Organic Supercritical Thermodynamic Cycles with Isothermal Turbine
Abstract
:1. Introduction
2. Modelling
- -
- heat delivered to the working media between the regenerator and the turbine nozzles:
- -
- heat of the isothermal expansion
- -
- heat rejected in the condenser:
- -
- adiabatic turbine work:
- -
- isothermal turbine work:
- -
- pump work:
3. Results and Discussion
4. Conclusions
- It is possible to design organic power plants with relatively high efficiency even exceeding 50% (for MM as a working media at the temperature of 686 °C and pressure p0 = 13 MPa). In the case of steam power plants, such high efficiencies can be achieved for ultra-supercritical steam parameters (pressures of the order of 30 MPa, temperatures of 600 °C, even above 700 °C, with double interstage superheating and an extensive system of regenerative heaters).
- The increase in initial pressure above the critical value leads to a significant rise in power plant efficiency (at the same upper temperature). The increase in initial pressure above the critical value causes the increase in efficiency of ORC power plant from about two percentage points (acetone, c1cc6 c3cc6) to about six points for the medium R1233zd for power plants with adiabatic turbines, and for power plants with isothermal turbines, this growth is as high as 3.6 points for c3cc6 up to 10.1 percent points for R1233zd. The values depend on the working media and on their parameters.
- The efficiency of the cycle with isothermal expansion is visibly higher than the efficiency of the cycle with the adiabatic turbine. The increase in efficiency varies from 8 points for R245fa up to 10 points for acetone.
- The isothermal expansion and the supercritical parameters of working media can significantly increase the efficiency of ORC power plants by up to 47−51%, which are competitive values characteristic of modern advanced power plants with ultra-supercritical parameters.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Description | Symbol | Value | Unit |
---|---|---|---|
Mass flux | mp | 2.625 | [kg/s] |
Nozzle inlet pressure | p1 | 178.65 | [Pa] |
Nozzle outlet pressure | p2 | 109.52 | [Pa] |
Nozzle inlet velocity | v1 | 16.76 | [m/s] |
Nozzle outlet velocity | v2 | 137.90 | [m/s] |
Nozzle inlet temperature | T1 | 299.91 | [°C] |
Nozzle outlet temperature | T2 | 300.12 | [°C] |
Non-dimensional wall distance for a wall-bounded flow | y+ | 3.663 | [−] |
Total nozzle length | l | 40 | [mm] |
References
- Beith, R. Small and Micro Combined Heat and Power CHP Systems; Woodhead Publishing Limited: Cambridge, UK, 2011. [Google Scholar]
- Quoilin, S.; Declaye, S.; Tchanche, B.F.; Lemort, V. Thermo-economic optimization of waste heat recovery Organic Rankine Cycles. Appl. Therm. Eng. 2011, 31, 2885–2893. [Google Scholar] [CrossRef] [Green Version]
- Lecompte, S.; Huisseune, H.; Van den Broek, M.; Vanslambrouck, B.; DePaepe, M. Review of organic Rankine cycle (ORC) architectures for waste heat recovery. Renew. Sustain. Energy Rev. 2015, 47, 448–461. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, G.; Li, L.; Yang, Q.; Tang, B.; Liu, Y. Expansion devices for organic Rankine cycle (ORC) using in low temperature heat recovery: A review. Energy Convers. Manag. 2019, 199, 111944. [Google Scholar] [CrossRef]
- Kermani, M.; Wallerand, A.S.; Kantor, I.D.; Maréchal, F. Generic superstructure synthesis of organic Rankine cycles for waste heat recovery in industrial processes. Appl. Energy 2018, 212, 1203–1225. [Google Scholar] [CrossRef]
- Da Silva, J.A.M.; Seifert, V.; de Morais, V.O.B.; Tsolakis, A.; Herreros, J.; Torres, E. Exergy evaluation and ORC use as an alternative for efficiency improvement in a CI-engine power plant. Sustain. Energy Technol. Assess. 2018, 30, 216–223. [Google Scholar] [CrossRef]
- Li, T.; Meng, N.; Liu, J.; Zhu, J.; Kong, X. Thermodynamic and economic evaluation of the organic Rankine cycle(ORC) and two-stage series organic Rankine cycle (TSORC) for flue gas heat recovery. Energy Convers. Manag. 2019, 183, 816–829. [Google Scholar] [CrossRef]
- Altun, A.F.; Kilic, M. Thermodynamic performance evaluation of a geothermal ORC power plant. Renew. Energy 2020, 148, 261–274. [Google Scholar] [CrossRef]
- Tartiere, T.; Astolfi, M. A World Overview of the Organic Rankine Cycle Market. Energy Procedia 2017, 129, 2–9. [Google Scholar] [CrossRef]
- Piwowarski, M. Design analysis of ORC micro-turbines making use of thermal energy of oceans. Pol. Marit. Res. 2013, 20, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Quoilin, S.; Lemort, V. Technological and Economical Survey of Organic Rankine Cycle Systems. In Proceedings of the 5th European Conference Economics and Management of Energy in Industry, Vilamoura, Portugal, 14–17 April 2009. [Google Scholar]
- Kosowski, K.; Piwowarski, M.; Stepien, R.; Włodarski, W. Design and investigations of the ethanol microturbine. Arch. Thermodyn. 2018, 39, 41–54. [Google Scholar]
- Landelle, A.; Tauveron, N.; Haberschill, P.; Revellin, R.; Colasson, S. Organic Rankine cycle design and performance comparison based on experimental database. Appl. Energy 2017, 204, 1172–1187. [Google Scholar] [CrossRef]
- Colonna, P.; Nannan, N.R.; Guardone, A.; Lemmon, E.W. Multiparameter equations of state for selected siloxanes. Fluid Phase Equilibria 2006, 244, 193–211. [Google Scholar] [CrossRef]
- Tchanche, B.F.; Lambrinos, G.; Frangoudakis, A.; Papadakis, G. Low-grade heat conversion into power using organic Rankine cycles—A review of various applications. Renew. Sustain. Energy Rev. 2011, 15, 3963–3979. [Google Scholar] [CrossRef]
- Stępniak, D.; Piwowarski, M. Analyzing selection of low-temperature medium for cogeneration micro power plant. Pol. J. Environ. Stud. 2014, 23, 1417–1421. [Google Scholar]
- Kosowski, K.; Piwowarski, M. Subcritical Thermodynamic Cycles with Organic Medium and Isothermal Expansion. Energies 2020, 13, 4340. [Google Scholar] [CrossRef]
- Vescovo, R.; Spagnoli, E. High Temperature ORC Systems. Energy Procedia 2017, 129, 82–89. [Google Scholar] [CrossRef]
- Piwowarski, M.; Kosowski, K. Advanced Turbine Cycles with Organic Media. Energies 2020, 13, 1327. [Google Scholar] [CrossRef] [Green Version]
- Braimakis, K.; Karellas, S. Energetic optimization of regenerative Organic Rankine Cycle (ORC) configurations. Energy Convers. Manag. 2018, 159, 353–370. [Google Scholar] [CrossRef]
- Abam, F.I.; Ekwe, E.B.; Effiom, S.O.; Ndukwu, M.C.; Briggs, T.A.; Kadurumba, C.H. Optimum exergetic performance parameters and thermo-sustainability indicators of low-temperature modified organic Rankine cycles (ORCs). Sustain. Energy Technol. Assess. 2018, 30, 91–104. [Google Scholar] [CrossRef]
- Imran, M.; Park, B.S.; Kim, H.J.; Lee, D.H.; Usman, M.; Heo, M. Thermo-economic optimization of Regenerative Organic Rankine Cycle for waste heat recovery applications. Energy Convers. Manag. 2014, 87, 107–118. [Google Scholar] [CrossRef]
- Li, T.; Zhu, J.; Hu, K.; Kang, Z.; Zhang, W. Implementation of PDORC (parallel double-evaporator organic Rankine cycle) to enhance power output in oilfield. Energy 2014, 68, 680–687. [Google Scholar] [CrossRef]
- Hanafi, A.S.; Mostafa, G.M.; Fathy, A.; Waheed, A. Thermo-Economic Analysis of Combined Cycle MED-TVC Desalination System. Energy Procedia 2015, 75, 1005–1020. [Google Scholar] [CrossRef] [Green Version]
- Senary, K.; Hegazy, E.; Tawfik, A.A.; Hasan, A. A Evolution and Trends in LNGC Propulsion Systems. Port Said Eng. Res. J. 2016, 20, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Vetter, C.; Wiemer, H.-J.; Kuhn, D. Comparison of sub- and supercritical Organic Rankine Cycles for power generation from low-temperature/low-enthalpy geothermal wells, considering specific net power output and efficiency. Appl. Therm. Eng. 2013, 51, 871–879. [Google Scholar] [CrossRef]
- Xia, X.X.; Qi, W.Z.; Hua, H.Y.; Jun, Z.N. A novel comprehensive evaluation methodology of organic Rankine cycle for parameters design and working fluid selection. Appl. Therm. Eng. 2018, 143, 283292. [Google Scholar] [CrossRef]
- Cicconardi, S.P.; Jannelli, E.; Perna, A.; Spazzafumo, G. Parametric analysis of a steam cycle with a quasi-isothermal expansion. International. J. Hydrog. Energy 2001, 26, 275–279. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.; Zhou, X.; Zhang, Y.; Li, W.; Zuo, Z.; Guo, H.; Huang, Y.; Chen, H. A near-isothermal expander for isothermal compressed air energy storage system. Appl. Energy 2018, 225, 955–964. [Google Scholar] [CrossRef]
- Lemmon, E.; Huber, M.; McLinden, M. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP; Version 9.0 Edition; National Institute of Standards and Technology, Standard Reference Data Program: Gaithersburg, MD, USA, 2010. [Google Scholar]
- Keulen, L.; Landolina, C.; Spinelli, A.; Iora, P.; Invernizzi, C. Design and commissioning of a thermal stability test-rig for mixtures as working fluids for ORC applications. Energy Procedia 2017, 129, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Fu, J.; Quan, Y.; Wen, J.; Dong, B. Experimental investigation on heat transfer characteristics of hexamethyldisiloxane (MM) at supercritical pressures for medium/high temperature ORC applications. Int. J. Heat Mass Transf. 2020, 156, 119852. [Google Scholar] [CrossRef]
- Bounaceur, R.; Burklé-Vitzthum, V.; Marquaire, P.-M.; Fusetti, L. Mechanistic modeling of the thermal cracking of methylcyclohexane nearatmospheric pressure, from 523 to 1273 K: Identification of aromatization pathways. J. Anal. Appl. Pyrolysis 2013, 103, 240–254. [Google Scholar] [CrossRef]
- Herbinet, O.; Marquaire, P.-M.; Battin-Leclerc, F.; Fournet, R. Thermal decomposition of n-dodecane: Experiments and kinetic modelling. J. Anal. Appl. Pyrolysis 2007, 78, 419–429. [Google Scholar] [CrossRef]
- Invernizzi, C.M.; Iora, P.; Preißinger, M.; Manzolini, G. HFOs as substitute for R-134a as working fluids in ORC power plants: A thermodynamic assessment and thermal stability analysis. Appl. Therm. Eng. 2016, 103, 790–797. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Liang, C.; Chen, Y.; Zhang, Q.; Li, X.Y. Molecular-level modeling investigation of n-decane pyrolysis at high temperature. J. Anal. Appl. Pyrolysis 2017, 128, 412–422. [Google Scholar] [CrossRef]
- Dai, X.; Shi, L.; An, Q.; Qian, W. Thermal stability of some hydrofluorocarbons as supercritical ORCs working fluids. Appl. Therm. Eng. 2018, 128, 1095–1101. [Google Scholar] [CrossRef]
- Kong, R.; Deethayat, T.; Asanakham, A.; Vorayos, N.; Kiatsiriroat, T. Thermodynamic performance analysis of a R245fa organic Rankine cycle (ORC) with different kinds of heat sources at evaporator. Case Stud. Therm. Eng. 2019, 13, 100385. [Google Scholar] [CrossRef]
- Irriyantoa, M.Z.; Limb, H.-S.; Choib, B.-S.; Myinta, A.A.; Kim, J. Thermal stability and decomposition behavior of HFO-1234ze(E) as aworking fluid in the supercritical organic Rankine cycle. J. Supercrit. Fluids 2019, 154, 104602. [Google Scholar] [CrossRef]
- Invernizzi, C.M.; Iora, P.; Bonalumi, D.; Macchi, E.; Roberto, R.; Caldera, M. Titanium tetrachloride as novel working fluid for high temperature Rankine Cycles: Thermodynamic analysis and experimental assessment of the thermal stability. Appl. Therm. Eng. 2016, 107, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Set of Product’s Card of Chempur Poland Ltd. Available online: http://en.chempur.pl (accessed on 22 August 2020).
- Set of Product’s Card of Sigma-Aldrich Ltd. Available online: https://www.sigmaaldrich.com (accessed on 22 August 2020).
- Set of Product’s Card of SCHIESSL Poland Ltd. Available online: https://www.schiessl.pl/en (accessed on 22 August 2020).
No. | Fluid | Chemical Formula | Name | Initial Temperature (AD and IZT) T0 [°C] | Initial Pressure (AD) p0 [MPa] | Initial Pressure (IZT) p0 [MPa] | Condenser Pressure (AD and IZT) pcond [MPa] |
---|---|---|---|---|---|---|---|
1 | MDM | C8H24O2Si3 | Octamethyltrisiloxane | 686.00 | 16.00 | 30.00 | 0.003 |
2 | D6 | C12H36O6Si6 | Dodecamethylcyclohexasiloxane | 686.00 | 9.00 | 15.00 | 0.003 |
3 | D4 | C8H24O4Si4 | Octamethylcyclotetrasiloxane | 686.00 | 11.00 | 21.00 | 0.003 |
4 | MM | C6H18OSi2 | Hexamethyldisiloxane | 686.00 | 13.00 | 24.00 | 0.006 |
5 | R245fa | C3H3F5 | 1,1,1,3,3-pentafluoropropane | 335.00 | 11.00 | 35.00 | 0.161 |
6 | Acetone | C3H6O | 2-propanone | 501.00 | 12.00 | 35.00 | 0.034 |
7 | R365mfc | C4H5F5 | 1,1,1,3,3-pentafluorobutane | 420.00 | 13.00 | 35.00 | 0.062 |
8 | c1cc6 | C7H14 | Methylcyclohexane | 570.00 | 12.00 | 32.00 | 0.007 |
9 | c3cc6 | C9H18 | N-propylcyclohexane | 650.00 | 12.00 | 29.00 | 0.003 |
10 | R1233zd | C11H24 | Undecane | 500.00 | 17.00 | 35.00 | 0.140 |
11 | C11 | C3H2ClF3 | 1-chloro-3,3,3-trifluoroprop-1-ene | 700.00 | 13.00 | 27.00 | 0.003 |
Description | Symbol | Value | Unit |
---|---|---|---|
Turbine efficiency | ηT | 0.85 | [−] |
Pump efficiency | ηPG | 0.80 | [−] |
Mechanical efficiency | ηm | 0.98 | [−] |
External glands losses | ζn | 0.02 | [−] |
Generator efficiency | ηG | 0.90 | [−] |
Regenerator efficiency | ηR | 0.95 | [−] |
Pressure drop in vapor generator/regenerator | pi/pi−1 | 0.98 | [−] |
No. | Fluid | Adiabatic Expansion | Isothermal Expansion | Adiabatic Expansion | Isothermal Expansion | Adiabatic Expansion | Isothermal Expansion |
---|---|---|---|---|---|---|---|
Overall Efficiency [−] | Heat [kJ/kg] | Turbine Work [kJ/kg] | |||||
1 | MDM | 0.4259 | 0.4837 | 1089.43 | 1346.03 | 224.22 | 312.92 |
2 | D6 | 0.3584 | 0.4106 | 959.12 | 1105.07 | 115.76 | 156.68 |
3 | D4 | 0.4047 | 0.4610 | 936.43 | 1140.12 | 175.67 | 244.01 |
4 | MM | 0.4557 | 0.5169 | 1108.86 | 1440.86 | 302.22 | 429.02 |
5 | R245fa | 0.2870 | 0.3728 | 186.12 | 329.95 | 109.61 | 191.84 |
6 | Acetone | 0.3679 | 0.4714 | 389.57 | 894.81 | 424.99 | 727.99 |
7 | R365mfc | 0.3403 | 0.4217 | 309.14 | 494.82 | 146.77 | 239.69 |
8 | c1cc6 | 0.4286 | 0.4988 | 905.00 | 1369.11 | 387.34 | 578.33 |
9 | c3cc6 | 0.4292 | 0.4937 | 1173.13 | 1624.15 | 372.95 | 538.03 |
10 | R1233zd | 0.3688 | 0.4588 | 289.45 | 493.89 | 167.97 | 272.31 |
11 | C11 | 0.4067 | 0.4668 | 1392.12 | 1793.38 | 330.42 | 466.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piwowarski, M.; Kosowski, K.; Richert, M. Organic Supercritical Thermodynamic Cycles with Isothermal Turbine. Energies 2023, 16, 4745. https://doi.org/10.3390/en16124745
Piwowarski M, Kosowski K, Richert M. Organic Supercritical Thermodynamic Cycles with Isothermal Turbine. Energies. 2023; 16(12):4745. https://doi.org/10.3390/en16124745
Chicago/Turabian StylePiwowarski, Marian, Krzysztof Kosowski, and Marcin Richert. 2023. "Organic Supercritical Thermodynamic Cycles with Isothermal Turbine" Energies 16, no. 12: 4745. https://doi.org/10.3390/en16124745
APA StylePiwowarski, M., Kosowski, K., & Richert, M. (2023). Organic Supercritical Thermodynamic Cycles with Isothermal Turbine. Energies, 16(12), 4745. https://doi.org/10.3390/en16124745