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Abstract: Currently, applications of the algorithms based on artificial intelligence (AI) principles
can be observed in various fields. This can be also noticed in the wide area of electrical drives.
Consideration has been limited to neural networks; however, the tasks for the models can be defined
as follows: control, state variable estimation, and diagnostics. In the subsequent sections of this
paper, electrical machines, as well as power electronic devices, are assumed as the main objects.
This paper describes the basics, issues, and possibilities related to the used tools and explains the
growing popularity of neural network applications in automatic systems with electrical drives. The
paper begins with the overall considerations; following that, the content proceeds with the details,
and two specific examples are shown. The first example deals with a neural network-based speed
controller tested in a structure with a synchronous reluctance motor. Then, the implementation of
recurrent neural networks as state variable estimators is analyzed. The achieved results present
a precise estimation of the load speed and the shaft torque signals from a two-mass system. All
descriptions in the article are considered in the context of the trends and perspectives in modern
algorithm applications for electrical drives.

Keywords: adaptive neural control; state variables estimation; diagnostics; neural data processing;
neural networks; electrical drives

1. Preliminaries and Short Description of Methodology

Modern electrical drives can achieve improved ratios related to precision and reliability
due to new materials and high-quality components [1–3]. The second area of development
involves the algorithms applied to the objects. The trends observed in the papers published
in the journals and proceedings of conferences are focused on artificial intelligence [4–6]. A
group of the applications is focused on neural networks [7–11].

The main feature, which is the source of its use in most applications, is a flexible
structure with adaptable parameters, i.e., weights. The optimization performed under
training calculations leads to changes in the network parameters that increase the precision
of the training data representation. Thus, the neural network output ynnl can calculate a
value of complex functions Φ based on the values of the weights w, biases b, and input
signals x:

ynn = Φ(w, b, x), (1)

ynnl = φo

(
Nh

∑
h=1

νlhφi

(
Ni

∑
i=1

whixi + wh0

)
+ νl0

)
, (2)

where Nh is the number of nodes in the hidden layer, Ni is the number of nodes in the input
layer, φo is the activation function of the hidden layer, φi is the activation function of the
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input layer, o is the number of outputs (l = 1, 2, 3, . . . , o), νlh represents the weights of the
output layer, whi represents the weights of the input layer, νl0 represents the bias values of
the output layer, and wh0 represents the bias values of the input layer.

In engineering applications, the model is capable of data representation (often in
contrast to algorithmic methods), even if the signals in the processing are incomplete, non-
linear, uncertain, or disturbed (e.g., during measurement). Gradient methods are the most
efficient for this purpose (3) and (4). Updates of network values are searched according to
the assumption of finding the minimum value of the proposed objective function (5) and (6).
Additionally, second-order training methods, based on cost function analysis, are used.
This can lead to better results for more complex tasks due to the deeper evaluation of the
state of the network, as shown in [12]. More complicated computation of the basic version
of the known algorithms (e.g., Levenberg–Marquardt) provides a faster reduction in the
cost function during the training process. The effectiveness of the mentioned algorithm
in the training of neural networks has resulted in numerous modifications and improve-
ments. Parallel data processing [13] and computational simplifications [14] have also been
proposed.

νlh = νlh − α
∂E
νlh

(3)

whi = whi − α
∂E
whi

(4)

el = $l − ynnl (5)

E =
1
2

eTe =
1
2

o

∑
l=1

e2
l (6)

∂E
∂νlh

=
∂E
∂zl

∂zl
∂νlh

(7)

∂E
∂whi

=
∂E
∂zh

∂zh
∂whi

(8)

The first ideas, propositions, and some contributions to mathematical representation were
presented in the middle of the last century [15]. One of the most known publications presenting
the concept of a neural model was presented by Warren S. McCulloch and Walter Pitts [16]
and the basics of adaptation and neural network learning were presented by Donald O.
Hebb [17]. Small adaptable units (ADAptive LInear NEuron) were combined in MADA-
LINE networks and a simple algorithm, least mean square, was proposed for weight update
by Bernard Widrow and Marcian E. Hoff [18]. The above-mentioned works have started
new scientific disciplines derived from mathematics, computer science, and cognitive sci-
ences. However, two factors can be consider to be the ‘game changers’ that have moved
neural networks from theory to the implementation. One factor is related to calculating the
partial derivative of the cost function according to the weights: the information used in the
training process in Equations (3) and (4). The technique of backpropagation has allowed
for the collection of an error value at each point of the network [19]. The initial phase as-
sumes the propagation of the input data across the model; then, the output error is returned
to the network input (using derivatives from the network and the derivatives of the cost
function). The mathematical notation of the whole operation is often described using the
chain rule (Equations (7) and (8)). The two-stage process can be treated as a disadvantage
(output values of the corresponding layers are applied in formulas zl and zh). Therefore,
other solutions for the gradient optimization of the weights have been proposed [20]. How-
ever, for software and hardware implementations, the backpropagation of error in a neural
network is a definite advantage (over other methods for derivative determination). A sepa-
rate issue contributing to the increase in neural network industry applications concerns
programmable devices. In recent years, not only an increase in available systems has been
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observed, but also a significant reduction in price and an increase in computing capabilities
(Figure 1). There are special processors dedicated exclusively to algorithms that perform
neural calculations [21]. Moreover, power consumption is also considered [22].

Figure 1. Timeline and milestones in neural network development, implementations in the field of
electrical drives, and expansion of the number of articles (according to the Scopus database) in recent
years (2000–2022).

From an application point of view, the mode of the weight update during optimization
is a key point for determining the role of the neural network in the algorithm cooperating
with the electrical drive (Figure 2). Firstly, calculations can be performed in an offline regime.
In this context, this means that the collection of prior data for representation of the task is
performed (e.g., detection of faults based on pre-generated symptoms). Then, the samples
are used in network optimization. Following these steps, the neural model can be used in
an electrical drive. The above assumption minimizes the cost function for improved data
recovery. The model can be a signal generator (estimator in control structure), classifier for
the input values (detection of faults), predictor of events (damages to machines), etc. The
second approach—online training—includes a net in the control structure. The update of
weights is realized in parallel with each step of the whole algorithm. The objective function
is minimized again. However, an appropriate definition leads to a reduction in the control
error. The difference between the forcing signal and the output is reduced, yet the network
output is not considered, only the output of the controlled object. In this way, a control
signal is generated at the network output, which will cause the motor speed to follow the
input trajectory (reference speed).

The output values of a neural model can be calculated from the input data used in
training. However, the important attribute is known as generalization. The net can achieve
correct values for a given task, even if the input sample was not included in the training set.
In real-life applications, if collecting a complete set representing a process or object is often
impossible, this is a very useful functionality. Improvements in the mentioned properties
of neural networks can be obtained through a variety of methods that are described in
scientific publications. This applies not only to the optimization of the network coefficients
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for a given task; the topology of the model is also often modified. A summary of the most
popular techniques is presented in Figure 3.

Figure 2. Optimization of neural networks for engineering applications.

It is commonly known that the number of training epochs defined for the calculations
significantly influences the fitting of data using the neural model [23]. Increasing the num-
ber of iterations results in an improved agreement with the training data. The problem, in
this case, is related to the reconstruction of disturbances and the lower accuracy after enter-
ing data outside the training set. In an opposite solution, the network cannot be sufficiently
optimized to obtain the trends of the samples. Thus, analyzing the validation error during
the training of the neural network can be an appropriate action. One non-classical approach
to training neural networks is based on the application of meta-heuristic algorithms [24,25].
The methods mentioned are often based on swarm observations, where a population is
a group of potential solutions and while processing is iteratively repeated, modifications
are introduced according to the minimization of the objective function. This approach
differs from a typical training algorithm based on the gradient of the cost function because
it does not need calculations of the derivatives. The most popular methods of this type
are genetic algorithms and particle swarm optimization [25–27]. As recently shown in [25],
such solutions increase the convergence and recognition efficiency of neural networks.
Both features are crucial in the field of electrical drives for improving dynamic properties
during parameter changes and ensure accurate state and fault detection. The basic task
of the mentioned algorithms is the selection of network weighting coefficients. However,
there are also applications in which the structure of the model [28–30] or the initial values
of the network parameters are optimized [31]. Regularization is also widely used for
neural networks to overcome overfitting [32–34]. The method assumes an extension of the
objective function by introducing additional penalty terms. It often leads to a different
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decomposition of weights. The dominant values are eliminated, and the distribution is
even for all coefficients; therefore, irrelevant nodes or connections do not occur. The issues
related to the design of neural models in the context of improving generalization proper-
ties concern optimization of the structure. This is one of the most effective approaches,
which additionally determines the computational complexity (especially important during
implementation). There are two groups of training procedures: growth methods [35–37]
and pruning methods. Both of them are combined with common (gradient-based) training
methods. However, the topology of the network is also modified. Subsequent neurons or
connections are inserted into the net (growth methods), reducing the model complexity
in comparison to the initial model. For the second solution, calculation of the ‘saliency
parameter’ is of paramount importance [38–40]. Based on this information, the network
connections are deleted (weights made equal to zero).

Figure 3. Training of neural networks: enhancing generalization properties.

In the theory of neural networks, the simplest models (ADALINE, MLP, RBF, etc.)
have evolved into much more complex ones. Firstly, for better processing of the time-
series data, recurrent neural networks were introduced [41,42]. Then, subsequent elements
(e.g., convolutional layers, pooling layers, etc.) and significantly larger structures led to a
subgroup of machine learning: deep learning. Deep neural networks are efficient tools in
engineering applications related to processing data with a large number of samples or for
data that represent more complex relationships [43,44]. However, a significant drawback is
related to the complexity of this structure, which negatively impacts the training process
and the subsequent implementations in programmable devices. Thus, the commonly
known topology modification was proposed in articles [45–47]. Effective reduction in the
neural network structure can be achieved using approaches that utilize graph reduction
tasks. Recently, a concept based on the learning automaton has been proposed to optimize
the cloud of sensors [48]. In this solution, a scheduling algorithm supported by machine
learning is utilized to fulfill requirements important in the field of self-powered networks,
such as covering the environment and balancing (limiting) energy consumption. Although
the described approach has been only evaluated in simulated IoT environments, it is a
promising concept for applications that optimize neural network structure. In addition
to the reduction in required computational power, the precision of results can also be
increased by using novel neural network topologies [49]. Thus, it is an expected research
trend in the coming years.
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The aim of the manuscript is to present the tools (neural networks) in the context
of application properties and the observed implementations in electrical drives. The
models proposed in theory can lead to the achievement of specific features, such as data
generalization and rendering of non-linear dependencies. This determines the wide range
of applications in the processing of signals in systems based on electrical machines. The
main possibilities are described in the article and supported by actual references. Moreover,
original examples are presented and analyzed. However, the most important purpose of
this publication is to present trends in the literature related to electrical drives and to try to
describe some expected directions for future research. The main contributions of this paper
are listed as follows:

• Definition of the advantages and disadvantages of solutions based on neural networks
used in electrical drives;

• Description of the current issues regarding the implementations of the neural models
in control, state variable estimation, and diagnostics;

• As exemplary results that prove selected possibilities, the neural estimators (of load
speed and shaft torque) used in a drive with an elastic shaft and adaptive controllers
of reluctance motor are considered;

• Analysis of the directions in the development of neural network applications in the
field of electric drive.

The content of this article is organized as follows. The first section presents a review of
the algorithms, analyzing the properties of the neural networks along with their improve-
ments and potential applications (Figure 4). It should be noted that in this field, topics
related to the construction and design of machines constitute a separate important group
(not analyzed in the manuscript). Then, in the subsequent sections, the neural networks are
considered as controllers in automatic systems or state observers. The latter part of this
paper (Section 2.3) concerns neural network applications in developing, modeling, optimiz-
ing, and controlling power converters, which are an important part of modern electrical
drives. The next part of the article presents the tools used in diagnostics (standalone or
hybrid with classical solutions known from control theory). The work is finalized with
conclusions—highlights from each of the perspectives.

Figure 4. Neural networks—from theory to applications in electrical drives.
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2. Implementation of Neural Models in Electrical Drives
2.1. Neural Controllers

The typical speed control structure applied in electrical machines can be divided
into two parts: the internal, which is used for dynamic control of electromagnetic torque,
and the external, with the loop related to speed. This scheme, in general, is suitable for
different types of machines. Conventional PI (proportional–integral) or PID (proportional–
integral–derivative) controllers are commonly applied in industry. This is due to the simple
algorithm that facilitates implementation and the well-known tuning methods. However,
currently, the trend seems to be changing. Advanced control methods are being more
readily introduced in the industry. This comes from access to new tools: programmable
devices and libraries providing high-level code implementation. In this way, it is possible
to meet the high precision requirements for industrial equipment operation. In addition,
improved properties are obtained for objects where parameter mismatch is observed. The
issue may be related to the difficult identification of objects or changes in acting conditions
(change of parameters due to motor heating and the fluctuation of the moments of inertia
of actuators) [50–53].

The application of a neural network is one solution to the issue analyzed above. It can
be used as an approximator of non-constant coefficients or as a multi-parameter adaptive
model. In the first case, the neural network can be successfully applied to approximate
nonlinear and non-constant coefficients of complex controllers. A schematic diagram of
angular velocity state feedback control structure with a two-layer offline tuned neural
network is shown in Figure 5. The approximated coefficients are presented in the top part
of Figure 5. It should be noted that nonlinearities in this particular case come from the
inductance characteristics of the motor. More detailed information related to the synthesis
process of the controller and the training process of the neural network approximator can
be found in [54].

Figure 5. Gain-scheduled neural network-based speed control for synchronous reluctance motor.

As shown in Figure 6, the proposed solution assures high control performance and
robustness against parameter variations. In the case of angular speed and d-axis current,
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slight changes caused by a mismatch of the d- and q-axis inductances are observed in
transient, where load torque is imposed and removed. The impact of inductance variations
on the q-axis current is greater, resulting in different steady-state levels. Although the
complexity of a neural network-based solution is 60% higher than a LUT-based solution, it
requires fewer memory resources to assure satisfactory accuracy. Due to this, it is expected
that the application of neural network-based approximators in high-performance electrical
drives will increase.

Figure 6. Angular velocity reversal transients of synchronous reluctance motor drive with neural
network-based gain-scheduled state feedback controller.

As mentioned earlier, the neural network can be successfully applied as
a multiparameter adaptive model. In this case, based on the minimization of the ob-
jective function—which is most often related to the definition of the error of the controlled
state variable—and then tuning the weights of the neural network, it is possible to obtain a
control signal that forces the object to follow the reference signal regardless of disturbances.
Various schemes of control structures with neural controllers are used: direct control, indi-
rect control, with an internal model, etc. However, the most common construction uses a
reference model [55]. The overall concept for the simplified representation of the electrical
drive with adaptation path is shown in Figure 7.

Several elements are described using the expressions presented below:

Gr(s) =
ω2

r
s2 + 2ζrωns + ω2

r
, (9)

GT(s) =
1

Tes + 1
, (10)

GM(s) =
1

TMs
, (11)
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where ωr is a reference resonant frequency, ζr is a damping coefficient, Te is the total time
constant of the loop related to electromagnetic torque, and TM is the mechanical time con-
stant. The introduced element aims to shape the signal’s dynamics (using parameters: ωr
and ζr) introduced for the algorithm’s calculations, which updates the weights of the neural
network. The assumption is to adjust the transients’ changes with the controlled object’s
capabilities. In the results, the output and input variables (e.g., angular velocity) converge,
and further weight changes are suppressed (stable operation of the control system).

Figure 7. Adaptive control structure with reference model.

The main tunable element in the adaptive control structure can be a simple ADALINE-
type model [56]. With this assumption, the calculations are simple, but only a few parame-
ters shape the control signal. An extension of the above solution is a controller based on
an MLP neural network with sigmoidal activation functions [57] or the implementation
of a radial basis function neural network where an additional adaptation of the centers,
apart from the weights, is applied [58]. It should be noted that these models process data
in one direction. A better solution seems to be, in the case of time-dependent data analysis,
a network application with internal feedback (recurrent neural network), which introduces
additional information (from previous samples) through a characteristic structure when
the output signal is determined [59].

The models listed above can be used in a cascade connection as an internal current
controller or in an external speed loop. The characteristic properties of electrical machines
can argue for other applications. For example, drives with PMSM machines can generate
significant oscillations observed in electromagnetic torque waveforms, resulting in addi-
tional disturbances in the angular velocity [60]. The neural network can be used as an
efficient torque ripple compensator [61]. Because the number of PMSM-based drives in the
industry is increasing, further development of solutions similar to those presented in [62,63]
is expected. In addition to implementing neural networks as controllers, applications of the
so-called hybrid controllers has become a future solution. In this approach, neural models
will be used in parallel to classical solutions (i.e., PI controller, predictive controller, and
state feedback controller). According to this assumption, the system works properly in the
presence of disturbances or combines the advantages of different control techniques, as
shown in [64–66]. Besides compensation and control signal shifting, the output values of
the neural networks can be directly applied as gains in classical controllers. The structure
of the main controller remains unchanged, but neural adaptation updates the coefficients
to improve the precision of control [67,68]. The analyzed controller can be considered to be
a partially adaptive one. In [69], the application of the constant path with the error signal is
combined with an integrator updated using the radial basis function neural network. An
additional data processing in the control algorithm’s path flow seems useful in modern
electrical drives. For example, predicting the measured state variables in the adaptation law
leads to the accelerated calculation of the speed controller parameters. In the results, the
improved shape of the control signal ensures the rapid reaction of the object [70]. Filtering
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the measurement signals in drives without difficult designs and determining the cut-off
frequency can be done automatically using ADALINE. Such an approach was tested for
extracting current components and calculating the angle in the compensation system in a
drive with a BLDC machine [71]. The summary of the tasks based on neural networks in
control structures is presented in Figure 8. The next section considers the issues related to
the calculations of signals used in electrical drives.

Figure 8. Tasks\challenges for neural networks in control structures of electrical drives.

The individual steps in designing a neural model for an electric drive can be considered
universal (i.e., without a direct connection to the task performed). The most characteristic
actions are listed in Figure 9. The main goal determines the system’s overall structure based
on a neural network. The type of network and the method of calculating model coefficients
(e.g., weights or centers) should be selected for a specific task. One of the most important
points in the designing process, which combines theoretical considerations and practical
aspects, seems to be stability analysis. The stability of a class of time-varying adaptive
controllers based on neural networks has been analyzed using Lyapunov methods [72–74].
The whole concept focuses on analyzing the initially selected positive definite function. The
equation, combined with the object’s state variables, leads to a conclusion on the stability if
its derivative is negative (12)–(14). The constraints for learning parameters or weights are
considered. This assumption ensures the algorithm’s convergence in the subsequent steps
of the method that calculate the coefficients in the neural model.

V(x, t) > 0 (12)

V(0, t) = 0 (13)

V̇(x, t) ≤ 0 (14)

The adaptive neural controllers contain constant parameters (training coefficients,
scaling gains, momentum, etc.). The exact determination of those values is difficult or
ambiguous. On the other hand, the right selection is very important, because it affects
the convergence of the adaptation algorithm (i.e., the time of controller tuning). In such
cases, metaheuristic optimization algorithms can be used [53,75]. The initialization process
of the neural model is also crucial, because the optimizer’s starting point is determined,
affecting the generated control signal. Even when the algorithm converges, oscillations of
the state variables can occur. In practice, this corresponds to a clutch shudder. Therefore,
the risk of mechanical parts being damaged is increased. The issue is also important during
experimental tests of the control systems, because randomly determined weights results in
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different behaviors in the developed controller. The initial training of the neural network
has been proposed to overcome this issue. Solving this problem in direct connection with
the object’s parameters in the expected theoretical work may be useful.

Figure 9. Issues related to neural controller design.

Among the issues related to the control of electrical drives, there is an upward trend
in the use of adaptive neural controllers for systems with complex mechanical parts.
Reconfigurable models can adapt settings to follow changes in object parameters (inertia,
mechanical time constants, friction torque) or operate on the ‘model-free’ principle (the
coefficients are not identified directly) [76–78]. Thus, the application of neural algorithms
considered in a specified context of an application, not only for a separate drive operation,
is expected in future work.

2.2. State Variables Estimation Based on Neural Networks

Novel control techniques, especially applied to complex objects, often use additional
signals from the object. Thus, the number of sensors in the system is increased. This
situation is not preferable due to the higher costs of the drive, risk of faults, problematic
expansion of the construction size, and issues related to installation. In connection with
the above-mentioned drawbacks, appropriate algorithms have been developed, tested and
applied, which enable the estimation of signals in control systems. Sensorless systems are
based on the following methods of estimation:

• Algorithmic methods;
• Hybrid combinations of classical observers with artificial intelligence methods;
• Signal processing approaches (with neural networks).

The first group of speed estimators is based directly on the mathematical model of
the electrical machine. The correct definition of the motor parameters after entering the
appropriate values of the gain matrix allows obtaining accurate information about the
selected state variables. However, it is difficult to include non-linear phenomena (e.g.,
friction components) in the calculations. It is often assumed that the object is linear and
the parameters are constant in time. Currently, solutions based on (i) model reference
adaptive systems (MRAS) [79–83], (ii) Kalman filters [84,85], and (iii) and Luenberger ob-
servers [86,87] are applied in electric drives. Here, robustness against parameter mismatch
is partially obtained.

To mitigate the impact of parameter discrepancy on estimation performance, a solution
based on the hybrid combinations of classical observers with artificial intelligence methods
is proposed. In this approach, a connection of neural networks trained online and known
algorithmic techniques is utilized [88–90]. The latter component in the hybrid solution
can be a typical method known from the control theory (e.g., Luenberger observer). The
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overall construction is simple, but the precision of the state variables calculation is highly
dependent on the precision of the object identification:

d
dt

x̂(t) = Ax̂(t) + Bu(t) + L[y(t)− ŷ(t)], (15)

ŷ(t) = Cx̂(t). (16)

where A represents the state matrix, B is the control matrix, C is the output matrix, x̂
represents the results of the calculations (vector of state variables), ŷ is the output of the
observer (state matrix), and L is the coefficients defining the arrangement of the poles of
the system. The above-mentioned problem is related to elements of matrices (parameters
of the electrical machine) (15) and (16). Therefore, to improve the precision, the elements of
A and/or B are achieved from the neural network. In other solutions, gains of the observer
L are under constant adaptation [91].

A different type of observers assumes data processing and direct analysis of the
dependencies between the measured signals. This challenge can be achieved using neural
networks. The models can reproduce the relationships between input and output data based
on weights previously defined in the training process. In this way, data transformation
is obtained, and as a result, a new signal is generated. It is expected that the described
approach will be used in modern electrical drives for estimation purposes.

Assuming three state variables available for measurement, it is possible to replace
one sensor with a neural estimator. A specific example is presented in this section for
an electrical drive with an elastic connection between machines (motor and load). The
aforementioned design of the mechanical part of the drive can lead to oscillations of state
variables, which makes precise control difficult. The control systems used for vibration
damping (e.g., PI controllers or state feedback controller) use an increased number of
feedbacks, as shown in [92]. There are two different speeds (ω1, related to the motor and
ω2, related to the load) and shaft torque ms in the system used as information for the
controllers, as presented in Figure 10. In this task, a recurrent neural network trained
offline (i.e., based on previously collected measurement samples) is implemented. A model
with a context layer is considered namely the Elman network. The following inputs of
the estimators are selected: the electromagnetic torque me and the motor speed ω1. The
goal is to estimate the load speed ω2 and the shaft torque ms. The training was performed
according to the Levenberg–Marquardt algorithm (1000 epochs). Both networks contain
10 hidden nodes. Details of the neural estimator design are described in the paper [93].

The drive performs cyclic reversals (i.e., the direction of rotation is changed after
2.5 s). In the steady state, the speed value is set to 20% of the nominal one. The obtained
results show the high precision of the operation of neural estimators. The calculations are
independent directly from the mathematical model of the object (only transients are used).
This means that neural estimators are expected to be resistant to parametric disturbance.
The design process is also simplified (e.g., identification of parameters is not necessary).
Moreover, using a high-level programming language, the hardware implementation is not
complex. The observed measurement disturbances (noise) do not significantly affect the
estimation performance. The results presented in Figure 10 do not take into account the
active action of the load. Thus, in the subsequent test, this condition is analyzed in Figure 11.
It can be seen that the quality of the signal observation is still very high. Networks very
accurately calculate state variables in the presence of dynamic changes in the input values.

It is expected that techniques presented in this section related to the estimation of
state variables in electric drives will be developed due to the challenges that still arise. An
example of this may include new types of electrical machines with higher efficiency and
reliability and modifications to the existing machines. In addition, the compound structure
of the drive actuators may be another reason for the application of precise and robust
estimators. Moreover, the number of observers applied to diagnostic issues increases. The
above tasks are additionally supported by available tools, modern industrial controllers,
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and libraries that ensure rapid implementation of the algorithms. This tendency also takes
into account neural networks, which are becoming a very important element due to the
guarantee of facilities (software and hardware) and possibilities to overcome the limitations
of conventional observers.

Figure 10. State variables—real and estimated (with subscript ‘e’) using a neural network—of two-
mass system (ω1—motor speed, ω2—load speed, ms—shaft torque, me—electromagnetic torque).

Figure 11. Estimation of state variables in two-mass system: load speed ω2 and shaft torque ms using
the recurrent neural network (load imposed).

2.3. Concepts of Neural Network Applications in Power Electronics

The power electronics converter is the main part of the modern electrical drive [94–96].
The converter properties, such as high efficiency, high reliability, high power density, and
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low harmonic distortion, directly impact the electrical drive features. For this reason,
improving power electronic converters’ behavior is still crucial in this field of applica-
tion. The future progress of power electronics converters supported by neural networks
is expected to be observed in the following areas: (i) modeling and optimization of com-
ponents, components arrangement, and thermal investigations; (ii) reliability of power
converter components and sensors; and (iii) harmonics reduction and control performance
improvement. A schematic diagram of the power converter with marked areas of neural
network-based improvements is shown in Figure 12, and the above-mentioned areas are
described in the following subsections.

Figure 12. Schematic diagram of the power converter with marked areas of neural network-based
improvements: (1)—modeling and optimization of components, components arrangement, and ther-
mal investigations, (2)—reliability of power converter components and sensors, and (3)—harmonics
reduction and control performance.

2.3.1. Modeling and Optimization of Components, Components Arrangement, and
Thermal Investigations

The topology, component selection, optimization, and arrangement are challenging
and are typically an iterative design process [97]. On the other hand, a multi-objective
optimization gives very promising results, resulting in a solution with ≈ 15% ÷ 20% higher
power density and a 1.7% higher efficiency at 2 kW rated power [97]. The designing
process of a power converter must consider several specifications, including component
arrangement with air ducts for cooling, the total volume of a cooling system, and the size
reduction of passive components. As shown in [98,99], a multidisciplinary optimization
supports virtual prototyping of components arrangement and passive components sizing
(e.g., inductors, capacitors) considering mass, losses, and volume minimization. Because
designing passive components and filters applied in power converters require modeling
and optimization, neural network-based optimization tools are expected to improve this
procedure, decrease the time, and improve the engineers’ experience. Preliminary results
show that a deep symbolic optimization framework can successfully support the power
converter’s development process, resulting in increases in efficiency [99]. Inductor model-
ing and optimizing processes can also be made using an ANN-based approach, as shown
in [100]. The proposed workflow generates the magnetic and thermal data from FEM
simulations and designs inductors using ANNs. Several parameters, such as geometry,
mass, and losses, are considered. The successful optimization depends on the proper
selection of ANN (i.e., number of layers, number of neurons,) the training method, and
signal preprocessing. The development of described approach is expected to mitigate the
identified drawbacks, i.e., the increased complexity and dataset availability [100]. The
modeling and optimization procedure supported by ANN has also been applied to im-
prove the EMI filter design [101]. The authors show that a partly connected ANN can
accurately simulate the insertion losses of the filter. Moreover, the training process is faster
for the developed architecture than typical multi-output ANN. A drawback of this solution
is related to a complex performance function with several components and parameters.
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Future improvement is expected to provide more intuitive performance indexes with a
limited number of coefficients to set. Effective optimization of magnetic components for
power converters requires proper modeling in electromagnetic and thermal domains [102].
Currently, the most accurate models are obtained using 3D FEA simulations. This approach
is time-consuming due to the mesh requirements. In [102], a two-level homogenization
technique was proposed to significantly reduce the analysis time. Future improvement is
expected to be based on an approach similar to [103], where a convolutional neural network
has been applied to predict the thermal properties of the power semiconductor package.
Because the heat flux affects the performance of the power semiconductor package, it is
important to predict the thermal properties according to the pattern. As shown in [103],
an algorithm based on a convolutional neural network successfully learns the pattern
characteristics from a PCB image to identify the local effective thermal conductivity. The
proposed solution provides much more accurate results than the reference solutions [103].
Prediction based on artificial neural networks can also be used to improve the heat transfer
performance of the liquid-based heat sink [104]. Such a solution can enhance the perfor-
mance of commercially available heat sinks thanks to the prediction of the PCB temperature
under various operating conditions. The proposed solution considerably reduces the PCB
temperature thanks to the ANN learning and generalization abilities.

2.3.2. Reliability of Power Converter Components and Sensors

The proper and safe operation of an electrical drive requires accurate measurements
of several electrical and mechanical signals (i.e., phase currents, DC link voltage, angular
position) [94,95]. Hardware redundancy improves system reliability and increases the
power converter’s cost and overall volume. Diagnostics of measurement devices can be
made using algorithms and signal analysis [105]. In this approach, features important
for diagnostic evaluation are extracted from signals. As depicted in [106], the application
of artificial intelligence assures better evaluation and more diagnosis possibilities with
reduced expert knowledge. It should be emphasized that the Levenberg–Marquardt
learning algorithm applied is time-consuming, and the extension of this solution should be
the reference base with neural detectors initially trained for different control algorithms (e.g.,
direct torque control) and several kinds of current sensor faults. An optimized classifier
based on the convolutional neural network can also indicate switch faults in the power
converter [107]. After denoising and manual tuning, the proposed approach accurately
identifies known faults and can also distinguish unknown faults. Future works in this
field should address the limitation of manual tuning and the elimination denoising process.
The latter can be made automatically [108]. It is also expected that a digital-twin concept
shown in [109] will be developed for the reliability assessment of power converters. In
this approach, multi-physics simulations of power semiconductor components are used to
simulate reliability, and a machine learning scheme is applied to prognosis future behavior.
Such a hybrid solution is recommended for new technologies with limited data sets. In
voltage source inverters commonly used in electrical drives, the failure may also come
from the DC link capacitors. Therefore, their condition should be monitored in terms of
power converter reliability. This task can be considered using the artificial neural network
to estimate the capacitance value, as shown in [110]. An extended version of this approach
should reduce the estimation error and consider transient conditions.

2.3.3. Harmonics Reduction and Control Performance Improvement

To provide a better control quality (i.e., reduction in electromagnetic torque ripple, mit-
igation of noise, minimization of harmonic content), multilevel voltage source inverters are
applied in high-performance electrical drives [111]. Because several power semiconductor
switches are used in this converter, an advanced and computationally efficient modula-
tor is required. The considered tasks can be accomplished using neural-network-based
modulators, as described in [112,113]. ANN’s classification ability is utilized to quickly
and accurately select the space vectors and their duty cycles. The proposed concept has
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been extensively investigated in experimental tests [112,113]. The obtained results and
developed principles give a perspective for applying these kinds of modulators in inverters
with high levels in the future. As shown in [114], ANN can mitigate the harmonics level in a
two-level H-bridge inverter. In this approach, a conventional current controller is replaced
by a neural network one, reducing THD by 5%. Although simulation results are shown in
this work, the proposed solution is expected to be implemented in applications soon.

A perspective of power converters development supported by artificial intelligence is
also correlated with high-performance control schemes. Recently, model predictive control
(MPC) has gained attention due to its simple and intuitive model-based implementation
and better control characteristics compared to classical linear control approaches [115–117].
The main drawbacks of the considered control lie in computational complexity and accu-
racy. As shown in [117], a significant resource requirement reduction can be achieved for
ANN-based MPC. The ANN is trained offline using the same input signals as the MPC
controller. Next, it generates control signals for each power semiconductor. Because of its
simple mathematical expression and approximation capacity, the computational burden
of ANN-MPC is reduced compared to the reference solutions [117]. The experimental
results indicate the potential of the described solution. Because the performance of MPC
mainly depends on the quality of the prediction model, future work in this field will be
concerned with robustness against unpredictable parameter variations. The generalization
ability of ANN is a key feature in this task. Designing MPC requires the selection of the
cost function to be optimized. It usually consists of several components and weighting
factors [116]. Because selecting the latter ones is non-trivial, an ANN approach has been
proposed to automate this process. Moreover, the synthetic cost function was replaced by
a more intuitive formula with a total harmonic component and switching frequency of
power converter [116]. The MPC with ANN-supported cost function shows good tracking
performance and fast optimization. An expected direction of future work could be an
extension of ANN-based MPC for cascade-free control of electrical drives, where torque
and angular velocity are simultaneously controlled using the predictive approach. Because
the more complex performance index will be optimized, the ANN-supported concepts de-
scribed above should provide a relatively simple cost function, mitigation of computational
complexity, and superior performance and robustness.

2.4. Neural Networks in Diagnostics

An analysis of scientific publications and available engineering reports indicates a
constant search for diagnostic tools that include the continuous monitoring of electrical
drives, quick detection of damage, and assessment of the degree of the problem. Detection
of the initial stage of faults allows: (i) the protection of the environment against potential
danger, (ii) the occurrence of more serious (extension) failures and related costs, and (iii) a
plan of renovation [118]. The purpose of this section is not to conduct a detailed analysis of
diagnostic systems, but to indicate the increasing number and the importance of neural
networks as a tool used in them.

Currently, the applications of diagnostic solutions for electrical drives with induction
motors and permanent magnet synchronous motors are dominant. It is related to many
applications of mentioned machines in industrial implementations. This is due to the
properties of these machines: wide range of operation (speed), simplified installation (size),
high dynamics (reduced inertia), and acceptable overload. The most common damages
concern the basic components of the electrical drive: machines, power electronics devices,
and sensors. The issues concerning the machines are focused on the stator (winding) or
rotor faults (bearing, misalignment, eccentricity, imbalance) [119,120]. The main problems
appearing in power converters are damage of semiconductors (short-circuit and open-
circuit faults), intermediate segment (filter capacitors), or events resulting from the wrong
operation or improper implementation of the device [121–123]. The last part of the issues is
mainly due to damages to the current sensors or encoders [124–126]. The cases related to
the reliability of power converters and sensors are mentioned earlier in Section 2.3.2.
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The classification of diagnostic methods for electrical drive faults contains three main
classes (listed below).

• Generating (and analyzing) diagnostic symptoms based on physical signal measurements.
• Application of methods known from control theory and electric machines fundamentals.
• Implementation of artificial intelligence algorithms.

The strategy, often adopted in the first category of diagnostic methods, can be a
scheme of a typical failure detection procedure. Several parts are presented in Figure 13.
The occurrence of a fault in the electric drive is observed by changes in the physical signals
that are measured in the system. State variables easily accessible by measurement, such as
current or vibration, are often analyzed. However, the changes are not directly visible to
the user. Therefore, in the next step, appropriate transformations (fast Fourier transform,
symmetrical component analysis, principal component analysis) are applied to highlight
abnormalities. Then, the assessment of the symptoms is conducted. For this purpose, neural
networks are applied. The other group of methods is based on the analysis of the reference
model and real signals from the drive. The methods used for object representation are
utilized in this task (finite element methods, circuit models, state observers, etc.). However,
there is still a problem related to the ambiguity of the results and their evaluation (it
is overall task appearing in diagnostics of engineering systems) [127]. Thus, the whole
system combines neural networks (used as detectors). As a special case in this category,
the use of fault-tolerant control algorithms can operate under technical problems of the
drives (adaptive control, switching structures, applications of the compensator, etc.). The
last solution assumes the direct use of neural networks to analyze the fluctuations in the
measured signals [128]. This approach facilitates the calculation process and eliminates
problems with signal processing (e.g., distortions in current components).

Figure 13. Common stages of diagnostics process.
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It should be emphasized that efficient diagnostics and monitoring of the electric
drive condition not only leads to reduced operating and damage costs (e.g., downtime
of the system in the industry) but, above all, ensures the safety of users and operators of
automation systems. Therefore, due to the importance of the issue, the diagnostics of electric
drives based on artificial intelligence algorithms will continue to be developed. Recently,
a multi-granularity neighbor residual network has been proposed for anomaly detection
in time series data [49]. In this structure, linear and nonlinear feature extraction paths are
separated and feature extraction of different granularity is made after the initialization
phase. Finally, parameter optimization based on residual features and abnormal probability
identification is performed. The considered solution shows good performance on precision
during optimization evaluation and outperforms reference models such as a generalized
linear classifier a multilayer neural network with both linear and non-linear transformation.
Because this type of neural network can effectively capture the feature of samples in time
series data and predict the abnormal probability of the sample, it is expected that the
considered approach will be adopted to monitor and diagnose electrical drive in terms of
sensors and power stage components.

Neural networks are used in all the diagnostic methods briefly described above. It can
be expected that neural networks will still be an important element of diagnostic systems.
The extension of classical analysis leads to significant benefits, and the most important are
the following:

• Neural networks are tools improving the simplification and efficiency of drive condi-
tion monitoring;

• Higher precision of faults detection is achieved;
• The time to problems recognition is shortened;
• Automation of the analysis of a complex data set;
• The ability to reduce or eliminate mathematical modeling;
• Robustness against measurement disturbance is achieved;
• Neural networks are easy to implement using available tools (software and hardware).

3. Discussion

This section indicates possible challenges of applications for neural networks in elec-
trical drives. These are identified in data, hardware, and methodology.

In the case of data, the following challenge can be pointed out. Because the learning
process is based on data collection, providing an accurate and representative set of signals
for the neural network’s weights optimization and validation is crucial. This challenge
can be addressed by using a repository with collections of data and pre-trained neural
networks. Such a solution is recently found in medicine, vision, and agriculture. It is
expected that relevant repositories will be created for electrical drive applications for
control, estimation, diagnostics, and construction purposes. Effective use of pre-trained
nets and collections of data depends on proper description and documentation; therefore,
the development of hosting platforms similar to GitHub is also expected. On the other
hand, further improvement of data generalization methods will also be useful to address
challenges related to data availability and quality.

Because the time available for execution of control algorithm in modern electrical drive
is relatively short (62.5 ÷ 100 µs for drives with IGBTs and even 45 µs for drives with SiC
MOSFETs), implementation on online learning neural network is challenging task from the
hardware point of view. To overcome this issue, a control board with a combination of DSP
and FPGA or powerful research and development controller board is utilized. It is expected
that solutions from other fields will be applied to solve complex and computationally
demanding tasks. As an example, mobile robotics can be pointed out, where powerful
master controllers with specialized software (e.g., NVIDIA Jetson with a robotic operating
system) are introduced to provide necessary resources and to unify the methodology.

The last challenge is related to the methodology. Because of the specific applications
and hardware demands listed above, topologies of neural networks and learning methods
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differ from applications in vision systems and medicine. The classical control approach in
electrical drives is based on a cascade control structure with PI controllers and Luenberger
observers. Here, tuning methods such as an internal model principle, pole placement, and
symmetric optimum criteria are utilized. In the case of NN-based control and estimation,
there are no specified and well-known solutions. Here control parameters are usually
selected using a trial-and-error approach that is time-consuming and may result in a
non-optimal structure or operation. A similar situation occurs if the learning process
is supported by metaheuristic optimization algorithms. It is expected that the above-
mentioned challenge will be addressed by developing a set of rules and guidelines useful
for engineers.

4. Conclusions

The paper presents an analysis and a perspective of neural network applications in
electrical drives. Based on the available publications, it can be seen that it is a rapidly
growing area. Due to the availability of efficient algorithms and appropriate and relatively
cheap hardware tools, this trend can be expected to continue. Industrial development,
which introduces the need for new technologies, also allows us to predict the use of
artificial intelligence methods in modern electrical drives. The perspectives related to the
implementation of neural networks in electrical drives are listed below:

• Faster calculations to provide a rapid and precise reaction of control algorithms (code
optimization and new software/hardware solutions);

• Hardware developments enabling deep learning-based diagnostics;
• Subsequent development of soft computing algorithms to improve the application of

neural networks in handling time-varying problems;
• Applications of deep learning techniques in control of electrical drives forcing an

accurate reference transient tracking;
• Hardware accelerations support (i.e., improved and faster calculations) for deep

learning methods using new libraries of programming languages (e.g., Python, Java,
C++);

• Adaptive control methods used for nonlinear, partially identified, and time-varying systems;
• Neural models of complex systems with electric drives using deep learning to reduce

complex mathematical description;
• Increase the number of drive constructions in which neural algorithms will be calcu-

lated in parallel using the FPGA;
• Development of hardware modules in programmable devices supporting neural

networks implementation and training,
• Application of new types of neural networks currently being developed in theoretical

work (e.g., graph neural networks);
• Hybrid combinations of neural networks and models based on expert knowledge (e.g.,

fuzzy logic) in diagnostics and control;
• Application of metaheuristic methods for parameter selection to improve algorithm

convergence and robustness;
• Optimization of topology, heat exchange, and component development and arrange-

ment to improve the efficiency and reliability of power converters.
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