Effect of the Volumetric Flow Rate Measurement Methodology of Positive Pressure Ventilators on the Parameters of the Drive Unit
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- P—power, kW;
- M—torque, Nm;
- n—rotational speed, rpm.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Borucka, A.; Wiśniowski, P.; Mazurkiewicz, D.; Świderski, A. Laboratory Measurements of Vehicle Exhaust Emissions in Conditions Reproducing Real Traffic. Measurement 2021, 174, 108998. [Google Scholar] [CrossRef]
- Pirjola, L.; Rönkkö, T.; Saukko, E.; Parviainen, H.; Malinen, A.; Alanen, J.; Saveljeff, H. Exhaust Emissions of Non-Road Mobile Machine: Real-World and Laboratory Studies with Diesel and HVO Fuels. Fuel 2017, 202, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Lee, Z.; Kim, D.; Park, S. Effects of Spray Behavior and Wall Impingement on Particulate Matter Emissions in a Direct Injection Spark Ignition Engine Equipped with a High Pressure Injection System. Energy Convers. Manag. 2020, 213, 112865. [Google Scholar] [CrossRef]
- Amiri, A.R.; Kanesalingam, K.; Cro, S.; Casey, A.T.H. Does Source of Funding and Conflict of Interest Influence the Outcome and Quality of Spinal Research? Spine J. 2014, 14, 308–314. [Google Scholar] [CrossRef]
- Kaczmarzyk, P.; Warguła, Ł.; Janik, P.; Krawiec, P. Influence of Measurement Methodologies for the Volumetric Air Flow Rate of Mobile Positive Pressure Fans on Drive Unit Performance. Energies 2022, 15, 3953. [Google Scholar] [CrossRef]
- Peiris, S.; De Silva, N. RE-Engineered Factory Acceptance Testing under the New Normal. Built Environ. Proj. Asset Manag. 2021, 12, 754–774. [Google Scholar] [CrossRef]
- Frey, G.D. Changes in Equipment Acceptance Testing. J. Am. Coll. Radiol. 2005, 2, 639–641. [Google Scholar] [CrossRef]
- Kaczmarzyk, P.; Warguła, Ł.; Krawiec, P.; Janik, P.; Noske, R.; Klapsa, W. Influence of the Positive Pressure Ventilator Setting Distance in Front of the Doorway on the Effectiveness of Tactical Mechanical Ventilation in a Multistory Building. Appl. Sci. 2023, 13, 5536. [Google Scholar] [CrossRef]
- Kaczmarzyk, P.; Klapsa, W.; Janik, P.; Krawiec, P. Identification and Evaluation of Technical and Operational Parameters of Mobile Positive Pressure Ventilation Fans Used during Rescue Operations. Saf. Fire Technol. 2021, 58, 74. [Google Scholar] [CrossRef]
- Fritsche, M.; Epple, P.; Delgado, A. Development of a Measurement Method for the Classification and Performance Evaluation of Positive Pressure Ventilation (PPV) Fans. In Proceedings of the ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, Montreal, QC, Canada, 15–20 July 2018; American Society of Mechanical Engineers Digital Collection: New York, NY, USA, 24 October 2018. [Google Scholar]
- Warguła, Ł.; Kukla, M.; Wieczorek, B.; Krawiec, P. Energy Consumption of the Wood Size Reduction Processes with Employment of a Low-Power Machines with Various Cutting Mechanisms. Renew. Energy 2022, 181, 630–639. [Google Scholar] [CrossRef]
- Spinelli, R.; Cavallo, E.; Eliasson, L.; Facello, A.; Magagnotti, N. The Effect of Drum Design on Chipper Performance. Renew. Energy 2015, 81, 57–61. [Google Scholar] [CrossRef]
- Rimkus, A.; Stravinskas, S.; Matijošius, J. Comparative Study on the Energetic and Ecologic Parameters of Dual Fuels (Diesel–NG and HVO–Biogas) and Conventional Diesel Fuel in a CI Engine. Appl. Sci. 2020, 10, 359. [Google Scholar] [CrossRef] [Green Version]
- Warguła, Ł.; Kukla, M.; Lijewski, P.; Dobrzyński, M.; Markiewicz, F. Impact of Compressed Natural Gas (CNG) Fuel Systems in Small Engine Wood Chippers on Exhaust Emissions and Fuel Consumption. Energies 2020, 13, 6709. [Google Scholar] [CrossRef]
- Lijewski, P.; Fuć, P.; Markiewicz, F.; Dobrzyński, M. Problems of Exhaust Emissions Testing from Machines and Mobile Devices in Real Operating Conditions. Combust. Eng. 2019, 179, 292–296. [Google Scholar] [CrossRef]
- Warguła, Ł.; Kaczmarzyk, P. Legal Regulations of Restrictions of Air Pollution Made by Mobile Positive Pressure Fans—The Case Study for Europe: A Review. Energies 2022, 15, 7672. [Google Scholar] [CrossRef]
- Warguła, Ł.; Lijewski, P.; Kukla, M. Influence of Non-Commercial Fuel Supply Systems on Small Engine SI Exhaust Emissions in Relation to European Approval Regulations. Environ. Sci. Pollut. Res. 2022, 29, 55928–55943. [Google Scholar] [CrossRef]
- Merkisz, J.; Fuć, P.; Lijewski, P.; Pielecha, J. Actual Emissions from Urban Buses Powered with Diesel and Gas Engines. Transp. Res. Procedia 2016, 14, 3070–3078. [Google Scholar] [CrossRef] [Green Version]
- Cimolino, U.; Emrich, C.; Svensson, S. Taktische Ventilation: Be- und Entlüftungssysteme im Einsatz; ecomed-Storck GmbH: Landsberg am Lech, Germany, 2012; ISBN 978-3-609-68426-0. [Google Scholar]
- Leach, F.; Kalghatgi, G.; Stone, R.; Miles, P. The Scope for Improving the Efficiency and Environmental Impact of Internal Combustion Engines. Transp. Eng. 2020, 1, 100005. [Google Scholar] [CrossRef]
- Sheykhi, M.; Chahartaghi, M.; Safaei Pirooz, A.A.; Flay, R.G.J. Investigation of the Effects of Operating Parameters of an Internal Combustion Engine on the Performance and Fuel Consumption of a CCHP System. Energy 2020, 211, 119041. [Google Scholar] [CrossRef]
- Szpica, D. Investigating Fuel Dosage Non-Repeatability of Low-Pressure Gas-Phase Injectors. Flow Meas. Instrum. 2018, 59, 147–156. [Google Scholar] [CrossRef]
- Warguła, Ł.; Lijewski, P.; Kukla, M. Effects of Changing Drive Control Method of Idling Wood Size Reduction Machines on Fuel Consumption and Exhaust Emissions. Croat. J. For. Eng. 2023, 44, 137–151. [Google Scholar] [CrossRef]
- Richards, G.A.; McMillian, M.M.; Gemmen, R.S.; Rogers, W.A.; Cully, S.R. Issues for Low-Emission, Fuel-Flexible Power Systems. Prog. Energy Combust. Sci. 2001, 27, 141–169. [Google Scholar] [CrossRef]
- Homdoung, N.; Tippayawong, N.; Dussadee, N. Performance and Emissions of a Modified Small Engine Operated on Producer Gas. Energy Convers. Manag. 2015, 94, 286–292. [Google Scholar] [CrossRef]
- Munsin, R.; Laoonual, Y.; Jugjai, S.; Imai, Y. An Experimental Study on Performance and Emissions of a Small SI Engine Generator Set Fuelled by Hydrous Ethanol with High Water Contents up to 40%. Fuel 2013, 106, 586–592. [Google Scholar] [CrossRef]
- Waluś, K.J.; Warguła, Ł.; Krawiec, P.; Adamiec, J.M. Legal Regulations of Restrictions of Air Pollution Made by Non-Road Mobile Machinery—The Case Study for Europe: A Review. Environ. Sci. Pollut. Res. 2018, 25, 3243–3259. [Google Scholar] [CrossRef] [Green Version]
- Mayer, A.; Czerwinski, J.; Wyser, M.; Wolfensberger, U.; Stadler, E.; Matter, U.; Matter, P.; Huthwohl, G.; Schindler, A. Best Available Technology for Emission Reduction of Small 4S-Sl-Engines; SAE: Warrendale, PA, USA, 1999; pp. 663–672. [Google Scholar]
- Mitianiec, W.; Rodak, Ł. Lowering of Exhaust Emission in Modern Two-Stroke Engine. J. KONES Powertrain Transp. 2012, 19, 341–344. [Google Scholar] [CrossRef]
- Merkisz, J.; Rymaniak, Ł. The Assessment of Vehicle Exhaust Emissions Referred to CO2 Based on the Investigations of City Buses under Actual Conditions of Operation. Eksploat. Niezawodn. Maint. Reliab. 2017, 19, 522–529. [Google Scholar] [CrossRef]
- Lijewski, P.; Kozak, M.; Fuć, P.; Rymaniak, Ł.; Ziółkowski, A. Exhaust Emissions Generated under Actual Operating Conditions from a Hybrid Vehicle and an Electric One Fitted with a Range Extender. Transp. Res. Part Transp. Environ. 2020, 78, 102183. [Google Scholar] [CrossRef]
- Rymaniak, Ł.; Kamińska, M.; Szymlet, N.; Grzeszczyk, R. Analysis of Harmful Exhaust Gas Concentrations in Cloud behind a Vehicle with a Spark Ignition Engine. Energies 2021, 14, 1769. [Google Scholar] [CrossRef]
Gas | Measurement Range | Sensitivity | Specifications |
---|---|---|---|
HC Propane | 0–4000 ppm | ±3% | 1 ppm |
CO | 0–10% | ±3% | 0.01 vol.% |
CO2 | 0–16% | ±3% | 0.01 vol.% |
NOx | 0–4000 ppm | ±4% | 1 ppm |
O2 | 0–25% | ±3% | 0.01 vol.% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warguła, Ł.; Kaczmarzyk, P.; Lijewski, P.; Fuć, P.; Markiewicz, F.; Małozięć, D.; Wieczorek, B. Effect of the Volumetric Flow Rate Measurement Methodology of Positive Pressure Ventilators on the Parameters of the Drive Unit. Energies 2023, 16, 4515. https://doi.org/10.3390/en16114515
Warguła Ł, Kaczmarzyk P, Lijewski P, Fuć P, Markiewicz F, Małozięć D, Wieczorek B. Effect of the Volumetric Flow Rate Measurement Methodology of Positive Pressure Ventilators on the Parameters of the Drive Unit. Energies. 2023; 16(11):4515. https://doi.org/10.3390/en16114515
Chicago/Turabian StyleWarguła, Łukasz, Piotr Kaczmarzyk, Piotr Lijewski, Paweł Fuć, Filip Markiewicz, Daniel Małozięć, and Bartosz Wieczorek. 2023. "Effect of the Volumetric Flow Rate Measurement Methodology of Positive Pressure Ventilators on the Parameters of the Drive Unit" Energies 16, no. 11: 4515. https://doi.org/10.3390/en16114515
APA StyleWarguła, Ł., Kaczmarzyk, P., Lijewski, P., Fuć, P., Markiewicz, F., Małozięć, D., & Wieczorek, B. (2023). Effect of the Volumetric Flow Rate Measurement Methodology of Positive Pressure Ventilators on the Parameters of the Drive Unit. Energies, 16(11), 4515. https://doi.org/10.3390/en16114515