An Event-Driven Self-Clocked Digital Low-Dropout Regulator with Adaptive Frequency Control
Abstract
:1. Introduction
2. The Concept of the Proposed DLDO
2.1. Steady-State Operation
2.2. Transient Period Operation
2.3. Stability
3. Circuit Implementation
3.1. Control Logic of the Digital Switching Controller (DSC)
3.2. Clock-Less Transient Detector (CLTD)
3.3. Event-Driven Adaptive Frequency Clock Generator (EACG)
4. Measurement Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ho, M.; Leung, K.N.; Mak, K.L. A low-power fast-transient 90-nm low-dropout regulator with multiple small-gain stages. IEEE J. Solid-State Circuits 2010, 45, 2466–2475. [Google Scholar] [CrossRef]
- Cai, C.; Lu, Y.; Zhan, C.; Martins, R.P. A fully integrated FVF LDO with enhanced full-spectrum power supply rejection. IEEE Trans. Power Electron. 2021, 36, 4326–4337. [Google Scholar] [CrossRef]
- Yuk, Y.S.; Jung, S.; Kim, C.; Gwon, H.D.; Choi, S.; Cho, G.H. PSR enhancement through super gain boosting and differential feed-forward noise cancellation in a 65-nm CMOS LDO regulator. IEEE Trans. Very Large Scale Integr. Syst. 2014, 22, 2181–2191. [Google Scholar] [CrossRef]
- Aviles, F.L.; Torres, J.; Sinencio, E.S. A high power supply rejection and fast settling time capacitor-less LDO. IEEE Trans. Power Electron. 2019, 34, 474–484. [Google Scholar] [CrossRef]
- Roldan, J.Z.; Wang, M.; Torres, J.; Sinencio, E.S. A capacitor-less LDO with high-frequency PSR suitable for a wide range of 0n-chip capacitive loads. IEEE Trans. Very Large Scale Integr. Syst. 2016, 24, 2970–2982. [Google Scholar] [CrossRef]
- Okuma, Y.; Ishida, K.; Ryu, Y.; Zhang, X.; Chen, P.H.; Watanabe, K.; Takamiya, M.; Sakurai, T. 0.5-V input digital LDO with 98.7% current efficiency and 2.7-μA quiescent current in 65 nm CMOS. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC2010), San Jose, CA, USA, 19–22 September 2010; pp. 1–4. [Google Scholar]
- Lim, C.; Mandal, D.; Bakkaloglu, B.; Kiaei, S. A 50-mA 99.2% peak current efficiency, 250-ns settling time digital low-dropout regulator with transient enhanced PI controller. IEEE Trans. Very Large Scale Integr. Syst. 2017, 25, 2360–2370. [Google Scholar] [CrossRef]
- Chu, Y.C.; Chang-Chien, L.R. Digitally controlled low-dropout regulator with fast-transient and autotuning algorithms. IEEE Trans. Power Electron. 2013, 28, 4308–4317. [Google Scholar] [CrossRef]
- Kang, J.G.; Park, J.; Jeong, M.G.; Yoo, C. Digital low-dropout regulator with voltage-controlled oscillator based control. IEEE Trans. Power Electron. 2022, 37, 6951–6961. [Google Scholar] [CrossRef]
- Huang, M.; Lu, Y.; Sin, S.W.; Us, P.; Martins, R.P. A fully integrated digital LDO with coarse–fine-tuning and burst-mode operation. IEEE Trans. Circuits Syst. II Express Briefs. 2016, 63, 683–687. [Google Scholar] [CrossRef]
- Ma, X.; Lu, Y.; Martins, R.P.; Li, Q. A 0.4 V 430 nA quiescent current NMOS digital LDO with NAND-based analog-assisted loop in 28nm CMOS. In Proceedings of the IEEE International Solid—State Circuits Conference (ISSCC2018), San Francisco, CA, USA, 11–15 February 2018; pp. 306–308. [Google Scholar]
- Huang, M.; Lu, Y.; US, P.; Martins, R.P. An output-capacitor-free analog-assisted digital low-dropout regulator with tri-loop control. In Proceedings of the IEEE International Solid—State Circuits Conference (ISSCC2017), San Francisco, CA, USA, 5–9 February 2017; pp. 340–341. [Google Scholar]
- Salem, L.G.; Warchall, J.; Mercier, P.P. A successive approximation recursive digital low dropout voltage regulator with PD compensation and sub-LSB duty control. IEEE J. Solid-State Circuits 2018, 53, 35–49. [Google Scholar] [CrossRef]
- Huang, M.; Lu, Y.; Sin, S.W.; US, P.; Martins, R.P.; Ki, W.H. Limit cycle oscillation reduction for digital low dropout regulators. IEEE Trans. Circuits Syst. II Express Briefs. 2016, 63, 903–907. [Google Scholar] [CrossRef]
- Lee, Y.H.; Peng, S.Y.; Chiu, C.C.; Wu AC, H.; Chen, K.H.; Lin, Y.H.; Wang, S.W.; Tsai, T.Y.; Huang, C.C.; Lee, C.C. A low quiescent current asynchronous digital-LDO with PLL-modulated fast-DVS power management in 40 nm SoC for MIPS performance improvement. IEEE J. Solid-State Circuits 2013, 48, 1018–1030. [Google Scholar] [CrossRef]
- Chiu, C.C.; Huang, P.H.; Lin, M.; Chen, K.H.; Lin, Y.H.; Tsai, T.Y.; Huang, C.C.; Lee, C.C. A 0.6 V resistance-locked loop embedded digital low dropout regulator in 40 nm CMOS with 77% power supply rejection improvement. In Proceedings of the IEEE Symposium on VLSI Circuits (VLSI2013), Kyoto, Japan, 12–14 June 2013; pp. 166–167. [Google Scholar]
- Yang, F.; Mok, P.K.T. Fast-transient asynchronous digital LDO with load regulation enhancement by soft multi-step switching and adaptive timing techniques in 65-nm CMOS. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC2015), San Jose, CA, USA, 28–30 September 2015; pp. 1–4. [Google Scholar]
- Oh, J.; Park, J.E.; Hwaung, Y.H.; Jeong, D.K. A 480 mA output-capacitor-free synthesizable digital LDO using CMP-triggered oscillator and droop detector with 99.99% current efficiency, 1.3ns response time, and 9.8A/mm2 current density. In Proceedings of the IEEE International Solid—State Circuits Conference (ISSCC2020), San Francisco, CA, USA, 16–20 February 2020; pp. 382–384. [Google Scholar]
- Kim, D.; Seok, M. A fully integrated digital low-dropout regulator based on event-driven explicit time-coding architecture. IEEE J. Solid-State Circuits 2017, 52, 3071–3080. [Google Scholar] [CrossRef]
- Lee, Y.J.; Qu, W.; Singh, S.; Kim, D.Y.; Kim, K.H.; Kim, S.H.; Park, J.J.; Cho, G.H. A 200-mA digital low drop-out regulator with coarse-fine dual loop in mobile application processor. IEEE J. Solid-State Circuits 2017, 52, 64–76. [Google Scholar] [CrossRef]
- Akram, M.A.; Hong, W.; Hwang, I.C. Capacitorless self-clocked all-digital low-dropout regulator. IEEE J. Solid-State Circuits 2019, 54, 266–276. [Google Scholar] [CrossRef]
- Lin, J.H.; Ma, Y.S.; Huang, C.M.; Lin, L.C.; Cheng, C.H.; Chen, K.H.; Lin, Y.H.; Lin, S.R.; Tsai, T.Y. A high-efficiency and fast-transient digital-low-dropout regulator with the burst mode corresponding to the power-saving modes of DC-DC switching converters. In Proceedings of the IEEE International Solid—State Circuits Conference (ISSCC2018), San Francisco, CA, USA, 11–15 February 2018; pp. 314–316. [Google Scholar]
- Ahmed, Z.K.; Krishnamurthy, H.K.; Augustine, C.; Liu, X.; Weng, S.; Ravichandran, K.; Tschanz, J.W.; De, V. A variation-adaptive integrated computational digital LDO in 22 nm CMOS with fast transient response. In Proceedings of the IEEE Symposium on VLSI Circuits (VLSI2019), Kyoto, Japan, 9–14 June 2019; pp. 124–125. [Google Scholar]
- Hazucha, P.; Karnik, T.; Bloechel, B.A.; Parsons, C.; Finan, D.; Borkar, S. Area-efficient linear regulator with ultra-fast load regulation. IEEE J. Solid-State Circuits 2005, 40, 933–940. [Google Scholar] [CrossRef]
Fast Path Output | Slow Path Output | MODE | DSC Reaction |
---|---|---|---|
1 | X | 1 (sharp) | Binary search ① VOUT drops: Turn on MSB at the first clock edge ② VOUT rises: Turn off MSB at the first clock edge |
0 | 1 | 0 (smooth) | Linear search |
0 | 0 | 0 (unchanged) | Steady-state |
Design | [19] JSSC 2017 | [20] JSSC 2017 | [13] JSSC 2018 | [22] ISSCC 2018 | [23] VLSI 2019 | [9] TPE 2022 | This Work |
---|---|---|---|---|---|---|---|
Process | 65 nm | 28 nm | 65 nm | 40 nm | 22 nm | 65 nm | 40 nm |
Control | Event-driven | Time-driven | SAR/PWM | Burst Mode | Event-driven | VCO-based | Event-driven |
VIN (V) | 0.5–1.0 | 1.1 | 0.5–1 | 0.6–1.1 | 0.55–1.2 | 0.9–1.2 | 0.55–1.0 |
VOUT (V) | 0.45–0.95 | 0.9 | 0.3–0.45 | 0.5–1 | 0.5–1.15 | 0.5–1.1 | 0.4–0.7 |
Load Range | 150 μA–500 μA | 4 mA–200 mA | 33.6 μA–2 mA | 1 mA–20 mA | 400 μA–2 A | 150 μA–19 mA | 1 mA–60 mA |
COUT (nF) | 0.4 | 23.5 | 0.4 | 4.7 | 7 | 0.2 | 0.3 |
IQ (μA) | 12.5 | 110 | 14 | 20 | 2400 | 131 | 26 |
Sampling clock rate | 200 MHz | N.R. | 1 MHz–240 Hz | 100 MHz | 6 GHz | 500 MHz | External Clock-Less |
VDROOP @ load step transient test | 22 mV @0.2 mA | 120 mV @180 mA | 40 mV @1.06 mA | 40 mV @19 mA | 100 mV @0.5 A | 78 mV @3 mA | 165 mV @59 mA |
Recovery time TR (μs) | 80 | >10 | 0.1 | 1.3 | 0.015 | 0.08 | 0.22 |
FoM1 (ps) (smaller is better) | 2750 | 9.57 | 199 | 10.4 | 6.7 | 227 | 0.37 |
FoM2 (pF) (smaller is better) | 0.57 | 1.914 | 0.47 | 0.19 | 3.73 | 0.68 | 0.036 |
Adaptive frequency for stability | X | X | V | X | X | X | V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-M.; Chen, C.-J. An Event-Driven Self-Clocked Digital Low-Dropout Regulator with Adaptive Frequency Control. Energies 2023, 16, 4749. https://doi.org/10.3390/en16124749
Chen Y-M, Chen C-J. An Event-Driven Self-Clocked Digital Low-Dropout Regulator with Adaptive Frequency Control. Energies. 2023; 16(12):4749. https://doi.org/10.3390/en16124749
Chicago/Turabian StyleChen, Yen-Ming, and Ching-Jan Chen. 2023. "An Event-Driven Self-Clocked Digital Low-Dropout Regulator with Adaptive Frequency Control" Energies 16, no. 12: 4749. https://doi.org/10.3390/en16124749
APA StyleChen, Y. -M., & Chen, C. -J. (2023). An Event-Driven Self-Clocked Digital Low-Dropout Regulator with Adaptive Frequency Control. Energies, 16(12), 4749. https://doi.org/10.3390/en16124749