Exploring the Potential of Lignocellulosic Biomass-Derived Polyoxymethylene Dimethyl Ether as a Sustainable Fuel for Internal Combustion Engines
Abstract
:1. Introduction
2. International Research Status of PODE
3. Production Technologies of Polyoxymethylene Dimethyl Ether
4. Properties of Polyoxymethylene Dimethyl Ether
4.1. Advantages
4.2. Disadvantages
5. Application of Polyoxymethylene Dimethyl Ether in Internal Combustion Engines
5.1. Application of PODE in ICEs through 100% Sole Fuel
5.2. Application of PODEn in ICEs through Blending with High-Cetane Fuels (Diesel/Biodiesel)
5.3. Application of PODEn as an Additive Fuel in Diesel/Alcohol Blends
5.4. Effect of PODE in Advanced Combustion Technologies
6. Summary and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
amb | Atmospheric pressure |
aTDC | After top dead center |
BMEP | Brake mean effective pressure |
bTDC | Before top dead center |
C/H | Carbon-to-hydrogen ratio |
CA | Crank angle |
CA50 | Crank angle at 50% mass fraction burn |
C-C | Carbon-to-carbon bond |
CH2O | Formaldehyde |
CO | Carbon monoxide |
CO2 | Carbon dioxide |
COOH | Carboxyl group |
DME | Dimethyl ether |
Dnozzle | Nozzle diameter |
EGR | Exhaust gas recirculation |
HC | Hydrocarbon |
HCCI | Homogeneous-charge compression ignition |
HRR | Heat-release rate |
HTHR | High-temperature heat release |
ICE | Internal combustion engine |
IMEP | Indicated mean effective pressure |
LRF | Low-reactivity fuel |
LTHR | Low-temperature heat release |
NH3 | Ammonia |
NO | Nitric oxide |
NOx | Oxides of nitrogen |
OME | Oxymethylene dimethyl ether |
PAH | Polycyclic aromatic hydrocarbon |
PCCI | Premixed-charge compression ignition |
Pinj | Injection pressure |
PM | Particulate matter |
PODE | Polyoxymethylene dimethyl ether |
RCCI | Reactivity-controlled compression ignition |
RoPR | Rate of pressure rise |
SMD | Sauter mean diameter |
SOI | Start of injection |
STP | Spray tip penetration |
References
- World Energy Council (WEC). Global Transport Scenarios 2050; World Energy Council (WEC): London, UK, 2011; Available online: https://www.worldenergy.org/assets/downloads/wec_transport_scenarios_2050.pdf (accessed on 8 May 2023).
- Hoang, A.T.; Ong, H.C.; Fattah, I.M.R.; Chong, C.T.; Cheng, C.K.; Sakthivel, R.; Ok, Y.S. Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Process. Technol. 2021, 223, 106997. [Google Scholar] [CrossRef]
- Mofijur, M.; Fattah, I.M.R.; Alam, M.A.; Islam, A.; Ong, H.C.; Rahman, S.M.A.; Najafi, G.; Ahmed, S.F.; Uddin, M.A.; Mahlia, T.M.I. Impact of COVID-19 on the social, economic, environmental and energy domains: Lessons learnt from a global pandemic. Sustain. Prod. Consum. 2021, 26, 343–359. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Park, S.; Reitz, R.D.; Kurtz, E. The effect of oxygenated fuel properties on diesel spray combustion and soot formation. Combust. Flame 2017, 180, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Veza, I.; Afzal, A.; Mujtaba, M.A.; Hoang, A.T.; Balasubramanian, D.; Sekar, M.; Fattah, I.M.R.; Soudagar, M.E.M.; El-Seesy, A.I.; Djamari, D.W.; et al. Review of artificial neural networks for gasoline, diesel and homogeneous charge compression ignition engine. Alex. Eng. J. 2022, 61, 8363–8391. [Google Scholar] [CrossRef]
- Ong, H.C.; Tiong, Y.W.; Goh, B.H.H.; Gan, Y.Y.; Mofijur, M.; Fattah, I.M.R.; Chong, C.T.; Alam, M.A.; Lee, H.V.; Silitonga, A.S.; et al. Recent advances in biodiesel production from agricultural products and microalgae using ionic liquids: Opportunities and challenges. Energy Convers. Manag. 2021, 228, 113647. [Google Scholar] [CrossRef]
- Owusu, P.A.; Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 2016, 3, 1167990. [Google Scholar] [CrossRef]
- Erdiwansyah; Mamat, R.; Sani, M.S.M.; Sudhakar, K.; Kadarohman, A.; Sardjono, R.E. An overview of Higher alcohol and biodiesel as alternative fuels in engines. Energy Rep. 2019, 5, 467–479. [Google Scholar] [CrossRef]
- Imtenan, S.; Varman, M.; Masjuki, H.H.; Kalam, M.A.; Sajjad, H.; Arbab, M.I.; Fattah, I.M.R. Impact of low temperature combustion attaining strategies on diesel engine emissions for diesel and biodiesels: A review. Energy Convers. Manag. 2014, 80, 329–356. [Google Scholar] [CrossRef]
- Li, X.; Pei, Y.; Ajmal, T.; Rana, K.-J.; Aitouche, A.; Mobasheri, R.; Peng, Z. Numerical investigation on implementing Oxy-Fuel Combustion (OFC) in an ethanol-gasoline Dual-Fuel Spark Ignition (DFSI) engine. Fuel 2021, 302, 121162. [Google Scholar] [CrossRef]
- Guo, Z.; Yu, X.; Du, Y.; Wang, T. Comparative study on combustion and emissions of SI engine with gasoline port injection plus acetone-butanol-ethanol (ABE), isopropanol-butanol-ethanol (IBE) or butanol direct injection. Fuel 2022, 316, 123363. [Google Scholar] [CrossRef]
- Miyamoto, N.; Ogawa, H.; Nurun, N.M.; Obata, K.; Arima, T. Smokeless, Low NOx, High Thermal Efficiency, and Low Noise Diesel Combustion with Oxygenated Agents as Main Fuel. SAE Trans. 1998, 107, 171–177. [Google Scholar]
- Serrano, L.; Lopes, M.; Pires, N.; Ribeiro, I.; Cascão, P.; Tarelho, L.; Monteiro, A.; Nielsen, O.; da Silva, M.G.; Borrego, C. Evaluation on effects of using low biodiesel blends in a EURO 5 passenger vehicle equipped with a common-rail diesel engine. Appl. Energy 2015, 146, 230–238. [Google Scholar] [CrossRef]
- Awad, O.I.; Mamat, R.; Ali, O.M.; Sidik, N.A.C.; Yusaf, T.; Kadirgama, K.; Kettner, M. Alcohol and ether as alternative fuels in spark ignition engine: A review. Renew. Sustain. Energy Rev. 2018, 82, 2586–2605. [Google Scholar] [CrossRef]
- Burger, J.; Siegert, M.; Ströfer, E.; Hasse, H. Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel: Properties, synthesis and purification concepts. Fuel 2010, 89, 3315–3319. [Google Scholar] [CrossRef]
- Iannuzzi, S.E. Oxygenated Fuels to Reduce Exhaust Emissions from Diesel Engines; Università degli Studi di Napoli Federico II: Naples, Italy, 2016. [Google Scholar]
- Chen, H.; He, J.; Hua, H. Investigation on Combustion and Emission Performance of a Common Rail Diesel Engine Fueled with Diesel/Biodiesel/Polyoxymethylene Dimethyl Ethers Blends. Energy Fuels 2017, 31, 11710–11722. [Google Scholar] [CrossRef]
- Çelikten, İ.; Mutlu, E.; Solmaz, H. Variation of performance and emission characteristics of a diesel engine fueled with diesel, rapeseed oil and hazelnut oil methyl ester blends. Renew. Energy 2012, 48, 122–126. [Google Scholar] [CrossRef]
- Chen, H.; Wang, H.; Chen, Z.; Zhao, H.; Geng, L.; Gao, N.; Yi, C.; Xu, H. Research progress on the spray, combustion and emission of polyoxymethylene dimethyl ethers as a diesel blend fuel: A review. Fuel 2022, 324, 124731. [Google Scholar] [CrossRef]
- Schmitz, N.; Homberg, F.; Berje, J.; Burger, J.; Hasse, H. Chemical Equilibrium of the Synthesis of Poly(oxymethylene) Dimethyl Ethers from Formaldehyde and Methanol in Aqueous Solutions. Ind. Eng. Chem. Res. 2015, 54, 6409–6417. [Google Scholar] [CrossRef]
- Staudinger, H.; Lüthy, M. Hochpolymere Verbindungen. 3. Mitteilung. Über die Konstitution der Poly-oxymethylene. Helv. Chim. Acta 1925, 8, 41–64. [Google Scholar] [CrossRef]
- Fleisch, T.H.; Basu, A.; Sills, R.A. Introduction and advancement of a new clean global fuel: The status of DME developments in China and beyond. J. Nat. Gas Sci. Eng. 2012, 9, 94–107. [Google Scholar] [CrossRef]
- Zheng, Y.; Tang, Q.; Wang, T.; Liao, Y.; Wang, J. Synthesis of a Green Fuel Additive Over Cation Resins. Chem. Eng. Technol. 2013, 36, 1951–1956. [Google Scholar] [CrossRef]
- Deng, X.; Cao, Z.; Li, X.; Han, D.; Zhao, R.; Li, Y. The Synthesis of Polyoxymethylene Dimethyl Ethers for New Diesel Blending Component. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2016, 46, 1842–1847. [Google Scholar] [CrossRef]
- Wu, Q.; Guo, Y.; Shang, J.; Shi, D.; Zhang, Y.; Chen, K.; Li, H.; Zhao, Y.; Jiao, Q. Synthesis of polyoxymethylene dimethyl ethers from formaldehyde and dimethoxymethane by the coupling of extraction and catalytic reaction. Chem. Eng. Sci. 2022, 253, 117521. [Google Scholar] [CrossRef]
- Liu, F.; Wei, R.; Wang, T. Effects of water and methanol on synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and paraformaldehyde. Chem. Eng. Sci. 2022, 248, 117057. [Google Scholar] [CrossRef]
- Drunsel, J.-O.; Renner, M.; Hasse, H. Experimental study and model of reaction kinetics of heterogeneously catalyzed methylal synthesis. Chem. Eng. Res. Des. 2012, 90, 696–703. [Google Scholar] [CrossRef]
- Pellegrini, L.; Patrini, R.; Marchionna, M. Effect of POMDME Blend on PAH Emissions and Particulate Size Distribution from an In-Use Light-Duty Diesel Engine. Available online: https://www.sae.org/publications/technical-papers/content/2014-01-1951/ (accessed on 8 May 2023).
- Awad, O.I.; Ma, X.; Kamil, M.; Ali, O.M.; Ma, Y.; Shuai, S. Overview of polyoxymethylene dimethyl ether additive as an eco-friendly fuel for an internal combustion engine: Current application and environmental impacts. Sci. Total Environ. 2020, 715, 136849. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Li, B.; Wang, J.; He, X. Exploiting new combustion regime using multiple premixed compression ignition (MPCI) fueled with gasoline/diesel/PODE (GDP). Fuel 2016, 186, 639–647. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Wang, J.; He, X. Improvement of emission characteristics and thermal efficiency in diesel engines by fueling gasoline/diesel/PODEn blends. Energy 2016, 97, 105–112. [Google Scholar] [CrossRef]
- Liu, J.; Sun, P.; Huang, H.; Meng, J.; Yao, X. Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends. Appl. Energy 2017, 202, 527–536. [Google Scholar] [CrossRef]
- Li, B.; Li, Y.; Liu, H.; Liu, F.; Wang, Z.; Wang, J. Combustion and emission characteristics of diesel engine fueled with biodiesel/PODE blends. Appl. Energy 2017, 206, 425–431. [Google Scholar] [CrossRef]
- Duraisamy, G.; Rangasamy, M.; Govindan, N. A comparative study on methanol/diesel and methanol/PODE dual fuel RCCI combustion in an automotive diesel engine. Renew. Energy 2020, 145, 542–556. [Google Scholar] [CrossRef]
- Barro, C.; Parravicini, M.; Boulouchos, K. Neat polyoxymethylene dimethyl ether in a diesel engine; part 1: Detailed combustion analysis. Fuel 2019, 256, 115892. [Google Scholar] [CrossRef]
- Liu, J.; Shang, H.; Wang, H.; Zheng, Z.; Wang, Q.; Xue, Z.; Yao, M. Investigation on partially premixed combustion fueled with gasoline and PODE blends in a multi-cylinder heavy-duty diesel engine. Fuel 2017, 193, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, X.; Wu, Y.; Zhang, X.; Jin, C.; Zheng, Z. Effect of diesel/PODE/ethanol blends on combustion and emissions of a heavy duty diesel engine. Fuel 2019, 257, 116064. [Google Scholar] [CrossRef]
- Tan, Y.R.; Botero, M.L.; Sheng, Y.; Dreyer, J.A.H.; Xu, R.; Yang, W.; Kraft, M. Sooting characteristics of polyoxymethylene dimethyl ether blends with diesel in a diffusion flame. Fuel 2018, 224, 499–506. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.; Liu, D. Effects of oxygenated biofuel additives on soot formation: A comprehensive review of laboratory-scale studies. Fuel 2022, 313, 122635. [Google Scholar] [CrossRef]
- Popp, T.; Lechner, R.; Becker, M.; Hebauer, M.; O’Connell, N.; Brautsch, M. Potentials of OME/diesel blends for stationary power production—Improving emission characteristics of a diesel CHP unit. Appl. Therm. Eng. 2019, 153, 483–492. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, G.; Li, Z.; Xia, C. Polyoxymethylene dimethyl ethers as clean diesel additives: Fuel freezing and prediction. Fuel 2019, 237, 833–839. [Google Scholar] [CrossRef]
- Härtl, M.; Seidenspinner, P.; Jacob, E.; Wachtmeister, G. Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuel OME1. Fuel 2015, 153, 328–335. [Google Scholar] [CrossRef]
- Pellegrini, L.; Marchionna, M.; Patrini, R.; Florio, S. Emission Performance of Neat and Blended Polyoxymethylene Dimethyl Ethers in an Old Light-Duty Diesel Car. Available online: https://www.sae.org/publications/technical-papers/content/2013-01-1035/ (accessed on 8 May 2023).
- Lin, Q.; Tay, K.L.; Yang, W. Auto-ignition of polyoxymethylene dimethyl ether 3 (PODE3) blended with diesel and gasoline via combustion under homogeneous charge compression ignition. Energy Convers. Manag. X 2021, 11, 100093. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, H.; Ma, X.; Wang, J.; Shuai, S.; Reitz, R.D. Homogeneous charge compression ignition (HCCI) combustion of polyoxymethylene dimethyl ethers (PODE). Fuel 2016, 183, 206–213. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Zhang, J.; Wang, J.; Shuai, S. Study on combustion and emission characteristics of Polyoxymethylene Dimethyl Ethers/diesel blends in light-duty and heavy-duty diesel engines. Appl. Energy 2017, 185, 1393–1402. [Google Scholar] [CrossRef]
- Lv, D.; Chen, Y.; Chen, Y.; Guo, X.; Chen, H.; Huang, H. Development of a reduced diesel/PODEn mechanism for diesel engine application. Energy Convers. Manag. 2019, 199, 112070. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Ji, Q.; Sun, P.; Wei, M.; Liu, S.; Fang, J. Effects of pilot injection strategy on in-cylinder combustion and emission characteristics of PODE/methanol blends. Fuel Process. Technol. 2022, 228, 107168. [Google Scholar] [CrossRef]
- Ji, Q.; Li, J.; Wang, J.; Sun, P.; Wu, P. Simulation analysis of the effects of methanol-polyoxymethylene dimethyl ethers blends on combustion and emissions of a PCCI engine. E3S Web Conf. 2021, 252, 03022. [Google Scholar] [CrossRef]
- Tong, L.; Wang, H.; Zheng, Z.; Reitz, R.; Yao, M. Experimental study of RCCI combustion and load extension in a compression ignition engine fueled with gasoline and PODE. Fuel 2016, 181, 878–886. [Google Scholar] [CrossRef]
- Rangasamy, M.; Duraisamy, G.; Govindan, N. Effect of Polyoxymethylene Dimethyl Ethers-Diesel Blends as High-Reactivity Fuel in a Dual-Fuel Reactivity Controlled Compression Ignition Combustion. SAE Int. J. Engines 2019, 13, 143–158. [Google Scholar] [CrossRef]
- Chen, H.; Huang, R.; Huang, H.; Pan, M.; Teng, W. Potential improvement in particulate matter’s emissions reduction from diesel engine by addition of PODE and injection parameters. Appl. Therm. Eng. 2019, 150, 591–604. [Google Scholar] [CrossRef]
- Palash, S.M.; Kalam, M.A.; Masjuki, H.H.; Masum, B.M.; Fattah, I.M.R.; Mofijur, M. Impacts of biodiesel combustion on NOx emissions and their reduction approaches. Renew. Sustain. Energy Rev. 2013, 23, 473–490. [Google Scholar] [CrossRef]
- Jamrozik, A. The effect of the alcohol content in the fuel mixture on the performance and emissions of a direct injection diesel engine fueled with diesel-methanol and diesel-ethanol blends. Energy Convers. Manag. 2017, 148, 461–476. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, K.; Wang, W.; Liu, S.; Chen, X.; Yang, Y.; Bai, S. Comparison study on the emission characteristics of diesel- and dimethyl ether-originated particulate matters. Appl. Energy 2014, 130, 357–369. [Google Scholar] [CrossRef]
- He, T.; Chen, Z.; Zhu, L.; Zhang, Q. The influence of alcohol additives and EGR on the combustion and emission characteristics of diesel engine under high-load condition. Appl. Therm. Eng. 2018, 140, 363–372. [Google Scholar] [CrossRef]
- Song, H.; Kang, M.; Jin, F.; Wang, G.; Li, Z.; Chen, J. Brønsted-acidic ionic liquids as efficient catalysts for the synthesis of polyoxymethylene dialkyl ethers. Chin. J. Catal. 2017, 38, 853–861. [Google Scholar] [CrossRef]
- Huang, H.; Li, Z.; Teng, W.; Huang, R.; Liu, Q.; Wang, Y. Effects of EGR rates on combustion and emission characteristics in a diesel engine with n-butanol/PODE3-4/diesel blends. Appl. Therm. Eng. 2019, 146, 212–222. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Teng, W.; Li, Z.; Liu, Q.; Wang, Q.; Pan, M. Improvement of emission characteristics and maximum pressure rise rate of diesel engines fueled with n-butanol/PODE3-4/diesel blends at high injection pressure. Energy Convers. Manag. 2017, 152, 45–56. [Google Scholar] [CrossRef]
- Huang, H.; Li, Z.; Teng, W.; Zhou, C.; Huang, R.; Liu, H.; Pan, M. Influence of n-butanol-diesel-PODE3-4 fuels coupled pilot injection strategy on combustion and emission characteristics of diesel engine. Fuel 2019, 236, 313–324. [Google Scholar] [CrossRef]
- Liu, J.; Yang, J.; Sun, P.; Gao, W.; Yang, C.; Fang, J. Compound combustion and pollutant emissions characteristics of a common-rail engine with ethanol homogeneous charge and polyoxymethylene dimethyl ethers injection. Appl. Energy 2019, 239, 1154–1162. [Google Scholar] [CrossRef]
- Song, H.; Liu, C.; Li, F.; Wang, Z.; He, X.; Shuai, S.; Wang, J. A comparative study of using diesel and PODEn as pilot fuels for natural gas dual-fuel combustion. Fuel 2017, 188, 418–426. [Google Scholar] [CrossRef]
Properties | Unit | Haoye Liu et al. [30,31] | Junheng Liu et al. [32] | Bowen Li et al. [33] | Ganesh et al. [34] | Barro et al. [35] | Jialin Liu et al. [36] | Haifeng Liu et al. [37] |
---|---|---|---|---|---|---|---|---|
Chemical structure | No unit | CH3O−[CH2O]n−CH3 | _ | _ | _ | _ | _ | CH3O−[CH2O]n−CH3 |
Carbon content | % | 43.97 | 44.03 | 43.97 | _ | _ | 43.5 | 43.53 |
Hydrogen content | % | 8.78 | 8.78 | 8.78 | _ | _ | 8.5 | 8.52 |
Oxygen content | % | 46.98 | 47.2 | 46.98 | _ | _ | 48 | 47.95 |
Cetane number | No unit | 78.6 | 76 | 78.4 | 78 | 47 | 60.7 | 87.7 |
Research octane number | No unit | _ | _ | _ | _ | _ | 13.3 | _ |
Density | g/cc | 1.019 | 1.050 at 20 °C | 1.0190 | 1.047 at 25 °C | 1.046 at 25 °C | 1.047 at 20 °C | 1.047 at 20 °C |
Viscosity | mm2/s | 1.05 at 25 °C | _ | _ | 1.1 at 20 °C | 0.97 at 25 °C | _ | 1.11 at 20 °C |
Lower heating value | MJ/kg | 19.05 | 17.8 | 19.05 | 20.9 | 19.4 | 21.8 | 21.77 |
Enthalpy of vaporisation | kJ/kg | _ | 359 | _ | _ | _ | _ | 300 |
Boiling range/point | °C | 156–202 | 180 | 156–242 | _ | _ | _ | 156 |
Surface tension | N/m | 28.8–30.7 | _ | _ | _ | _ | _ | _ |
Investigators | Engine Specifications | Operating Conditions | Combustion Characteristics | Performance Characteristics | Emissions Results |
---|---|---|---|---|---|
Härtl et al. [42] | Single-cylinder MAN D20 Series CI engine Displacement: 1.75 L Bore: 120 mm Compression ratio: 17 | IMEP: 13.0 bar PBoost: 1.91 bar Speed: 1200 rpm Tintake: 40 °C Pinj.pressure: 1800 bar CA50 8° CA aTDC |
| 0.9% improved thermal efficiency |
|
Pellegrini et al. [43] | Four-inline-cylinder CI engine Displacement: 1.91 L Bore × stroke: 82 × 90.4 mm Compression ratio: 18.45 | New European driving cycle | Not specified | 73% increased specific fuel consumption |
|
Barro et al. [35] | Single-cylinder diesel engine Displacement: 3.96 L Bore × stroke: 165 × 185 mm | BMEP: 5.6 bar Pinj.pressure: 703 bar SOI: 10° CA bTDC | Higher heat-release rateShorter combustion duration | Not specified |
|
Duraisamy et al. [34] | Three-cylinder turbocharged automotive diesel engine Displacement: 1.478 L Bore × stroke: 80 × 98 mm Compression ratio: 17.2 | BMEP: 3.4 bar Speed: 1500 rpm CA50: 10° CA aTDC Pinj.pressure: 480 bar |
|
|
|
Investigators | Engine Specifications | Operating Conditions |
---|---|---|
Iannuzzi [16] | Single cylinder Bore × stroke: 165 × 185 mm Compression ratio: 13.7 | BMEP: 8 bar Intake pressure: 1.5 bar Exhaust pressure: 1 bar Injection pressure: 800 bar SOI: 12° CA bTDC |
Popp et al. [40] | Six-cylinder HD diesel engine Displacement: 12.4 L Compression ratio: 16 Bore × stroke: 126 × 166 mm | 1500 rpm Full-load conditions SOI: 17 to 6° CA bTDC |
Wang et al. [45] | Single-cylinder light-duty diesel engine Displacement: 0.5 L CR: 16.7 | BMEP: 8 bar 1600 rpm Double injection, <7% in Pilot |
Haoye Liu et al. [46] | Six-cylinder heavy-duty diesel engine Displacement: 7.14 L Compression ratio: 18 | BMEP: 8 bar, 1600 rpm Injection pressure: 65 MPa SOIpilot: 16° CA bTDC SOImain: 4° CA aTDC |
Lv et al. [47] | Single-cylinder diesel engine Compression ratio: 16.5 Bore × stroke: 88.1 × 85 mm | 1600 rpm Intake air temperature: 315 K SOI: 7° CA bTDC |
Junheng Liu et al. [32] | Four-cylinder diesel engine Bore × stoke: 105 × 118 mm Displacement: 4.09 L, CR 17.5 | 1500 rpm 100% load of the engine (i.e., 400 Nm) |
Jialin Liu et al. [36] | Sixcylinder heavy-duty diesel engine Displacement: 8.42 L Compression ratio: 17.5 | CA50: 10° CA aTDC 1503 rpm BMEP: 19.1 bar |
Chen et al. [52] | Four-cylinder heavy-duty diesel engine Displacement: 1.99 L Compression ratio: 16.5 Bore × stroke: 85 × 88.1 mm | 1600 rpm BMEP: 4 bar SOI: 4° CA bTDC Pinj: 100 MPa |
Investigators | Low Reactivity Fuel | Engine Specifications | Operating Conditions | Combustion Characteristics | Performance Characteristics | Emission Characteristics |
---|---|---|---|---|---|---|
Tong et al. [50] | Gasoline | Six-cylinder inline diesel engine Displacement: 6.5 L Bore × Stroke: 105 × 125 mm Compression ratio: 16 | 1500 rpm SOIPFI: −133° CA aTDC PDI: 60 MPa. EGR: 45% | CA50: 0.5 to 1° CA advance. Cylinder pressure: Decreases | ηBTE: 2.9% | NOx: 31% ↑ Soot: 87% ↓ |
Duraisamy et al. [34] | Methanol | Three-cylinder turbocharged diesel engine Displacement: 1.478 L Bore × stroke: 80 × 98 mm Compression ratio: 17.2 | 1500 rpm BMEP: 3.4 bar CA50: 10° CA aTDC EGR: 26% |
| ηcombustion: 21% ηBTE: 1.8% | HC: 51% ↓ NOx: 26% ↑ CO: 49% ↓ Soot: 72% ↓ |
Liu et al. [61] | Ethanol | Four-cylinder turbocharged diesel engine Displacement: 4.32 L Bore × stroke: 108 × 118 mm Compression ratio: 17.5 | 1500 rpm BMEP: 1 MPa SOIPODE: TDC Pinj.PFI: 4 bar | Compared to CDC, ignition delay increases, CD decreases, and peak cylinder pressure decreases. | Compared to CDC, brake thermal efficiency increases | Compared to CDC, HC: 63% ↑ NOx: 82% ↓ CO: 72% ↓ Soot: 86% ↓ |
Song et al. [62] | Natural gas | Single-cylinder CI engine Displacement: 1.85 L Compression ratio: 17.5 Bore × stroke: 123 × 156 mm | Low load IMEP: 4 bar 1000 rpm CNG ratio: 60% Pintake: 1.2 bar EGR: Nil |
33% ↓ at late injection
| ηcombustion: 42% ηBTE: 3.8% | HC: 25% ↓ Nox: 21% ↓ CO: 13% ↓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowthaman, C.N.; Rahman, S.M.A.; Fattah, I.M.R. Exploring the Potential of Lignocellulosic Biomass-Derived Polyoxymethylene Dimethyl Ether as a Sustainable Fuel for Internal Combustion Engines. Energies 2023, 16, 4679. https://doi.org/10.3390/en16124679
Kowthaman CN, Rahman SMA, Fattah IMR. Exploring the Potential of Lignocellulosic Biomass-Derived Polyoxymethylene Dimethyl Ether as a Sustainable Fuel for Internal Combustion Engines. Energies. 2023; 16(12):4679. https://doi.org/10.3390/en16124679
Chicago/Turabian StyleKowthaman, Chakrapani Nagappan, S. M. Ashrafur Rahman, and I. M. R. Fattah. 2023. "Exploring the Potential of Lignocellulosic Biomass-Derived Polyoxymethylene Dimethyl Ether as a Sustainable Fuel for Internal Combustion Engines" Energies 16, no. 12: 4679. https://doi.org/10.3390/en16124679
APA StyleKowthaman, C. N., Rahman, S. M. A., & Fattah, I. M. R. (2023). Exploring the Potential of Lignocellulosic Biomass-Derived Polyoxymethylene Dimethyl Ether as a Sustainable Fuel for Internal Combustion Engines. Energies, 16(12), 4679. https://doi.org/10.3390/en16124679