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Abstract: Short-term load forecasting is critical to ensuring the safe and stable operation of the
power system. To this end, this study proposes a load power prediction model that utilizes outlier
correction, decomposition, and ensemble reinforcement learning. The novelty of this study is as
follows: firstly, the Hampel identifier (HI) is employed to correct outliers in the original data; secondly,
the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is used
to extract the waveform characteristics of the data fully; and, finally, the temporal convolutional
network, extreme learning machine, and gate recurrent unit are selected as the basic learners for
forecasting load power data. An ensemble reinforcement learning algorithm based on Q-learning was
adopted to generate optimal ensemble weights, and the predictive results of the three basic learners
are combined. The experimental results of the models for three real load power datasets show that:
(a) the utilization of HI improves the model’s forecasting result; (b) CEEMDAN is superior to other
decomposition algorithms in forecasting performance; and (c) the proposed ensemble method, based
on the Q-learning algorithm, outperforms three single models in accuracy, and achieves smaller
prediction errors.

Keywords: short-term load forecasting; outlier correction; decomposition; ensemble reinforcement
learning

1. Introduction

Electric load forecasting is an important aspect of modern power system management
and a key research focus of power companies [1]. It comprises long-term, medium-term,
and short-term forecasting, depending on the specific goals [2]. Notably, short-term load
forecasting plays an important role in power generation planning and enables relevant
departments to establish appropriate power dispatching plans [3,4], which is crucial for
maintaining the safe and stable operation of the power system and enhancing its social
benefits [5]. In addition, it facilitates the growth of the power market and boosts economic
benefits [6]. Therefore, devising an effective and precise method for short-term load
forecasting is of significant importance.

With the need for accurate energy forecasting in mind, various forecasting meth-
ods have been developed. Early studies produced several models for short-term power
load forecasting, including the Auto-Regressive (AR), Auto-Regressive Moving Average
(ARMA), and Auto-Regression Integrated Moving Average (ARIMA) models. A case in
point is the work of Chen et al. [7], who employed the ARMA model for short-term power
load forecasting. This method utilizes observed data as the initial input, and its fast al-
gorithm produces predicted load values that are in line with the trend in load variation.
However, it falls short in terms of accounting for the factors that affect such variation, thus
leaving room for enhancement in prediction accuracy.

In recent years, scholars have turned to machine learning [8] and deep learning [9]
to improve electric load forecasting accuracy and uncover complex data patterns. Among
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traditional machine learning algorithms, Support Vector Machine (SVM) [10] is the most
widely used in the field of electric load forecasting. Its advantages include the need for
relatively few training samples and interpretable features. Hong [11] and Fan et al. [12] have
demonstrated the high accuracy of SVM in short-term electric load forecasting. However, as
the smart grid continues to develop, power load data have become increasingly numerous
and multifaceted, and SVM is confronted with the challenge of slow computing in such
situations. Compared to traditional machine learning methods, deep learning methods
exhibit stronger fitting capacity and produce better results. Currently, a diverse set of deep
learning approaches have been implemented for load forecasting, including the Gated
Recurrent Unit (GRU) [13], Temporal Convolutional Network (TCN) [14], Long-Short-
Term Memory (LSTM) [15], as well as other deep learning methods [9,16]. Compared to
traditional Recurrent Neural Networks (RNN) and LSTM, GRU presents better forecasting
results and faster running speed in short-term load forecasting. Wang et al. [17] used the
GRU algorithm to extract and learn the time characteristics of load consumption. Their
results showed that the predictive accuracy improved by more than 10% compared to RNN.
Cai [18] found the GRU uses fewer parameters in the model and the important features
were preserved, resulting in faster running speeds compared to LSTM. Imani [19] utilized
Convolutional Neural Network (CNN) to extract the nonlinear relationships of residential
loads and achieved remarkably precise outcomes. Song et al. [20] devised a thermal load
prediction model by utilizing TCN networks, which facilitated the extraction of complex
data features and enabled precise load prediction.

Since single prediction models are insufficient in terms of applicability scenarios and
prediction accuracy to achieve optimal results [21], a considerable amount of literature
has employed hybrid models for prediction. Hybrid models combine data preprocessing,
feature selection, optimization algorithms, decomposition algorithms, and other technolo-
gies to fully utilize the benefits of disparate methods and improve load power prediction
accuracy. Research has revealed that the decomposition method and the ensemble learning
method are particularly advantageous among the hybrid models [22].

According to frequency analysis, the electric load exhibits clear cyclical patterns that
result from the underlying superposition of multiple components with varying frequen-
cies [23]. Therefore, decomposing time series has become a widely employed method
in the area of electric load forecasting. Sun [24] proposed a short-term load forecasting
model utilizing Ensemble Empirical Mode Decomposition (EEMD) and neural networks,
considering wind power grid connections, and verified better decomposition effects of
EEMD than wavelet decomposition. Liu Hui et al. [25] utilized Variational Modal Decom-
position (VMD) to decompose load sequences and developed a hybrid forecasting model
for accurate prediction, achieving an accuracy of 99.15%. Irene et al. [26] employed a hybrid
prediction model combining Complete Ensemble Empirical Mode Decomposition with
Adaptive Noise (CEEMDAN) to enhance the accuracy of energy consumption prediction.

The ensemble learning method combines multiple sets of data with multiple individual
learners, whether independent or identical, which have different distributions to improve
predictive performance [27]. Popular ensemble learning algorithms include boosting,
bagging, and stacking algorithms. Ensemble learning methods are commonly conducted
by stacking-based or weight-based strategies [28]. Rho et al. [29] used a stacking ensemble
approach to merge short-term load forecasting models to more accurately predict building
electric energy consumption. Massaoudi et al. [30] proposed a stacked XGB-LGBM-MLP
model to cope with the stochastic variations in load demand. Bento et al. [31] present an
automatic framework using deep learning-based stacking methodology to select the best
Box–Jenkins models for 24-h ahead load forecasting from a wide range of combinations.

Although the above load power prediction models achieve a satisfactory forecasting
effect, some limitations persist, and there is still some room for improvement. Firstly,
the current short-term load forecasting models seldom consider detecting and correcting
outliers in the original data. Studies have demonstrated that adopting outlier correction
can significantly improve the performance of pollution forecasting [32]. Secondly, the
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existing combination weights of load power ensemble prediction models lack diversity and
should take into account different weight distribution strategies for the prediction results
generated by different base learners. The literature shows that weight ensemble based on
reinforcement learning can offer advantages in wind speed prediction [33,34].

To address the aforementioned research gaps, this paper presents a short-term load
forecasting model (HI-CEEMDAN-Q-TEG) based on outlier correction, decomposition,
and ensemble reinforcement learning. The contributions and novelty of this paper are
summarized as follows:

• This paper employs an outlier detection method to correct outliers in the original load
power data. Such outliers may arise due to human error or other situations. Directly
inputting the original data into the model without processing could lead to problems.
To address this and identify and correct outliers in the data, this paper utilizes the
Hampel identifier (HI) algorithm. This step is crucial as it provides the nonlinear
information in the data to the forecasting model;

• This paper utilizes a decomposition method to extract fully waveform characteristics
of the data. Specifically, the CEEMDAN method is utilized in this study to decompose
the raw non-stationary load power data. By decomposing the load power data into
multiple sub-sequences through CEEMDAN, the waveform characteristics of the data
can be extracted thoroughly, ultimately enhancing the performance of the predictor;

• This paper introduces an ensemble learning algorithm based on reinforcement learning.
It is necessary to consider varying weights when combining preliminary predictions
from different base learners. This study employs three single models to predict
processed load power data, followed by the utilization of the Q-learning method to
obtain cluster weights that are suitable for the ensemble forecast. Compared to other
ensemble learning algorithms, the Q-learning method deploys agents to learn in the
environment through trial and error, resulting in an innovative and superior method.

2. Methodology
2.1. Framework of the Proposed Model

This study presents a novel forecasting model, namely the HI-CEEMDAN-Q-TEG, for
predicting load power. The model framework, as depicted in Figure 1, consists of three
distinct steps with specific details as follows:

Step 1: Using HI to detect and correct outliers. The original load power data is
characterized by fluctuations, randomness, and nonlinearity; therefore, outliers can arise
as a result of either equipment or human factors. By using HI, outliers can be identified
and corrected in the training set, which eliminates the likelihood of their interference with
model training. This approach serves as a valuable tool for enhancing the precision of load
power prediction;

Step 2: Applying CEEMDAN to decompose original data into subseries. Given its
prominent cyclical characteristics, the load power data can be perceived, from a frequency
domain perspective, as a composite of several components with varying frequencies. The
CEEMDAN method can adaptively decompose this data into multiple subseries, thereby
reducing the model’s non-stationarity and enhancing the predictor’s modeling efficiency
and capacity;

Step 3: Using the Q-learning ensemble method for prediction. The load power data
prediction is achieved by employing three base learners: the temporal convolutional
network (TCN); gate recurrent unit (GRU); and extreme learning machine (ELM), which
are referred to as TEG. After correcting for outliers, the TEG is used to make accurate
predictions. Ensemble weights for different single models are determined using the Q-
learning method. This algorithm updates the weights repeatedly through trial-and-error
learning, thereby optimizing the diversity and appropriateness of the ensemble weights.
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2.2. Hampel Identifier

HI is a widely used method for detecting and correcting outliers [35]. Due to its
excellent effectiveness, many researchers employ this method. To apply the HI algorithm
to input data A = [a1, a2, . . . , ak], set the sliding window length as w = 2n + 1. For each
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sample ai, obtain the median mi, as well as median absolute deviation (MAD) from the
samples of length n around the specific center point. Set the evaluation parameter as
α = 0.6745, and calculate the standard deviation σi using MAD and a [36]. The formulas
for calculating mi, MAD, and σi are as follows [32]:

mi = median(ai−n, ai−n+1, . . . , ai, . . . , ai+n−1, ai+n) (1)

MADi = median (|ai−n −mi|, |ai−n+1 −mi|, . . . , |ai+n−1 −mi|) (2)

σi = MADi/α (3)

Based on the 3d statistical rule, if the difference between a sample value and the
window median exceeds three standard deviations, the window median will replace the
sample data [37]:

|ai −mi| > 3σi (4)

The use of HI allows for the outliers to be corrected in the raw data, which, if left
untreated, could potentially disrupt the model training process. The incorporation of HI
into data preprocessing leads to an enhanced nonlinear fitting performance of the data.

2.3. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

CEEMDAN is a decomposition algorithm used to analyze time series data for nonlin-
earity and non-stationarity [38]. By smoothing the overall data and extracting information
about multiple frequencies from the original data, CEEMDAN can decompose the data
into sub-sequences with varying frequency and time information. The CEEMDAN algo-
rithm is adaptive, meaning it can automatically select the appropriate noise level based
on the unique characteristics of a given signal. This adaptability and robustness make the
CEEMDAN algorithm ideal for processing nonlinear and non-stationary signals [39].

Based on the EMD algorithm, the CEEMDAN algorithm makes the signal more stable
and accurate in the decomposition process by introducing a noise signal. Meanwhile, it
adopts multiple decompositions and average methods to improve the accuracy and stability
of signal decomposition [40].

The CEEMDAN algorithm has the advantage of solving mutual interference and noise
interference problems between intrinsic mode functions (IMFs). This leads to improved
accuracy and stability of signal decomposition.

2.4. Base Learners
2.4.1. Temporal Convolutional Network

The TCN algorithm is a commonly used convolutional network in time series predic-
tions [41]. Because of the causal relationship between load data over time, the prediction at
time t depends on previous times, and the TCN network effectively maintains this temporal
order and causality. TCN consists of three parts: causal convolution; expansive convolution;
and residual convolution.

In TCN, causal convolution ensures that the output of the upper layers of the network
at time t only depends on the input of the lower layers before time t. Expansion convolution
involves setting hyperparameters of the expansion factor to adjust the convolutional inter-
val. To reduce the limitations of downward transmission after nonlinear transformation in
the original network structure, TCN adds multiple direct channels to the original network
structure, allowing the input information to be directly transmitted to later layers.

2.4.2. Extreme Learning Machine

ELM is an efficient artificial neural network whose principle is based on fully random
projections and the least squares method [42]. Fully random projection refers to the
projection of input data into a high-dimensional space. This increases the separability
of data in the feature space [43]. Through random initialization of the weights of the
input and hidden layers, the ELM algorithm can minimize training errors very quickly,
facilitating rapid learning and prediction.



Energies 2023, 16, 4401 6 of 16

ELM can be expressed mathematically as follows [32]:

yi = βg(Wxi + b) (5)

where β represents the output weight matrix, g(x) represents the activation function, W
represents the input weight matrix, and b represents the vector of bias.

With H representing the output matrix and Y representing the true value matrix, the
matrix expression for Extreme Learning Machine (ELM) is as follows:

Hβ = Y (6)

where H is a matrix whose rows represent the output of the hidden layer for each input
sample, and β is a matrix of output weights.

2.4.3. Gate Recurrent Unit

In 2014, Cho proposed the Gated Recurrent Unit (GRU) as an improvement on Long-
Short-Term Memory (LSTM) [44]. The GRU has two gates, the reset gate and the update
gate, which, respectively, determine whether to add historical information to the current
state and the relevance of historical information. Compared to the LSTM, the GRU uses
fewer parameters in the model and the important features are preserved, resulting in faster
running speeds.

The formulas for the update gate as well as reset gate calculation are as follows:

xt = σ(Wx ∗ [ht−1, xt]) (7)

rt = σ(Wr ∗ [ht−1, xt]) (8)

where xt represents the current input value; ht−1 represents the state of the previous hidden;
W represents the matrix of weight.

2.5. Ensemble Reinforcement Learning Method

As a distinct machine learning method, reinforcement learning is different from
supervised learning or unsupervised learning due to its continuous interactions with
the environment as an agent, which guides subsequent actions by providing feedback on
the reward received, aiming to maximize the rewards [45]. The Q-learning method is a
reinforcement learning algorithm based on estimated values [46]. Q-learning generates
a Q-value table that captures the relationship between each action taken and state. Each
value in this table represents the obtained reward for actions taken in each state.

The Q-table approach selects the action with the highest potential reward and uses a
penalty and reward mechanism to keep the Q-table in the update until the optimal result
is achieved. This happens when a specific condition is met, signifying that the algorithm
has found the optimal action for each state. [47]. In this study, we employ the Q-learning
method to combine the forecasting outcomes of TCN, ELM, and GRU. As a result, different
ensemble weights are generated for each base learner to effectively address the issue of
weak robustness associated with a single weight as well as a single model.

3. Case Study
3.1. Data Description

To verify the practicality of the proposed model, three sets of load power data from
Pecan Street datasets were utilized in this study [48]. The Pecan Street datasets contain the
load power data of 25 households in the Austin area of the United States, recorded at a
sampling interval of 15 min in 2018. Figure 2 showcases the load power datasets #1, #2,
and #3 collected from the 1st to the 15th of each month in January, April, and September,
respectively, in the Austin area. Each dataset comprises 1440 samples, divided into two
parts: 1240 training set samples and 200 test set samples. The training sets are utilized
to train the single models and the Q-learning ensemble method, while the testing set is
utilized to evaluate the performance of all the models discussed in this paper.
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Table 1 lists the statistical characteristics of three load power datasets. As observed
from Figure 2 and Table 1, these three sets of load power data possess distinct statistical
characteristics; however, they all exhibit non-stationarity and volatility.

Table 1. The statistical characteristics of three power consumption datasets [48].

Dataset Minimum (kW) Maximum (kW) Mean (kW) Standard Deviation (kW)

#1 133.1340 827.8200 373.6066 121.3303
#2 161.3510 976.8730 351.2301 136.5601
#3 200.5950 1653.8300 677.7043 288.2719

3.2. Performance Evaluation Indexes

To provide a comprehensive evaluation of the forecasting performance of the models,
three statistical indexes are employed in this study: mean absolute error (MAE); root mean
square error (RMSE); and mean absolute percentage error (MAPE). The smaller the values
of these indexes, the higher the model’s prediction accuracy. The definitions of these
indexes are shown as follows:

MAE =

(
T

∑
t=1

∣∣∣∣∣y(t)− ŷ(t)

∣∣∣∣∣
)

/T, (9)

MAPE =

(
T

∑
t=1

∣∣∣∣∣(y(t)− ŷ(t))/y(t)

∣∣∣∣∣
)

/T, (10)

RMSE =

√√√√( T

∑
t=1

[y(t)− ŷ(t)]2
)

/T, (11)
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where y(t) is the original load power data at time t, ŷ(t) is the forecasted load power data
at time t, and T is the number of samples in y(t).

3.3. Forecasting Results and Analysis

The experiments aimed to compare the proposed hybrid HI-CEEMDAN-Q-TEG model
with other relevant models. The main experimental parameters of our hybrid model are
given in Appendix A. The experiments were divided into three parts:

In Part I, the models with HI were compared to those without HI to demonstrate the
potential efficacy of HI and the performance improvements attainable by using HI in load
power forecasting;

Part II compared four commonly used intelligent models running with HI (namely, HI-
TCN, HI-ELM, HI-GRU, and HI-BPNN) to demonstrate the superiority of HI-TCN, HI-ELM,
and HI-GRU in different datasets. Furthermore, HI-Q-TEG was compared with HI-TCN,
HI-ELM, and HI-GRU to demonstrate the effectiveness of the Q-Learning ensemble method;

Part III aimed to verify the advantages of the decomposition method by comparing
the results of the HI-Q-TE method with those obtained using the HI-CEEMDAN-Q-TE
decomposition algorithm. In addition, different decomposition algorithms were compared
to show the superiority of the CEEMDAN decomposition algorithm proposed in this study.

3.3.1. Experimental Results of Part I

In this part, we investigate the impact of employing HI in load power forecasting.
Figure 3 depicts the outlier points and the dissimilarity between the original power load
data and the data after HI. Table 2 displays the sample entropy (SampEn) values for both
the original load power data and the data post HI application. To further investigate the
potential gains from HI, the accuracy of HI-based models is compared to that of models
sans HI, and we present the percentage enhancements in all three performance evaluation
indices in Table 3.
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Table 2. The SampEn of load power data before HI and data after HI.

SampEn Dataset #1 Dataset #2 Dataset #3

Data before HI 6.2364 7.0211 6.1759
Data after HI 6.2275 7.0139 6.1654

Table 3. The improvement by using HI.

Dataset Model PMAE (%) PMAPE (%) PRMSE (%)

#1

HI-TCN vs. TCN 4.5966 4.0256 5.3476
HI-ELM vs. ELM 6.8284 7.0817 8.2709
HI-GRU vs. GRU 5.3423 4.3212 4.9438

HI-Q-TEG vs. Q-TEG 4.9299 5.0250 6.2904
HI-CEEMDAN-Q-TEG vs. CEEMDAN-Q-TEG 3.4634 2.6104 3.5044

#2

HI-TCN vs. TCN 2.5698 3.9567 3.0261
HI-ELM vs. ELM 3.3538 2.5823 0.9395
HI-GRU vs. GRU 3.3243 4.9023 4.0294

HI-Q-TEG vs. Q-TEG 4.0959 3.9908 2.9216
HI-CEEMDAN-Q-TEG vs. CEEMDAN-Q-TEG 7.6677 3.7628 0.7874

#3

HI-TCN vs. TCN 2.9335 4.8224 5.5556
HI-ELM vs. ELM 0.7656 3.9408 3.8763
HI-GRU vs. GRU 1.3948 2.7834 3.9056

HI-Q-TEG vs. Q-TEG 3.0153 4.4914 5.2185
HI-CEEMDAN-Q-TEG vs. CEEMDAN-Q-TEG 2.7840 3.2095 4.2586

Based on the results presented in Figure 3 and Tables 2 and 3, this study draws the
following conclusions:

• The application of the HI model leads to the identification and correction of outlier
points, which improves the overall quality of the dataset. Figure 2 depicts the presence
of outlier points in the original power load data, which can interfere with model
training and negatively impact forecasting accuracy;

• The HI model effectively reduces the complexity of the original data, as evidenced
by a lowered value of SampEn. SampEn is a statistical measure that quantifies the
complexity of a time series. A lower value of SampEn indicates a higher degree of
self-similarity in the sequence, whereas a higher value implies greater complexity.
Table 2 indicates that for all three datasets, the values of SampEn were lower in the
data processed with the HI model compared to the original load power data;

• The HI model improves forecasting accuracy compared to models without the HI
model. The comparative analysis of HI-CEEMDAN-Q-TEG with CEEMDAN-Q-
TEG shows an improvement in MAPE accuracy by 2.6104%, 3.7628%, and 3.2095%,
respectively, for datasets #1, #2, and #3, as listed in Table 3. The improvement is due to
the correction of outliers. The findings demonstrate that the implementation of the HI
model reduces the load power prediction error in all three series.

3.3.2. Experimental Results of Part II

This part of the experiment compares four commonly utilized single intelligent models
(HI-TCN, HI-ELM, HI-GRU, and HI-BPNN) with the HI-Q-TEG method. The MAE values
for the four single intelligent models across three datasets are displayed in Figure 4, while
Table 4 presents the performance evaluation indexes for all four models. In addition,
Figures 5–7 provide the forecasting results and errors of HI-Q-TEG, HI-TCN, HI-ELM, and
HI-GRU across the three datasets. The effectiveness of the Q-Learning ensemble method
is presented in Table 5, which highlights the improvement percentages of each method.
Notably, the bolded data within the table represents the model evaluation results that
resulted in the lowest forecasting error for the respective dataset.
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Table 4. The evaluation of forecasting results for the single intelligent models 1.

Dataset Model MAE (kW) MAPE (%) RMSE (kW)

#1

HI-TCN 20.3184 12.1070 33.2972
HI-ELM 23.4916 12.4653 35.7800
HI-GRU 22.9000 13.1992 34.5907

HI-BPNN 24.2484 15.5232 34.9866

#2

HI-TCN 11.6604 9.5715 25.5669
HI-ELM 10.2753 8.4323 24.5534
HI-GRU 10.4699 8.7681 24.7721

HI-BPNN 12.9091 13.5991 27.6510

#3

HI-TCN 31.1954 13.1659 47.4673
HI-ELM 30.5709 12.9044 48.3280
HI-GRU 29.4231 12.6587 47.1891

HI-BPNN 34.6515 13.7168 51.9016
1 The values in bold represents the model evaluation results that resulted in the lowest forecasting error.
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Table 5. The improvement of the Q-Learning ensemble method.

Dataset Model PMAE (%) PMAPE (%) PRMSE (%)

#1
HI-Q-TEG vs. HI-TCN 4.3723 8.8436 0.7334
HI-Q-TEG vs. HI-ELM 6.9519 11.4638 3.4204
HI-Q-TEG vs. HI-GRU 5.6687 9.5325 1.2771

#2
HI-Q-TEG vs. HI-TCN 4.8393 5.7540 2.2847
HI-Q-TEG vs. HI-ELM 3.6675 4.3632 2.3143
HI-Q-TEG vs. HI-GRU 4.2632 5.7205 2.7620

#3
HI-Q-TEG vs. HI-TCN 4.1633 12.8483 2.6601
HI-Q-TEG vs. HI-ELM 3.3152 11.0823 3.6086
HI-Q-TEG vs. HI-GRU 1.7167 9.3564 2.3495

The findings from Figures 4–7 and Tables 4 and 5 support the following conclusions:

• The prediction performance of the same single models varied across different datasets
due to varying volatility and nonlinearity, as evidenced by the differing precision
orders for the same dataset across different performance evaluation indexes. How-
ever, overall, HI-TCN, HI-ELM, and HI-GRU exhibited the best prediction accuracy
across three different datasets, respectively, with HI-TCN producing the most accurate
predictions for Dataset #1, HI-ELM for Dataset #2, and HI-GRU for Dataset #3. Thus,
incorporating the three mentioned single models as base learners for the ensemble
method is recommended;

• The Q-Learning ensemble algorithm yielded improved forecasting accuracy for load
power compared to single intelligent models. Table 5 highlights that comparing HI-
Q-TEG with HI-TCN, the MAPE improvement percentages for Dataset #1, Dataset
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#2, and Dataset #3 are 8.8436%, 5.7540%, and 12.8483%, respectively. Additionally,
Figures 4–6 display how the Q-Learning ensemble method effectively combines the
strengths of various intelligent models and mitigates the negative effect of performance
deficiencies in a single model on forecasting accuracy.

3.3.3. Experimental Results of Part III

This part of the experiment compares four decomposition algorithms (WPD, EMD,
EEMD, and CEEMDAN) by showcasing their improvement percentages of three perfor-
mance evaluation indexes for different datasets in Table 6. Additionally, Figures 8–10
depict scatter diagram comparisons between the HI-CEEMDAN-Q-TEG method and other
decomposition models. The closer the scatter plot points are to the diagonal line, the better
the prediction effect of the corresponding model.

Table 6. The improvement percentages of different decomposition algorithms.

Dataset Model PMAE (%) PMAPE (%) PRMSE (%)

#1

HI-WPD-Q-TEG vs. HI-Q-TEG 47.3353 65.2986 39.5611
HI-EMD-Q-TEG vs. HI-Q-TEG 26.5890 50.7157 18.6278

HI-EEMD-Q-TEG vs. HI-Q-TEG 35.4821 57.8237 25.1166
HI-CEEMDAN-Q-TEG vs. HI-Q-TEG 52.9294 68.9604 43.7355

#2

HI-WPD-Q-TEG vs. HI-Q-TEG 25.8923 57.3398 30.6425
HI-EMD-Q-TEG vs. HI-Q-TEG 20.9483 55.8583 22.1706

HI-EEMD-Q-TEG vs. HI-Q-TEG 19.9478 53.8074 23.2814
HI-CEEMDAN-Q-TEG vs. HI-Q-TEG 38.3934 65.1822 38.6528

#3

HI-WPD-Q-TEG vs. HI-Q-TEG 31.1852 30.2364 25.3324
HI-EMD-Q-TEG vs. HI-Q-TEG 26.2456 25.6166 24.6462

HI-EEMD-Q-TEG vs. HI-Q-TEG 34.5388 26.2974 30.2950
HI-CEEMDAN-Q-TEG vs. HI-Q-TEG 36.0141 32.7952 33.0906
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From Table 6 and Figures 8–10, the following conclusions could be drawn:

• When comparing models that utilize decomposition algorithms to those that do not,
consistent improvements in percentage can be observed. For instance, comparing HI-
CEEMDAN-Q-TEG with HI-Q-TEG, the improvements in the RMSE across datasets
#1, #2, and #3 with percentage reductions of 43.74%, 38.65%, and 33.09%, respectively.
The use of decomposition algorithms breaks down raw load power data into several
frequency components, which, in turn, enhances the performance of recognition
for models;

• The proposed decomposition model that is based on the CEEMDAN algorithm pro-
vides better forecasting outcomes than other decomposition algorithms. For Dataset



Energies 2023, 16, 4401 13 of 16

#2, the improvement percentage of MAE for HI-WPD-Q-TEG, HI-EMD-Q-TEG, HI-
EEMD-Q-TEG, and HI-CEEMDAN-Q-TEG is 25.8923%, 20.9483%, 19.9478%, and
38.3934%, respectively. The CEEMDAN algorithm is highly effective at decomposing
both high and low-frequency data, allowing for better handling of the high volatility
of raw data. This results in optimal performance for forecasting.

Energies 2023, 16, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 9. The prediction comparison results with other decomposition algorithms in Dataset #2. 

 
Figure 10. The prediction comparison results with other decomposition algorithms in Dataset #3. 

4. Conclusions 
Load forecasting is crucial for maintaining the stable operation of the power grid. 

This paper proposes an outlier correction, decomposition, and ensemble reinforcement 
learning model for load power prediction. The HI-CEEMDAN-Q-TEG model uses the HI 
outlier correction method to eliminate outliers. The CEEMDAN decomposition method is 
employed to break down raw load power data into various subseries to reduce volatility. 
Furthermore, the commonly used reinforcement learning method Q-learning is utilized 
to generate optimal weights by combining the forecasting results of three single models: 
TCN, ELM, and GRU. Based on the aforementioned experiments, some conclusions can 
be drawn as followed: 
1. The utilization of HI significantly improves prediction accuracy. HI detects and elim-

inates outliers in the original data, reducing their interference in model training, im-
proving its data fitting ability, and ultimately enhancing its forecasting performance; 

2. Using TCN, ELM, and GRU as the base learners confer significant advantages, and 
the ensemble model employing the Q-learning method yields superior forecasting 
performance compared to individual base learners. As a type of reinforcement learn-
ing method, the Q-learning optimizes the weights of base learners via trial and error 
within the given environment; 

3. Out of the four decomposition algorithms examined in this study, CEEMDAN exhib-
ited superior forecasting performance. Unlike the other algorithms, CEEMDAN ef-
fectively handles non-stationary data and mitigates the impact of unsteady compo-
nents on forecasting results; 

Figure 9. The prediction comparison results with other decomposition algorithms in Dataset #2.

Energies 2023, 16, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 9. The prediction comparison results with other decomposition algorithms in Dataset #2. 

 
Figure 10. The prediction comparison results with other decomposition algorithms in Dataset #3. 

4. Conclusions 
Load forecasting is crucial for maintaining the stable operation of the power grid. 

This paper proposes an outlier correction, decomposition, and ensemble reinforcement 
learning model for load power prediction. The HI-CEEMDAN-Q-TEG model uses the HI 
outlier correction method to eliminate outliers. The CEEMDAN decomposition method is 
employed to break down raw load power data into various subseries to reduce volatility. 
Furthermore, the commonly used reinforcement learning method Q-learning is utilized 
to generate optimal weights by combining the forecasting results of three single models: 
TCN, ELM, and GRU. Based on the aforementioned experiments, some conclusions can 
be drawn as followed: 
1. The utilization of HI significantly improves prediction accuracy. HI detects and elim-

inates outliers in the original data, reducing their interference in model training, im-
proving its data fitting ability, and ultimately enhancing its forecasting performance; 

2. Using TCN, ELM, and GRU as the base learners confer significant advantages, and 
the ensemble model employing the Q-learning method yields superior forecasting 
performance compared to individual base learners. As a type of reinforcement learn-
ing method, the Q-learning optimizes the weights of base learners via trial and error 
within the given environment; 

3. Out of the four decomposition algorithms examined in this study, CEEMDAN exhib-
ited superior forecasting performance. Unlike the other algorithms, CEEMDAN ef-
fectively handles non-stationary data and mitigates the impact of unsteady compo-
nents on forecasting results; 

Figure 10. The prediction comparison results with other decomposition algorithms in Dataset #3.

4. Conclusions

Load forecasting is crucial for maintaining the stable operation of the power grid.
This paper proposes an outlier correction, decomposition, and ensemble reinforcement
learning model for load power prediction. The HI-CEEMDAN-Q-TEG model uses the HI
outlier correction method to eliminate outliers. The CEEMDAN decomposition method is
employed to break down raw load power data into various subseries to reduce volatility.
Furthermore, the commonly used reinforcement learning method Q-learning is utilized
to generate optimal weights by combining the forecasting results of three single models:
TCN, ELM, and GRU. Based on the aforementioned experiments, some conclusions can be
drawn as followed:

1. The utilization of HI significantly improves prediction accuracy. HI detects and
eliminates outliers in the original data, reducing their interference in model training,
improving its data fitting ability, and ultimately enhancing its forecasting performance;

2. Using TCN, ELM, and GRU as the base learners confer significant advantages, and
the ensemble model employing the Q-learning method yields superior forecasting
performance compared to individual base learners. As a type of reinforcement learn-
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ing method, the Q-learning optimizes the weights of base learners via trial and error
within the given environment;

3. Out of the four decomposition algorithms examined in this study, CEEMDAN ex-
hibited superior forecasting performance. Unlike the other algorithms, CEEMDAN
effectively handles non-stationary data and mitigates the impact of unsteady compo-
nents on forecasting results;

4. The load power prediction model proposed in this study incorporates several tech-
niques to enhance its accuracy. Firstly, it leverages the use of HI to correct any outliers.
Next, it combines the strengths of various intelligent models by employing ensemble
reinforcement learning. Additionally, CEEMDAN is adopted to further enhance the
prediction results, resulting in exceptional load power prediction performance.

However, there are some limitations to the proposed model in this paper: (a) as a short-
term forecasting model, the proposed model is designed to capture immediate changes
and it may not be able to capture longer-term trends that develop over weeks, months, or
years; and (b) the proposed model is relatively time-consuming when using the CEEMDAN
decomposition algorithm. Thus, we intend to construct a parallel computing framework to
support the proposed method in future work.
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Nomenclatures

HI Hampel identifier
CEEMDAN complete ensemble empirical mode decomposition with adaptive noise
AR auto regressive
ARMA auto-regressive moving average
ARIMA auto-regression integrated moving average
SVM support vector machine
GRU gated recurrent unit
TCN temporal convolutional network
LSTM long-short-term memory
RNN recurrent neural networks
CNN convolutional neural network
EEMD ensemble empirical mode decomposition
VMD variational modal decomposition
WPD wavelet packet decomposition
ELM extreme learning machine
MAD median absolute deviation
IMFs intrinsic mode functions
MAE mean absolute error
MAPE mean absolute percentage error
RMSE root mean square error
Q Q-Learning algorithm
TEG TCN, ELM and GRU
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Appendix A

The main experimental parameters of our hybrid model are given in Table A1.

Table A1. The main experimental parameters.

Name of Parameter Value

GRU

Size of input units 10
Size of hidden units 100
Size of output units 1

Learning rate 0.01

TCN
Size of kernel 3

Skip connection False
Batchnorm False

Q-learning
Maximum iteration 50

Learning rate 0.95
Discount parameter 0.5
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