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Abstract: Named entity identification is an important step in building a knowledge graph of the
grid domain, which contains a certain number of nested entities. To address the issue of nested en‑
tities in the Chinese power dispatching domain’s named entity recognition, we propose a RoBERTa‑
Attention‑FL model. This model effectively recognizes nested entities using the span representation
annotation method. We extract the output values from RoBERTa’s middle 4–10 layers, obtain syntac‑
tic information from the Transformer Encoder layers via the multi‑head self‑attention mechanism,
and integrate it with deep semantic information output from RoBERTa’s last layer. During training,
we use Focal Loss to mitigate the sample imbalance problem. To evaluate the model’s performance,
we construct named entity recognition datasets for flat and nested entities in the power dispatching
domain annotated with actual power operation data, and conduct experiments. The results indicate
that compared to the baselinemodel, the RoBERTa‑Attention‑FLmodel significantly improves recog‑
nition performance, increasing the F1‑score by 4.28% to 90.35%, with an accuracy rate of 92.53% and
a recall rate of 88.12%.

Keywords: power dispatching; named entity recognition; RoBERTa; self‑attention mechanism;
syntactic information

1. Introduction
As smart power systems are put into use, a huge amount of dispatching behavior in‑

formation is recorded in the process. This is stored in an unstructured form and contains
rich knowledge of dispatching behavior [1–3]. Carrying out deep mining of unstructured
data in the Chinese power dispatching domain, modeling the empirical knowledge in the
power dispatching domain, and constructing domain knowledge graphs have emerged as
important tasks in this field. Among these, Named Entity Recognition (NER) is a funda‑
mental task in natural language processing to recognize entities with specific meanings or
strong referents in texts, including names of people, places, proper nouns, etc. It is also
a key technology for building knowledge graphs with a wide range of applications [4,5].
Upon identifying the entities in unstructured data, the relationships between entities are
extracted, and the entities are then connected through their relationships to build the se‑
mantic network of the knowledge graph.

The main difficulties of NER technology in the Chinese power dispatching domain
are as follows:
(1) There is a lack of publicly available annotated datasets.
(2) Power entities are highly specialized, and these aremore difficult to identify than gen‑

eral domains. There are also problems, such as nested entities in power entities. For
example, “35 kV北龙线” (35 kV Beilong Line) contains “35 kV” and “35 kV北龙线”.

(3) The traditional sequence annotationmethod requires special processingof themodel [6–9]
to identify the nested entities.
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(4) Chinese has blurred word boundaries, unlike English, which has separators between
words; thus,when conductingNER, theprocess requires separatewords in the text [10,11].
The word separation error generated by the separator affects the accuracy of the
named entity recognition. There is no authoritative dictionary for the word splitter
in the power dispatching field, and applying a general‑purpose domain word splitter
to the power domain results in significant errors.
To solve the aboveproblems, a newentity classificationmethod and anewNERmodel

for the power dispatching domain are proposed to improve the recognition of power dis‑
patching entities. The contributions of this paper are as follows:
(1) We preprocess the dispatching data provided by the Guangxi power grid, extract the

unstructured data, annotate them with reference to the national standard electrical
terminology specification, and construct a named entity recognition dataset in the
power dispatching domain.

(2) We propose a named entity identification method based on the RoBERTa‑Attention‑
FLmodel for the power dispatching domain that uses the conventionalmodel to effec‑
tively identify nested entities based on the annotation method of span representation.
We encode text information in words to avoid errors caused by word segmentation.

(3) To construct a syntactic information vector, we extract the output values of the mid‑
dle four to ten layers of RoBERTa. The Transformer Encoder layers’ multi‑headed
attention mechanism is used to learn the information that is important for the model.
We fuse the extracted syntactic information with the deep semantic information out‑
put from the last layer of RoBERTa for boundary enhancement of the span, and the
neural network learns the fusion weights without human tuning. The deep semantic
information and syntactic information are computed in parallel, and the predicted
power span entities are obtained after the fully connected layer.

(4) The Focal loss [12] function is used during training to alleviate the problem of
sample imbalance.
The experimental results demonstrate that our model outperforms other mod‑

els, such as BERT‑Cross Entropy, BERT‑CRF, and BERT‑BILSTM‑CRF, in terms of
recognition performance.

Section 2 of this paper introduces the related work, Section 3 describes the construc‑
tion of the dataset, and Section 4 introduces the RoBERTa‑Attention‑FL model. Section 5
verifies the effectiveness of the proposed model through comparative experiments. The
final section summarizes the entire text.

2. Related Work
Traditional named entity recognition methods are broadly divided into two groups:

unsupervised rule‑based learning and supervised feature‑based learning [13]. Zhang [14]
proposed an unsupervised approach for extracting named entities from biomedical texts.
However, the unsupervised rule‑based learning approach is highly dependent on rule for‑
mulation, lacks transferability, and cannot be easily adapted to other domains.

With the development of machine learning, supervised feature‑based learning has
gradually replaced unsupervised rule‑based learning in named entity recognition. This
type of learning can be further divided into traditionalmachine learning and deep learning
approaches. Patil [15] proposed a method for named entity recognition using Conditional
Random Fields (CRF) and feature selection. However, traditional machine learning meth‑
ods require feature selection, whereas deep learning techniques can automatically extract
feature information throughmodels; therefore, they aremorewidely used in various fields.
For instance, Srivastava [16] performed named entity recognition based on word embed‑
ding and deep learning models for web information security texts. Similarly, Zhang [17]
proposed a pre‑trainedChinese financial domain named entity recognitionmodel that con‑
tains two sub‑models for financial entity boundary delineation and financial entity classi‑
fication. Puccetti [18] provided a patented text named entity recognition system that com‑
bines rule‑based, gazetteer, and deep learning techniques. Additionally, Li [19] merged
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dictionary and Chinese radical features into the BERT‑BiLSTM‑CRF model for the named
entity recognition of clinical terms.

Pre‑trained language models are widely used in named entity recognition, and the
BERT pre‑trained models are the most commonly used. These models can obtain deep
contextual representations of text, allowing for the more accurate identification of named
entities. Zheng [20] proposed a new NER model, AttCNN‑BiGRU‑CRF, that combines
BERT‑based character embedding and word embedding for the recognition of power me‑
tering databases. He [21] proposed a progressive multi‑type feature fusion entity recog‑
nition method based on the BERT preprocessing model to obtain word vectors with con‑
textual information for named entity recognition in electric power maintenance datasets.
Tong [22] proposed a named entity approach for power communication planning based
on Transformer and BiLSTM‑CRF models that improves the efficiency of information ex‑
traction in this domain.

BERT is a neural network with a 12‑layer structure, but typically only the final layer
is used for contextual text representation. Nonetheless, Ganesh [23] performed probing
experiments on each layer of the BERT model and discovered that the bottom layer learns
phrase‑level information representation, the middle layers learn rich syntactic features,
and the top layers learn deep semantic information features. RoBERTa is a variant of BERT.
Moreover, Zhang [14] proposed an unsupervised method for extracting named entities
from biomedical texts using syntactic information to improve the accuracy of named en‑
tity recognition. By drawing on the idea of machine learning feature extraction, we fully
utilize the RoBERTamiddle layers to extract syntactic information and enhance themodel’s
information gain.

Deep‑learning‑based named entity recognition usually uses the BIO sequence anno‑
tation method, where “B” denotes the beginning position of the entity, “I” denotes the in‑
ternal position of the entity, and “O” denotes the non‑entity part. This annotation method
enables each entity to be annotated only once. However, in generic domain unstructured
data, it is often the case that an entity contains a small entity, and this is called the nested
entity problem [24]. Geng [25] proposed a planarized way to represent nested named enti‑
ties and implemented bidirectional two‑dimensional recurrent operations to learn seman‑
tic dependencies between spans. Zhong [26] segmented the English vocabulary into word
roots, applied span annotation, and generated candidate entities with sentence splicing as
a training example, effectively enhancing the accuracy of the relationship extraction for
downstream tasks. Ye [27] proposed a neighborhood‑oriented packing strategy to pack as
many spans as possible with the same starting lexical elements into a training instance to
better distinguish entity boundaries. The problem of nested entities also arises frequently
in the power domain.

Therefore, we propose the RoBERTa‑Attention‑FL model to solve the nested entity
problem using the annotation method of span representation. First, we generate training
data; then, we fuse the RoBERTa mid‑level syntactic information as information gain with
deep‑level semantic information, and finally we perform entity recognition on the power
dispatch dataset.

3. Constructing Corpus Datasets
The Guangxi regional smart power system records a vast amount of unstructured

behavioral data that includes text data such as accident investigation reports, audit risk
statistics, field inspection information, anddevice operations. Apower corpus is built from
these data, but the traditional system has low utilization of the information, only simple
text queries are supported without deep mining, and the embedded behavioral knowl‑
edge remains largely untapped. Manual mining methods are inefficient and costly. In this
study, we propose a deep learning approach to develop analytical models. To achieve this
goal, we use the power corpus to create named entity recognition datasets in the power
dispatching field that will be used to train deep learning models.
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The corpus used in this paper contains a large amount of unstructured data. We fil‑
tered and removed sentences with unclear meaning, structural mutilation, and semantic
repetition. Following this, we extracted 7717 pieces of data for training and testing pur‑
poses. Zheng [20] crawled through data concerning electric power metering from several
electric power websites to construct the electric power metering corpus and divided them
into five categories of entities, including metering data, metering technology, and elec‑
tric power equipment, to construct the dataset. He [21] used power maintenance records
to construct seven categories of power maintenance datasets, and these are voltage level,
equipment name, line name, etc. Referring to the above two division schemes and com‑
bining the characteristics of the corpus in this paper, the entity types are divided into nine
categories, and these are time, voltage level, transmission equipment, etc. (as presented in
Table 1). Some transmission equipment, equipment appliances, and stations contain volt‑
age level information, which are labeled according to the nested entities method to enable
the model to learn the nested entities’ characteristics. This approach facilitates the over‑
all grasp of fine‑grained and coarse‑grained entities in the knowledge graph construction
phase. The dataset contains 48,386 entities with more than 520,000 characters in Chinese
and English. The training set, validation set, and test set are divided in a ratio of 7:2:1.

Table 1. Experimental dataset.

Type Name Entity Example Number of Entities

Time 2022年06月30日 (30 June 2022) 6471
Voltage level 35 kV 5943

Transmission equipment 35 kV北龙线 (35 kV Beilong line) 8140
Equipment appliances 903开关 (903 switch) 10,247

Address 鹿县寨沙镇 (Zaisha Town, Lu County) 5952
Organization 平俪有限公司 (Ping Li Ltd.) 5529

Station 平朗站 (Pinglang Station) 3965
Other 老鼠,桉树 (Rats, Eucalyptus) 1403
Name 张三 (San Zhang) 737

In this paper, we use a span representation‑based annotationmethod to annotate enti‑
ties using a visual interface through the Label Studio annotation platform. The span anno‑
tation consists of a set of start and end positions, as well as the type of entity in the sentence.
An example of an annotation is shown in Table 2.

Table 2. Sample annotation.

Text 1 1 0 k V 昆 仑 站

Index 0 1 2 3 4 5 6 7

Span entity (start: 0, end: 4, level)
(start: 0, end: 7, station)

The meaning of the Text line in the table is “110 kV Kunlun station”.

4. Methods
In this paper, we propose a named entity recognition method based on the RoBERTa‑

Attention‑FL model for the power dispatching domain. First, we generate training data
and encode them at the character level using an embedding layer to obtain contextual rep‑
resentation information. Next, we input this information into RoBERTa and extract the
Encoder output from layers four to ten. We splice this output into syntactic information
vectors and use the multi‑headed self‑attentive mechanism in the Transformer Encoder to
learn the weight messages. We then fuse this syntactic information with the last layer of
the RoBERTa output and obtain the predicted entity messages via a fully connected layer.
The flow chart is shown in Figure 1 and the model architecture is shown in Figure 2.
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Figure 2. The graph first line “110 kV 昆仑站” corresponds to “110 kV Kunlun Station”. Over‑
all framework of the model including input text examples (the first half of the segmentation
line is sentence information and the second half is annotation information), encoding layer,
Embedding, RoBERTa 12‑layer network, syntactic information, and deep contextual semantic
information extraction.

4.1. Generate Training Data
First, the annotation method based on span representation requires the enu‑

meration of each span of a length less than K in the sentence, and for the sentence
S = {s1, s2, . . . , sn|K < n}, the length of the candidate span is set to K. The candidate span set
C(S) = {(1, 1, t1,1), (1, 2, t1,2), . . . , (i, i, ti,i), . . . , (i, i + K, ti,i+k), . . . , (n − 1, n, tn−1,n),
(n, n, tn,n)|i + K < n} is generated, where n is the total length of the sentence. This set con‑
tains the start and end positions as well as the entity type ti,i of the candidate span that forms a
triplet. The generated candidate span, which is the set of spans with the same start position, is
used as a training instance, and multiple training groups are computed in parallel after placing
the original text in groups [27].

4.2. Pre‑Trained Language Models
A RoBERTa‑wwm‑ext Chinese pre‑training model is used that is pre‑trained, unsuper‑

vised, on large‑scale Chinese text data. It learns rich prior knowledge and achieves excellent
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performance in many natural language processing tasks. RoBERTa is a variant of BERT [28],
with the following changes from BERT:
• The dynamic masking strategy may have different mask positions for each round of train‑

ing samples. For the training sample “110 kV昆仑站” (110 kV Kunlun station), the first
roundof training replaces the training samplewith the specialword “110 kV昆仑<mask>“,
the second round of training replaces the training sample with “<mask>10 kV 昆仑站”,
and the mask position may change again in the third and fourth rounds. The dynamic
strategy improves the randomness of the model input data that eventually improves the
learning ability of the model;

• Using whole‑sentence input across documents and eliminating next‑sentence prediction;
• Using larger training batches and pre‑training data to improve the generalization ability of

the model.

(1) Encoding layer.

The role of the encoding layer is to convert the input text sequence into a series of high‑
dimensional vector representations that contain word encoding information, paragraph infor‑
mation, and location information of the input text that can model the long‑distance dependen‑
cies of the input sequence and better characterize the deep semantic information of the text.
The schematic diagram of the encoding layer is shown in Figure 3.
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Figure 3. RoBERTa generates the input vector. The token embeddings subscript means “110 kV
Kunlun Station”.

The training data input is passed through the RoBERTa encoding layer to obtain the word
embedding Xembedding that contains location information, paragraph information, and word
encoding information:

Xembedding = Xword + Xsegment + Xpositional (1)

4.3. Deep Contextual Semantic Information
We encode the training data using RoBERTa word embeddings to capture contextual fea‑

tures. The span‑based data annotation format differs from traditional sequence annotation. We
splice the representation of the start and end positions of the span set, along with the contex‑
tual features of the span set, which enhances the boundary features of the candidate spans and
strengthens their connection with textual information. As shown in Figure 4, these correspond
to the following equations:

hstart = H12[:, Sstart] (2)

hend = H12[:, Send] (3)

h f ront = H12[:, Sstart − 1] (4)

hrear = H12[:, Send + 1] (5)

context = Concat(h f ront, hrear, hstart, hend

)
(6)
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character information corresponding to the start and end positions of the candidate span in the text,
and the dashed matrix box represents the character information corresponding to one offset before
and after the start and end positions of the candidate span in the text.

H12 denotes theoutputof the last layerofRoBERTa. Equations (2) and (3) obtain the trained
features at the span start and endpositions, respectively. Equations (4) and (5) obtain the trained
features at one offset before and after the span start and end positions, respectively. Equation (6)
splices these three features with Concat to obtain deep contextual semantic information.

4.4. Syntactic Information
Traditionalmachine learningmethodsuse syntactic information features to improvemodel

accuracy, while we use RoBERTa intermediate layers that learn more syntactic information to
enhance the performance of the model. The output of RoBERTa’s middle layers four to ten are
extracted and spliced into vectors:

syntactic = Concat(H4, H5, . . . , H10) (7)

First, weight learning is performed on the syntactic vectors with the help of
attention mechanisms:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V

where Q, K, V = syntactic (8)

Since the syntactic vector contains output vectors at different levels of RoBERTa, a single
attention mechanism cannot focus on the information of multiple location representation sub‑
spaces [29]; therefore,multiple head attention is used to learn theweights of the syntactic vector:

MultiHead(syntactic, syntactic, syntactic) = Concat(head1, . . . , headh)WO

where headi = Attention(syntactic, syntactic, syntactic) (9)

To prevent gradient explosion and gradient disappearance due to the depth model, a
residual connection is made between syntactic and MultiHead:

sy′ = syntactic + MultiHead(syntactic, syntactic, syntactic) (10)

Layer normalization of sy′, calculating the mean and variance for each sample normalizes
the hidden layers in the neural network to a standard normal distribution and accelerates the
convergence to

LN
(
sy′

)
= α × sy′ − µL√

σ2
L + ϵ

+ β

where µL =
1
m

m

∑
i=1

sy′

where σ2
L =

1
m

m

∑
i=1

(
sy′ − µL

)2 (11)
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where the scaling parameters α and β are learnable parameters. ϵ is a very small value that
prevents the equation from dividing by a zero value, andm is the number of neurons.

Then, the output of the layer normalization is passed through the feed forward neural
network by

FFN(x) = max(0, xW1 + b1)W2 + b2 (12)

The above equation consists of two linear transformations with a ReLU activation in the
middle and x denoting the output of layer normalization LN(sy′).

Finally, after residual connection and layer normalization:

Att = FFN(x) + x (13)

The above is the specific process of syntactic information extraction, and Att denotes the
vector of syntactic information learned by weighting.

4.5. Feature Fusion
Deep contextual semantic information and syntactic information are acquired using a par‑

allel mechanism to fuse the two types of information:

F = hc + ha

where hc = sigmoid(W1·context + b1)

where ha = sigmoid(W2·Att + b2)

where W1 + W2 = 1 (14)

where context is the deep contextual semantic information obtained in Section 4.3;Att is the syn‑
tactic information obtained in Section 4.4; and F denotes the fused vector. We set two learnable
weight parameters W1 and W2 with initial values of 0.5, and the sum of the two numbers is re‑
stricted to 1. The two parameters W1 and W2 are learned by the neural network and optimized
in the direction of minimizing the loss function in the model training.

Once the layer classification is fully connected, the span and class of predicted entities are
obtained as follows:

pt =
g

∑
l=1

FW + b (15)

where F is the above fused features,W is the training parameter, and b is the bias parameter.
As shown in Table 1, the number of different categories in the named entity identification

dataset in the power dispatch domain varies widely, the sample categories are unbalanced, and
the predicted entities are passed through the focal loss function to obtain the loss values:

FL(pt) = −α(1 − pt)
γlog(pt) (16)

Here, α is set to 0.25 and γ is set to 2. The larger the parameter pt, the more accurate the
sample classification. Conversely, the closer the (1 − pt) is to 0, the more accurate the classifi‑
cation is. With the feature of the focal loss function, the name and other categories that have a
smaller number of samples take up more weight in the loss function. It makes the model focus
more on these two classes of samples and alleviates the sample imbalance problem.

5. Results
The experimental environment uses a Pytorch framework, CUDA version 11.1, Ubuntu

system, and an NVIDIA RTX3090 (24 G) graphics card. The length K of the candidate entities
is set to 12. A learning rate warm‑up strategy is used, where the learning rate increases linearly
from 0 to 2 × 10−5, and then decreases linearly to 0 to prevent model instability caused by too
large a learning rate in the initial stage of training and to make the model converge faster. The
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model is evaluated every 6000 training steps, and the stage model with high accuracy is saved.
The syntactic information is extracted using a six‑layer Transformer Encoder, and the number
of attention heads is eight. Other parameter settings are detailed in Table 3, and the RoBERTa‑
wwm‑ext pre‑training model uses the original parameters.

Table 3. Parameter setting.

Parameter Value

Learn rate 2 × 10−5
Batch size 3
Epoch 50

lstm_embedding_size 1024
Hidden size 768
BERT model RoBERTa‑wwm‑ext

Embedding size 512
Optimizer AdamW

5.1. Evaluation Indicators
This experiment uses the criteria of accuracy, recall,andF1‑score tomeasure theperformance

of the model, and the specific evaluation formula is as follows:

precision = correctnum/predictnum

recall = correctnum/goldennum

F1‑score =
2 ∗ precision ∗ recall

precision + recall
(17)

where correctnum denotes the number of correct predictions, predictnum denotes the total num‑
ber of predictions, and goldennum denotes the number of labeled entities. The F1‑score is the
summed average of precision and recall that can balance the effects of precision and recall, re‑
flecting the performance of the model more comprehensively.

5.2. Results and Analysis
The named entity recognition dataset in the power dispatch domain constructed in

Section 1 is used for the training evaluation, F1‑score, F1_overlap, accuracy, and recall. These
are used as the judging criteria to measure the performance of the model.

Table 4 shows the experimental results for differentmodels. Wheremodel 1 is the baseline
model. Model 2 replaces the loss function of the baseline model with a CRF, and the F1‑score
is improved by 0.8%. Model 3 uses the BERT and BiLSTM (bi‑directional long and short time
recurrent neural network) models, which are then input into a CRF, where BiLSTM can en‑
code the output values of BERTwith bi‑directional context and alleviate the bi‑directional long‑
distance dependence problem. The F1‑score is improved by 1.8% compared with the baseline
model. The conventional model is used for splicing, on the basis of the baseline model, which
has a certain improvement on the F1‑score.

Model 4, compared with the first three models, no longer uses modular splicing, but ex‑
tracts syntactic information in parallel with information gain and deep contextual semantic
information to span the boundary enhancement by BiGRU (bidirectional gated recurrent neu‑
ral network), which is a variant of LSTMwith a simpler network structure compared to LSTM.
The syntactic information is extracted by BiGRU, which improves by 1.21% compared to the
baseline model F1‑score.
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Table 4. Model comparison experiments (“F1_overlap” represents nested entity F1‑score; “CE” rep‑
resents cross‑entropy loss; “FL” represents focus loss function,models 1–3 use serial splicing of differ‑
ent modules; models 4 and 5 extract syntactic information and deep contextual semantic information
in parallel for fusion).

Index Model Precision/% Recall/% F1_Overlap/% F1‑Score/%

1 BERT‑CE 89.01 83.29 86.15 86.07
2 BERT‑CRF 89.98 83.98 86.11 86.87

3 BERT‑BiLSTM‑
CRF 90.01 85.85 86.14 87.87

4 BERT ‑BiGRU‑FL 89.71 84.99 86.38 87.28

5 RoBERTa‑
Attention‑FL 92.53 88.12 89.37 90.35

Model 5 uses the RoBERTa model, replaces the BiGRU module of model 4 with the En‑
coder encoder based on model 4, and extracts the syntactic information with the help of atten‑
tion, and the F1‑score is improved by 3.07%, demonstrating that the Encoder can focus onmore
effective information than the BiGRUmodule and thus improve the accuracy. Compared with
model 3, the F1‑score is improved by 2.48%. Models 1–3 are conventional models that are seri‑
ally connected by differentmodules, andmodel 5 uses a parallel approach and feature fusion to
achieve better results than the conventional model. The syntactic information and the encoder
extraction mechanism are proven to be effective in improving the F1‑score of the model. The
F1‑score is improved by 4.28% compared to the baseline model. Through the above compar‑
ative experimental analysis, it is proven that the RoBERTa‑attention‑FL model can effectively
improve the accuracy of the named entity recognition.

The F1_overlap column in Table 4 represents the F1‑score of the nested entity recognition,
andmodel 5 is improved by 3.22% comparedwith baselinemodel 1, which effectively improves
the accuracy of the nested entity recognition.

Table 5 shows the results of theablationexperimentswith theRoBERTa‑attention‑FLmodel.
Model 2 uses the BERTmodel, and the F1‑score is reduced by 1.6%. Model 3 replaces the focus
loss function of model 2 with the cross‑entropy loss function, and the F1‑score is reduced by
0.1%, proving that the focus loss function can alleviate the sample imbalance problem. Model
4 removes the syntactic information fusion of model 2, and the F1‑score decreases by 2.62%,
indicating that the syntactic information can effectively improve the recognition accuracy of
the model. Model 5 replaces the focal loss function of model 4 with cross‑entropy loss, and the
F1‑score is reduced by 0.06%.

Table 5. Ablation experiments.

Index RoBERTa BERT Attention FL CE F1_Overlap/% F1‑Score/%

1 ✓ ✓ ✓ 89.37 90.35
2 ✓ ✓ ✓ 87.77 88.75
3 ✓ ✓ ✓ 87.42 88.65
4 ✓ ✓ 86.27 86.13
5 ✓ ✓ 86.15 86.07

This symbol ‘✓’ indicates that the module is used.

Table 6 shows the performance of the model with different layers selected to construct the
syntactic information, and it can be seen from the table that the best F1‑score can be obtained by
selecting layers four to ten.
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Table 6. Extracting the effect of different levels of experiments, where “4–7” in the first column
means extracting the RoBERTa output values from the 4th to the 7th level to construct the syntactic
information vector.

Number of
Layers Precision/% Recall/% F1_Overlap/% F1‑Score/%

4–7 92.04 88.23 89.19 90.02
4–8 91.95 88.27 89.31 90.14
4–9 92.09 87.91 89.20 90.03
4–10 92.53 88.12 89.37 90.35
4–11 92.12 88.20 89.38 90.19

The meaning of the Recognition effect column in the Table 7 is “28 July 2022 16:49 Furong
Substation 10 kV Fucha line 913 switch tripped”. Table 7 shows the entity recognition by dif‑
ferent models for the same example, which contains the nested entity “10 kV芙茶线” (10 kV
Fucha line) and several flat entities. The words with different background colors indicate the
entities recognized by the model, and the red font indicates a continuous entity. Model 4 and
Model 5, which introduce the syntactic information and deep contextual semantics of BERT,
can accurately identify the example, especially for the nested entities, “10 kV”, “芙茶线” (Fucha
Line) and “10 kV芙茶线” (10 kV Fucha Line) can be identified at the same time. Grasp both
fine‑grained and coarse‑grained entities at the same time. Models 1‑3 have different degrees of
entity recognition deficiencies.

Table 7. Recognition effect of different models.

Index Model Recognition Effect
1 BERT‑CE 28 July 2022 16:49芙蓉 变电站 10 kV 芙茶线 913开关跳闸
2 BERT‑CRF 28 July 2022 16:49芙蓉 变电站 10 kV 芙茶线 913 开关 跳闸
3 BERT‑BiLSTM‑CRF 28 July 2022 16:49 芙蓉变电站 10 kV 芙茶线 913开关 跳闸
4 Bert‑BiGRU‑FL 28 July 2022 16:49 芙蓉变电站 10 kV 芙茶线 913开关 跳闸
5 RoBERTa‑Attention‑FL 28 July 2022 16:49 芙蓉变电站 10 kV 芙茶线 913开关 跳闸

Overall, the RoBERTa‑Attention‑FL model constructed in this paper can achieve a better
F1‑score on the named entity recognition dataset in the power dispatch domain compared to
the baseline model.

6. Conclusions
In this study, we designed a RoBERTa‑Attention‑FL model for named entity recognition

in the field of power dispatching. The RoBERTa pre‑trained model was used to obtain textual
contextual depth representation information. Extraction of the output of the middle four to ten
layers of RoBERTa obtained the syntactic information by automatically learning the weights
with the help of the multi‑headed self‑attentiveness mechanism in Transformer Encoder. By
fusing the context‑depth representation information and syntactic information, the power dis‑
patching domain text was characterized in a deeperway, and finally the predicted entities were
obtained from the fully connected layer. A focal loss function was used during training to alle‑
viate the problem of sample category imbalance. In this paper, we constructed a named entity
recognition dataset in the grid dispatching domain, and used an annotation method based on
span representation to recognize nine entity types. The model can effectively solve the recog‑
nition problem of nested entities and improve the recognition accuracy of flat entities. We val‑
idated the effectiveness and superiority of the method on a self‑built named entity recognition
dataset in the field of grid dispatching:

(1) RoBERTa‑Attention‑FLmodel is introduced into the RoBERTa pre‑trainingmodel, and
the F1‑score is improved by 1.6% comparedwith the BERTmodel, indicating that the RoBERTa
pre‑training model can effectively improve the accuracy rate of named entity recognition;
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(2) Introducing mid‑level syntactic information and deep contextual semantic informa‑
tion after the Transformer Encoder module to learn the weight information, Bert‑Attention‑FL
model improves F1‑score by 2.62% compared with Bert‑FL model, which can effectively en‑
hance the depth characterization ability of the model and improve the accuracy rate of named
entity recognition.

(3) The RoBERTa‑Attention‑FL model improves the recognition F1‑score of nested entities
by 3.22% compared with the benchmark model BERT‑CE model, which effectively improves
the recognition accuracy of nested entities and the F1‑score of flat entities by 4.28%.

In future research, we plan to further extract relationships between entities and study the
correlation between relationship extraction and named entity identification to better tap poten‑
tial knowledge in the field of grid dispatching and further improve the model performance. In
addition, we plan to apply the model to other domains to verify the generalization capability
of the model.
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