLP model to cope with the stochastic variations in load demand. Bento et al. [31] present an automatic framework using deep learning-based stacking methodology to select the best Box–Jenkins models for 24-h ahead load forecasting from a wide range of combinations.



Although the above load power prediction models achieve a satisfactory forecasting effect, some limitations persist, and there is still some room for improvement. Firstly, the current short-term load forecasting models seldom consider detecting and correcting outliers in the original data. Studies have demonstrated that adopting outlier correction can significantly improve the performance of pollution forecasting [32]. Secondly, the existing combination weights of load power ensemble prediction models lack diversity and should take into account different weight distribution strategies for the prediction results generated by different base learners. The literature shows that weight ensemble based on reinforcement learning can offer advantages in wind speed prediction [33,34].



To address the aforementioned research gaps, this paper presents a short-term load forecasting model (HI-CEEMDAN-Q-TEG) based on outlier correction, decomposition, and ensemble reinforcement learning. The contributions and novelty of this paper are summarized as follows:




	
This paper employs an outlier detection method to correct outliers in the original load power data. Such outliers may arise due to human error or other situations. Directly inputting the original data into the model without processing could lead to problems. To address this and identify and correct outliers in the data, this paper utilizes the Hampel identifier (HI) algorithm. This step is crucial as it provides the nonlinear information in the data to the forecasting model;



	
This paper utilizes a decomposition method to extract fully waveform characteristics of the data. Specifically, the CEEMDAN method is utilized in this study to decompose the raw non-stationary load power data. By decomposing the load power data into multiple sub-sequences through CEEMDAN, the waveform characteristics of the data can be extracted thoroughly, ultimately enhancing the performance of the predictor;



	
This paper introduces an ensemble learning algorithm based on reinforcement learning. It is necessary to consider varying weights when combining preliminary predictions from different base learners. This study employs three single models to predict processed load power data, followed by the utilization of the Q-learning method to obtain cluster weights that are suitable for the ensemble forecast. Compared to other ensemble learning algorithms, the Q-learning method deploys agents to learn in the environment through trial and error, resulting in an innovative and superior method.









2. Methodology


2.1. Framework of the Proposed Model


This study presents a novel forecasting model, namely the HI-CEEMDAN-Q-TEG, for predicting load power. The model framework, as depicted in Figure 1, consists of three distinct steps with specific details as follows:



Step 1: Using HI to detect and correct outliers. The original load power data is characterized by fluctuations, randomness, and nonlinearity; therefore, outliers can arise as a result of either equipment or human factors. By using HI, outliers can be identified and corrected in the training set, which eliminates the likelihood of their interference with model training. This approach serves as a valuable tool for enhancing the precision of load power prediction;



Step 2: Applying CEEMDAN to decompose original data into subseries. Given its prominent cyclical characteristics, the load power data can be perceived, from a frequency domain perspective, as a composite of several components with varying frequencies. The CEEMDAN method can adaptively decompose this data into multiple subseries, thereby reducing the model’s non-stationarity and enhancing the predictor’s modeling efficiency and capacity;



Step 3: Using the Q-learning ensemble method for prediction. The load power data prediction is achieved by employing three base learners: the temporal convolutional network (TCN); gate recurrent unit (GRU); and extreme learning machine (ELM), which are referred to as TEG. After correcting for outliers, the TEG is used to make accurate predictions. Ensemble weights for different single models are determined using the Q-learning method. This algorithm updates the weights repeatedly through trial-and-error learning, thereby optimizing the diversity and appropriateness of the ensemble weights.




2.2. Hampel Identifier


HI is a widely used method for detecting and correcting outliers [35]. Due to its excellent effectiveness, many researchers employ this method. To apply the HI algorithm to input data   A = [  a 1  ,  a 2  , … ,  a k  ]  , set the sliding window length as   w = 2 n + 1  . For each sample    a i   , obtain the median    m i   , as well as median absolute deviation (MAD) from the samples of length  n  around the specific center point. Set the evaluation parameter as   α = 0.6745  , and calculate the standard deviation    σ i    using MAD and  a  [36]. The formulas for calculating    m i   , MAD, and    σ i    are as follows [32]:


   m i  = median  (   a  i − n   ,  a  i − n + 1   , … ,  a i  , … ,  a  i + n − 1   ,  a  i + n    )   



(1)






    MAD  i  =    median     (   |   a  i − n   −  m i   |  ,  |   a  i − n + 1   −  m i   |  , … ,      |   a  i + n − 1   −  m i   |   )   



(2)






   σ i  = M A  D i  / α  



(3)







Based on the 3d statistical rule, if the difference between a sample value and the window median exceeds three standard deviations, the window median will replace the sample data [37]:


   |   a i  −  m i   |  > 3  σ i   



(4)







The use of HI allows for the outliers to be corrected in the raw data, which, if left untreated, could potentially disrupt the model training process. The incorporation of HI into data preprocessing leads to an enhanced nonlinear fitting performance of the data.




2.3. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise


CEEMDAN is a decomposition algorithm used to analyze time series data for nonlinearity and non-stationarity [38]. By smoothing the overall data and extracting information about multiple frequencies from the original data, CEEMDAN can decompose the data into sub-sequences with varying frequency and time information. The CEEMDAN algorithm is adaptive, meaning it can automatically select the appropriate noise level based on the unique characteristics of a given signal. This adaptability and robustness make the CEEMDAN algorithm ideal for processing nonlinear and non-stationary signals [39].



Based on the EMD algorithm, the CEEMDAN algorithm makes the signal more stable and accurate in the decomposition process by introducing a noise signal. Meanwhile, it adopts multiple decompositions and average methods to improve the accuracy and stability of signal decomposition [40].



The CEEMDAN algorithm has the advantage of solving mutual interference and noise interference problems between intrinsic mode functions (IMFs). This leads to improved accuracy and stability of signal decomposition.




2.4. Base Learners


2.4.1. Temporal Convolutional Network


The TCN algorithm is a commonly used convolutional network in time series predictions [41]. Because of the causal relationship between load data over time, the prediction at time  t  depends on previous times, and the TCN network effectively maintains this temporal order and causality. TCN consists of three parts: causal convolution; expansive convolution; and residual convolution.



In TCN, causal convolution ensures that the output of the upper layers of the network at time  t  only depends on the input of the lower layers before time  t . Expansion convolution involves setting hyperparameters of the expansion factor to adjust the convolutional interval. To reduce the limitations of downward transmission after nonlinear transformation in the original network structure, TCN adds multiple direct channels to the original network structure, allowing the input information to be directly transmitted to later layers.




2.4.2. Extreme Learning Machine


ELM is an efficient artificial neural network whose principle is based on fully random projections and the least squares method [42]. Fully random projection refers to the projection of input data into a high-dimensional space. This increases the separability of data in the feature space [43]. Through random initialization of the weights of the input and hidden layers, the ELM algorithm can minimize training errors very quickly, facilitating rapid learning and prediction.



ELM can be expressed mathematically as follows [32]:


   y i  = β g  (   W   x i  +  b   )   



(5)




where  β  represents the output weight matrix,   g ( x )   represents the activation function,   W   represents the input weight matrix, and   b   represents the vector of bias.



With   H   representing the output matrix and   Y   representing the true value matrix, the matrix expression for Extreme Learning Machine (ELM) is as follows:


   H β  =  Y   



(6)




where   H   is a matrix whose rows represent the output of the hidden layer for each input sample, and  β  is a matrix of output weights.




2.4.3. Gate Recurrent Unit


In 2014, Cho proposed the Gated Recurrent Unit (GRU) as an improvement on Long-Short-Term Memory (LSTM) [44]. The GRU has two gates, the reset gate and the update gate, which, respectively, determine whether to add historical information to the current state and the relevance of historical information. Compared to the LSTM, the GRU uses fewer parameters in the model and the important features are preserved, resulting in faster running speeds.



The formulas for the update gate as well as reset gate calculation are as follows:


   x t  = σ  (   W x  ∗  [   h  t − 1   ,  x t   ]   )   



(7)






   r t  = σ  (   W r  ∗  [   h  t − 1   ,  x t   ]   )   



(8)




where    x t    represents the current input value;    h  t − 1     represents the state of the previous hidden;  W  represents the matrix of weight.





2.5. Ensemble Reinforcement Learning Method


As a distinct machine learning method, reinforcement learning is different from supervised learning or unsupervised learning due to its continuous interactions with the environment as an agent, which guides subsequent actions by providing feedback on the reward received, aiming to maximize the rewards [45]. The Q-learning method is a reinforcement learning algorithm based on estimated values [46]. Q-learning generates a Q-value table that captures the relationship between each action taken and state. Each value in this table represents the obtained reward for actions taken in each state.



The Q-table approach selects the action with the highest potential reward and uses a penalty and reward mechanism to keep the Q-table in the update until the optimal result is achieved. This happens when a specific condition is met, signifying that the algorithm has found the optimal action for each state. [47]. In this study, we employ the Q-learning method to combine the forecasting outcomes of TCN, ELM, and GRU. As a result, different ensemble weights are generated for each base learner to effectively address the issue of weak robustness associated with a single weight as well as a single model.





3. Case Study


3.1. Data Description


To verify the practicality of the proposed model, three sets of load power data from Pecan Street datasets were utilized in this study [48]. The Pecan Street datasets contain the load power data of 25 households in the Austin area of the United States, recorded at a sampling interval of 15 min in 2018. Figure 2 showcases the load power datasets #1, #2, and #3 collected from the 1st to the 15th of each month in January, April, and September, respectively, in the Austin area. Each dataset comprises 1440 samples, divided into two parts: 1240 training set samples and 200 test set samples. The training sets are utilized to train the single models and the Q-learning ensemble method, while the testing set is utilized to evaluate the performance of all the models discussed in this paper.



Table 1 lists the statistical characteristics of three load power datasets. As observed from Figure 2 and Table 1, these three sets of load power data possess distinct statistical characteristics; however, they all exhibit non-stationarity and volatility.




3.2. Performance Evaluation Indexes


To provide a comprehensive evaluation of the forecasting performance of the models, three statistical indexes are employed in this study: mean absolute error (MAE); root mean square error (RMSE); and mean absolute percentage error (MAPE). The smaller the values of these indexes, the higher the model’s prediction accuracy. The definitions of these indexes are shown as follows:


  M A E =  (    ∑  t = 1  T  |  y ( t ) −  y ^  ( t ) |  )  / T ,  



(9)






  M A P E =  (    ∑  t = 1  T  |  ( y ( t ) −  y ^  ( t ) ) / y ( t ) |  )  / T ,  



(10)






  R M S E =    (    ∑  t = 1  T      [  y ( t ) −  y ^  ( t )  ]   2     )  / T   ,  



(11)




where   y ( t )   is the original load power data at time  t ,    y ^  ( t )   is the forecasted load power data at time  t , and  T  is the number of samples in   y ( t )  .




3.3. Forecasting Results and Analysis


The experiments aimed to compare the proposed hybrid HI-CEEMDAN-Q-TEG model with other relevant models. The main experimental parameters of our hybrid model are given in Appendix A. The experiments were divided into three parts:



In Part I, the models with HI were compared to those without HI to demonstrate the potential efficacy of HI and the performance improvements attainable by using HI in load power forecasting;



Part II compared four commonly used intelligent models running with HI (namely, HI-TCN, HI-ELM, HI-GRU, and HI-BPNN) to demonstrate the superiority of HI-TCN, HI-ELM, and HI-GRU in different datasets. Furthermore, HI-Q-TEG was compared with HI-TCN, HI-ELM, and HI-GRU to demonstrate the effectiveness of the Q-Learning ensemble method;



Part III aimed to verify the advantages of the decomposition method by comparing the results of the HI-Q-TE method with those obtained using the HI-CEEMDAN-Q-TE decomposition algorithm. In addition, different decomposition algorithms were compared to show the superiority of the CEEMDAN decomposition algorithm proposed in this study.



3.3.1. Experimental Results of Part I


In this part, we investigate the impact of employing HI in load power forecasting. Figure 3 depicts the outlier points and the dissimilarity between the original power load data and the data after HI. Table 2 displays the sample entropy (SampEn) values for both the original load power data and the data post HI application. To further investigate the potential gains from HI, the accuracy of HI-based models is compared to that of models sans HI, and we present the percentage enhancements in all three performance evaluation indices in Table 3.



Based on the results presented in Figure 3 and Table 2 and Table 3, this study draws the following conclusions:




	
The application of the HI model leads to the identification and correction of outlier points, which improves the overall quality of the dataset. Figure 2 depicts the presence of outlier points in the original power load data, which can interfere with model training and negatively impact forecasting accuracy;



	
The HI model effectively reduces the complexity of the original data, as evidenced by a lowered value of SampEn. SampEn is a statistical measure that quantifies the complexity of a time series. A lower value of SampEn indicates a higher degree of self-similarity in the sequence, whereas a higher value implies greater complexity. Table 2 indicates that for all three datasets, the values of SampEn were lower in the data processed with the HI model compared to the original load power data;



	
The HI model improves forecasting accuracy compared to models without the HI model. The comparative analysis of HI-CEEMDAN-Q-TEG with CEEMDAN-Q-TEG shows an improvement in MAPE accuracy by 2.6104%, 3.7628%, and 3.2095%, respectively, for datasets #1, #2, and #3, as listed in Table 3. The improvement is due to the correction of outliers. The findings demonstrate that the implementation of the HI model reduces the load power prediction error in all three series.









3.3.2. Experimental Results of Part II


This part of the experiment compares four commonly utilized single intelligent models (HI-TCN, HI-ELM, HI-GRU, and HI-BPNN) with the HI-Q-TEG method. The MAE values for the four single intelligent models across three datasets are displayed in Figure 4, while Table 4 presents the performance evaluation indexes for all four models. In addition, Figure 5, Figure 6 and Figure 7 provide the forecasting results and errors of HI-Q-TEG, HI-TCN, HI-ELM, and HI-GRU across the three datasets. The effectiveness of the Q-Learning ensemble method is presented in Table 5, which highlights the improvement percentages of each method. Notably, the bolded data within the table represents the model evaluation results that resulted in the lowest forecasting error for the respective dataset.



The findings from Figure 4, Figure 5, Figure 6 and Figure 7 and Table 4 and Table 5 support the following conclusions:




	
The prediction performance of the same single models varied across different datasets due to varying volatility and nonlinearity, as evidenced by the differing precision orders for the same dataset across different performance evaluation indexes. However, overall, HI-TCN, HI-ELM, and HI-GRU exhibited the best prediction accuracy across three different datasets, respectively, with HI-TCN producing the most accurate predictions for Dataset #1, HI-ELM for Dataset #2, and HI-GRU for Dataset #3. Thus, incorporating the three mentioned single models as base learners for the ensemble method is recommended;



	
The Q-Learning ensemble algorithm yielded improved forecasting accuracy for load power compared to single intelligent models. Table 5 highlights that comparing HI-Q-TEG with HI-TCN, the MAPE improvement percentages for Dataset #1, Dataset #2, and Dataset #3 are 8.8436%, 5.7540%, and 12.8483%, respectively. Additionally, Figure 4, Figure 5 and Figure 6 display how the Q-Learning ensemble method effectively combines the strengths of various intelligent models and mitigates the negative effect of performance deficiencies in a single model on forecasting accuracy.









3.3.3. Experimental Results of Part III


This part of the experiment compares four decomposition algorithms (WPD, EMD, EEMD, and CEEMDAN) by showcasing their improvement percentages of three performance evaluation indexes for different datasets in Table 6. Additionally, Figure 8, Figure 9 and Figure 10 depict scatter diagram comparisons between the HI-CEEMDAN-Q-TEG method and other decomposition models. The closer the scatter plot points are to the diagonal line, the better the prediction effect of the corresponding model.



From Table 6 and Figure 8, Figure 9 and Figure 10, the following conclusions could be drawn:




	
When comparing models that utilize decomposition algorithms to those that do not, consistent improvements in percentage can be observed. For instance, comparing HI-CEEMDAN-Q-TEG with HI-Q-TEG, the improvements in the RMSE across datasets #1, #2, and #3 with percentage reductions of 43.74%, 38.65%, and 33.09%, respectively. The use of decomposition algorithms breaks down raw load power data into several frequency components, which, in turn, enhances the performance of recognition for models;



	
The proposed decomposition model that is based on the CEEMDAN algorithm provides better forecasting outcomes than other decomposition algorithms. For Dataset #2, the improvement percentage of MAE for HI-WPD-Q-TEG, HI-EMD-Q-TEG, HI-EEMD-Q-TEG, and HI-CEEMDAN-Q-TEG is 25.8923%, 20.9483%, 19.9478%, and 38.3934%, respectively. The CEEMDAN algorithm is highly effective at decomposing both high and low-frequency data, allowing for better handling of the high volatility of raw data. This results in optimal performance for forecasting.











4. Conclusions


Load forecasting is crucial for maintaining the stable operation of the power grid. This paper proposes an outlier correction, decomposition, and ensemble reinforcement learning model for load power prediction. The HI-CEEMDAN-Q-TEG model uses the HI outlier correction method to eliminate outliers. The CEEMDAN decomposition method is employed to break down raw load power data into various subseries to reduce volatility. Furthermore, the commonly used reinforcement learning method Q-learning is utilized to generate optimal weights by combining the forecasting results of three single models: TCN, ELM, and GRU. Based on the aforementioned experiments, some conclusions can be drawn as followed:




	
The utilization of HI significantly improves prediction accuracy. HI detects and eliminates outliers in the original data, reducing their interference in model training, improving its data fitting ability, and ultimately enhancing its forecasting performance;



	
Using TCN, ELM, and GRU as the base learners confer significant advantages, and the ensemble model employing the Q-learning method yields superior forecasting performance compared to individual base learners. As a type of reinforcement learning method, the Q-learning optimizes the weights of base learners via trial and error within the given environment;



	
Out of the four decomposition algorithms examined in this study, CEEMDAN exhibited superior forecasting performance. Unlike the other algorithms, CEEMDAN effectively handles non-stationary data and mitigates the impact of unsteady components on forecasting results;



	
The load power prediction model proposed in this study incorporates several techniques to enhance its accuracy. Firstly, it leverages the use of HI to correct any outliers. Next, it combines the strengths of various intelligent models by employing ensemble reinforcement learning. Additionally, CEEMDAN is adopted to further enhance the prediction results, resulting in exceptional load power prediction performance.








However, there are some limitations to the proposed model in this paper: (a) as a short-term forecasting model, the proposed model is designed to capture immediate changes and it may not be able to capture longer-term trends that develop over weeks, months, or years; and (b) the proposed model is relatively time-consuming when using the CEEMDAN decomposition algorithm. Thus, we intend to construct a parallel computing framework to support the proposed method in future work.
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Nomenclatures




	HI
	Hampel identifier



	CEEMDAN
	complete ensemble empirical mode decomposition with adaptive noise



	AR
	auto regressive



	ARMA
	auto-regressive moving average



	ARIMA
	auto-regression integrated moving average



	SVM
	support vector machine



	GRU
	gated recurrent unit



	TCN
	temporal convolutional network



	LSTM
	long-short-term memory



	RNN
	recurrent neural networks



	CNN
	convolutional neural network



	EEMD
	ensemble empirical mode decomposition



	VMD
	variational modal decomposition



	WPD
	wavelet packet decomposition



	ELM
	extreme learning machine



	MAD
	median absolute deviation



	IMFs
	intrinsic mode functions



	MAE
	mean absolute error



	MAPE
	mean absolute percentage error



	RMSE
	root mean square error



	Q
	Q-Learning algorithm



	TEG
	TCN, ELM and GRU








Appendix A


The main experimental parameters of our hybrid model are given in Table A1.
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Table A1. The main experimental parameters.






Table A1. The main experimental parameters.





	
Name of Parameter

	
Value






	
GRU

	
Size of input units

	
10




	
Size of hidden units

	
100




	
Size of output units

	
1




	
Learning rate

	
0.01




	
TCN

	
Size of kernel

	
3




	
Skip connection

	
False




	
Batchnorm

	
False




	
Q-learning

	
Maximum iteration

	
50




	
Learning rate

	
0.95




	
Discount parameter

	
0.5
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Figure 1. The framework of the proposed model. 
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Figure 2. Three original load power datasets. 
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Figure 3. The HI results of three load power datasets. 
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Figure 4. The MAE of different single intelligent models. 
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Figure 5. The forecasting results and errors for Dataset #1: (a) predicted results; (b) error distribution. 
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Figure 6. The forecasting results and errors for Dataset #2: (a) predicted results; (b) error distribution. 
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Figure 7. The forecasting results and errors for Dataset #3: (a) predicted results; (b) error distribution. 
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Figure 8. The prediction comparison results with other decomposition algorithms in Dataset #1. 
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Figure 9. The prediction comparison results with other decomposition algorithms in Dataset #2. 
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Figure 10. The prediction comparison results with other decomposition algorithms in Dataset #3. 
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Table 1. The statistical characteristics of three power consumption datasets [48].
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	Dataset
	Minimum (kW)
	Maximum (kW)
	Mean (kW)
	Standard Deviation (kW)





	#1
	133.1340
	827.8200
	373.6066
	121.3303



	#2
	161.3510
	976.8730
	351.2301
	136.5601



	#3
	200.5950
	1653.8300
	677.7043
	288.2719
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Table 2. The SampEn of load power data before HI and data after HI.
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	SampEn
	Dataset #1
	Dataset #2
	Dataset #3





	Data before HI
	6.2364
	7.0211
	6.1759



	Data after HI
	6.2275
	7.0139
	6.1654
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Table 3. The improvement by using HI.
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Dataset

	
Model

	
PMAE (%)

	
PMAPE (%)

	
PRMSE (%)






	
#1

	
HI-TCN vs. TCN

	
4.5966

	
4.0256

	
5.3476




	
HI-ELM vs. ELM

	
6.8284

	
7.0817

	
8.2709




	
HI-GRU vs. GRU

	
5.3423

	
4.3212

	
4.9438




	
HI-Q-TEG vs. Q-TEG

	
4.9299

	
5.0250

	
6.2904




	
HI-CEEMDAN-Q-TEG vs. CEEMDAN-Q-TEG

	
3.4634

	
2.6104

	
3.5044




	
#2

	
HI-TCN vs. TCN

	
2.5698

	
3.9567

	
3.0261




	
HI-ELM vs. ELM

	
3.3538

	
2.5823

	
0.9395




	
HI-GRU vs. GRU

	
3.3243

	
4.9023

	
4.0294




	
HI-Q-TEG vs. Q-TEG

	
4.0959

	
3.9908

	
2.9216




	
HI-CEEMDAN-Q-TEG vs. CEEMDAN-Q-TEG

	
7.6677

	
3.7628

	
0.7874




	
#3

	
HI-TCN vs. TCN

	
2.9335

	
4.8224

	
5.5556




	
HI-ELM vs. ELM

	
0.7656

	
3.9408

	
3.8763




	
HI-GRU vs. GRU

	
1.3948

	
2.7834

	
3.9056




	
HI-Q-TEG vs. Q-TEG

	
3.0153

	
4.4914

	
5.2185




	
HI-CEEMDAN-Q-TEG vs. CEEMDAN-Q-TEG

	
2.7840

	
3.2095

	
4.2586
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Table 4. The evaluation of forecasting results for the single intelligent models 1.
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Dataset

	
Model

	
MAE (kW)

	
MAPE (%)

	
RMSE (kW)






	
#1

	
HI-TCN

	
20.3184

	
12.1070

	
33.2972




	
HI-ELM

	
23.4916

	
12.4653

	
35.7800




	
HI-GRU

	
22.9000

	
13.1992

	
34.5907




	
HI-BPNN

	
24.2484

	
15.5232

	
34.9866




	
#2

	
HI-TCN

	
11.6604

	
9.5715

	
25.5669




	
HI-ELM

	
10.2753

	
8.4323

	
24.5534




	
HI-GRU

	
10.4699

	
8.7681

	
24.7721




	
HI-BPNN

	
12.9091

	
13.5991

	
27.6510




	
#3

	
HI-TCN

	
31.1954

	
13.1659

	
47.4673




	
HI-ELM

	
30.5709

	
12.9044

	
48.3280




	
HI-GRU

	
29.4231

	
12.6587

	
47.1891




	
HI-BPNN

	
34.6515

	
13.7168

	
51.9016








1 The values in bold represents the model evaluation results that resulted in the lowest forecasting error.
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Table 5. The improvement of the Q-Learning ensemble method.
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Dataset

	
Model

	
PMAE (%)

	
PMAPE (%)

	
PRMSE (%)






	
#1

	
HI-Q-TEG vs. HI-TCN

	
4.3723

	
8.8436

	
0.7334




	
HI-Q-TEG vs. HI-ELM

	
6.9519

	
11.4638

	
3.4204




	
HI-Q-TEG vs. HI-GRU

	
5.6687

	
9.5325

	
1.2771




	
#2

	
HI-Q-TEG vs. HI-TCN

	
4.8393

	
5.7540

	
2.2847




	
HI-Q-TEG vs. HI-ELM

	
3.6675

	
4.3632

	
2.3143




	
HI-Q-TEG vs. HI-GRU

	
4.2632

	
5.7205

	
2.7620




	
#3

	
HI-Q-TEG vs. HI-TCN

	
4.1633

	
12.8483

	
2.6601




	
HI-Q-TEG vs. HI-ELM

	
3.3152

	
11.0823

	
3.6086




	
HI-Q-TEG vs. HI-GRU

	
1.7167

	
9.3564

	
2.3495
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Table 6. The improvement percentages of different decomposition algorithms.
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Dataset

	
Model

	
PMAE (%)

	
PMAPE (%)

	
PRMSE (%)






	
#1

	
HI-WPD-Q-TEG vs. HI-Q-TEG

	
47.3353

	
65.2986

	
39.5611




	
HI-EMD-Q-TEG vs. HI-Q-TEG

	
26.5890

	
50.7157

	
18.6278




	
HI-EEMD-Q-TEG vs. HI-Q-TEG

	
35.4821

	
57.8237

	
25.1166




	
HI-CEEMDAN-Q-TEG vs. HI-Q-TEG

	
52.9294

	
68.9604

	
43.7355




	
#2

	
HI-WPD-Q-TEG vs. HI-Q-TEG

	
25.8923

	
57.3398

	
30.6425




	
HI-EMD-Q-TEG vs. HI-Q-TEG

	
20.9483

	
55.8583

	
22.1706




	
HI-EEMD-Q-TEG vs. HI-Q-TEG

	
19.9478

	
53.8074

	
23.2814




	
HI-CEEMDAN-Q-TEG vs. HI-Q-TEG

	
38.3934

	
65.1822

	
38.6528




	
#3

	
HI-WPD-Q-TEG vs. HI-Q-TEG

	
31.1852

	
30.2364

	
25.3324




	
HI-EMD-Q-TEG vs. HI-Q-TEG

	
26.2456

	
25.6166

	
24.6462




	
HI-EEMD-Q-TEG vs. HI-Q-TEG

	
34.5388

	
26.2974

	
30.2950




	
HI-CEEMDAN-Q-TEG vs. HI-Q-TEG

	
36.0141

	
32.7952

	
33.0906
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