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Abstract: Identifying statistical trends for a wide range of practical power system applications, includ-
ing sustainable energy forecasting, demand response, energy decomposition, and state estimation, is
regarded as a significant task given the rapid expansion of power system measurements in terms
of scale and complexity. In the last decade, deep learning has arisen as a new kind of artificial
intelligence technique that expresses power grid datasets via an extensive hypothesis space, resulting
in an outstanding performance in comparison with the majority of recent algorithms. This paper
investigates the theoretical benefits of deep data representation in the study of power networks. We
examine deep learning techniques described and deployed in a variety of supervised, unsupervised,
and reinforcement learning scenarios. We explore different scenarios in which discriminative deep
frameworks, such as Stacked Autoencoder networks and Convolution Networks, and generative
deep architectures, including Deep Belief Networks and Variational Autoencoders, solve problems.
This study’s empirical and theoretical evaluation of deep learning encourages long-term studies on
improving this modern category of methods to accomplish substantial advancements in the future of
electrical systems.

Keywords: deep learning; power systems; discriminative neural networks; generative modeling

1. Introduction

The precision and dependability of data-driven approaches employed for the man-
agement and assessment of power systems are highly dependent on the choice of the data
representation (i.e., properties derived from the source data) [1]. Consequently, the majority
of issues regarding the use of traditional data-driven algorithms for power systems are cen-
tered on the layout of approaches to preprocessing employing unsupervised dimensionality
reduction methods, such as principal component analysis (PCA) [2], linear discriminant
analysis (LDA) [3], and t-distributed stochastic neighbor embedding (t-SNE) [4]. Such meth-
ods for discovering features substantially raise the computational and memory complexities
of algorithms relying on data and lead to inadequate precision as they are unable to detect
extremely complex and highly fluctuating patterns within a data set’s general domain.

Current artificial intelligence (AI) investigations on wind prediction [5–7], photovoltaic
(PV) energy forecasting [8–10], state estimation [11,12], electrical grid generation [13,14],
and energy segmentation [15,16] demonstrate that creating models fueled by data with
less reliance on explicit ways of preprocessing (e.g., PCA) results in significantly improved
prediction and regression quality. In this context, shallow artificial neural networks (ANNs)
with few computational layers are proposed for load forecasting [17], probabilistic wind
and solar power generation prediction [18], economic dispatch [19], voltage stability moni-
toring [20], system identification [21], nonlinear power system excitation control [22], and
inductive coupling between overhead power lines and nearby metallic pipelines [23].

Shallow neural networks have several drawbacks compared to deep neural networks.
One of the main limitations is their limited representational power. Shallow ANNs are
merely capable of learning semi-linear decision boundaries, which restricts their ability to
handle highly nonlinear and complex patterns present in many real-world problems [24].
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Additionally, shallow networks lack the ability to learn hierarchical representations of
features, making it challenging to capture abstract and high-level concepts. However, deep
learning, enabled by deep neural networks with multiple hidden layers, has addressed these
issues in recent studies [25]. Deep neural networks can learn highly nonlinear mappings
and capture intricate relationships in the data. The multiple layers in deep networks enable
the automatic extraction of hierarchical features, allowing them to capture both low-level
and high-level abstractions [26]. In lieu of a formal preprocessing strategy, deep learning
studies form a multi-layer ANN with more than one hidden layer composed of several
complex computational activations [24]. The deep ANN variables (i.e., the weights and
biases) are usually learned via a greedy unsupervised or semisupervised step-by-step
manner [27], in which each layer extracts dynamic features from the features calculated
from the preceding layer.

On the basis of conceptual considerations, deep learning methods suggested for use
in smart grid-related purposes are typically classified into three main categories:

(1) Discriminative methods: The objective of discriminative ANNs is to instantly acquire
a highly complex decision boundary between distinct classes as well as regression
patches in the power grid measurement datasets [28]. The rectified linear unit (ReLU)
ANN [29] proposed for immediate reliability management response is highlighted
in this group of models. Because of its high adaptation potential and low compu-
tational burden, the ReLU ANN is used for real-time small signal stability evalua-
tion [30], defective line location [31], and phasor measurement unit (PMU)-driven
incident categorization [32]. In addition, the Stacked Autoencoder (SAE) has been
proposed as an intensely nonlinear variant of the PCA for unsupervised identification
of statistical patterns and structures in wind energy forecasting [33], solar energy
estimation [34], fault classification [35], and transient stability assessment [36,37]. In
addition, the Long Short-Term Memory (LSTM) neural architecture is proposed as a
supervised time-related feature extraction technique with a deep recursive structure
to model the ordered pattern of time-varying power system observations [38–40].
LSTM-based ordered models have been put forward for wind and solar generation
predictions [41], demand modeling utilizing universal statistics [42], immediate power
fluctuation recognition [43], electricity consumption prediction [44], energy decom-
position into electrical devices [45], sustainable energy prediction [46], as well as
fault recognition [47]. Because of the nature of their convolutional and pooling proce-
dures, Convolutional Neural Network (CNN) models are highly effective at capturing
patterns of coherence in power system measurements [48]. Applying predictive
convolutional filters, CNN identifies significant spatial and temporal relationships
among observations [49]. The combination of pooling and convolutional layers in
this form of artificial neural networks encompasses the location of measurements
into their chronological attributes to achieve spatiotemporal objectives in the field
of sustainable energy prediction [50], transient stability evaluation [51], harmonic
components assessment [52], fault identification [53], and short-term voltage stability
inspection [54].

(2) Probabilistic deep artificial neural networks view feature modeling as a technique for
discovering a minimal set of concealed factors that best characterizes the probability
density function (PDF) of the information being studied [55]. The PDF is subsequently
converted to the problem’s destination discrete class or real number. Deep Belief Net-
work (DBN) is a widely recognized stochastic graphical system within this group that
discovers the PDF of the data set considering its conditionally independent hidden
variables [56]. In this framework, Gibbs sampling is usually employed to acquire the
features that are necessary to offer an accurate estimate of the stochastic patterns of
the provided data for uncertain systems that must account for massive uncertainty
elements. Wind and solar energy forecasting [57], transient stability evaluation [58],
long-term and mid-term demand forecasting [59], and stochastic power grid state esti-
mation [60] are the primary applications of DBN-based techniques. In addition, in this
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class of frameworks, the Generative Adversarial Network (GAN) is presented, which
takes samples from an estimated PDF and contrasts them with the actual information
in the source data in order to improve the preciseness of the taught PDF. This approach
has recently been applied to significant anomaly and fault identification problems for
small-sample turbines [61] and distributed energy system cybersecurity [62] due to
its ability to effectively acquire the primary features of the PDF. Moreover, because
GANs can generate datasets using samples derived from the predicted PDF, these
models have recently been applied to model-free sustainable energy story synthesis
challenges [63]. Variational Autoencoder (VAE) is introduced as an innovative variant
of deep generative artificial neural networks that discover the PDF of the collected
data through the discovery of a high-dimensional hidden variable that is linked to
the raw data examples in the original dataset. It has been demonstrated that VAE
produces accurate artificial data for power grid simulation [64], unsupervised identi-
fication of anomalies in energy historical datasets [13], and Electric Vehicle demand
production [65].

(3) Deep Reinforcement Learning (DRL) methods have been an important category of ma-
chine learning techniques that aim to discover the best policy for continuous/discrete
action selection based on the environment’s input (i.e., objective) calculated through a
function that rewards intelligent agents’ behavior. This function indicates, according
to the present condition of the system, the degree to which the machine learning task’s
objective and constraints have been met. As opposed to traditional deep learning,
which estimates a discrete objective function for classifiers and a real-valued objective
function for regression, DRL seeks to reduce a generic objective function specified by
the training scenario in a completely visible or partially visible setting. Consequently,
this technique solves more comprehensive groups of problems than traditional deep
learning. Due to its reward-based structure, DRL is extensively used for a variety
of control challenges, such as voltage control [66], adaptable emergency control [67],
and self-learning control for energy-efficient transportation [68]. DRL is also applied
to optimization tasks for learning ideal pricing techniques in electricity markets [69],
demand response plans for the management of energy [70–72], and determining the
best wind and storage collaborative scheme to reduce the impact of unpredictability in
sustainable energy production in electric networks [73]. Moreover, the detection and
classification of cybersecurity threats [74], dynamic energy allocation [75], and power
grid data security protection [73] are recent applications of this group of techniques.

In the area of power grid research, this review paper investigates three of the main
types of deep neural networks. Section 2 introduces the deep discriminative architectures
and their training procedure. Employing several practical applications and power systems
datasets, this paper explains and compares analytically and empirically various variants
of this machine learning category of approaches. In Section 3, probabilistic deep neural
architectures and techniques including the traditional DBN and its Gaussian variant, in
addition to the recently developed GANs and VAEs, are introduced. In this section, the
practical and conceptual benefits of these methods are presented. The paper then examines
DRL algorithms and their broad use in power network operation and management in
Section 4. Section 5 presents the emerging topics and new challenges in the area of deep
learning. Finally, Section 6 concludes with a discussion of the findings and future machine
learning tasks in this domain.

2. Discriminative Deep Architectures

Discriminative machine learning is a powerful tool for solving supervised problems
in which the goal is to learn a mapping between input features and output labels. In this
approach, we aim to directly model the conditional probability distribution of the output
given the input, also known as the posterior probability, using a discriminative function [76].
In mathematical terms, given a training set of input-output pairs (x1, y1), . . . , (xn, yn),
the goal is to learn a function f (x) that predicts the output label y given an input x.
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The discriminative function f (x) is typically learned by optimizing a loss function that
measures the difference between the predicted output and the true output [77]. One
common approach for discriminative learning is to use logistic regression, which models
the posterior probability of the output label given the input features as a logistic function
P(y|x) = σ(wTx + b) where σ(z) is the sigmoid function, w is a vector of weights, b
is a bias term, and x is a vector of input features [78]. The sigmoid function maps the
output of the linear function wTx + b to the range [0, 1], which can be interpreted as
a probability. The logistic regression model can be trained using maximum likelihood
estimation [79], which involves maximizing the log-likelihood of the training data with
n training samples L(w, b) = ∑n

i=1 logP(yi|xi; w, b) where P(yi|xi; w, b) is the posterior
probability of the output label yi given the input xi corresponding to sample i in the dataset,
parameterized by the weights w and bias b.

The multilayer perceptron (MLP) is a type of discriminative ANN that consists of
multiple layers of neurons, each layer being fully connected to the previous and next layers.
The MLP is a powerful tool for solving a wide range of supervised learning problems,
including classification, regression, and pattern recognition [80]. Mathematically, an MLP
can be represented as a function f (x) that maps an input vector x to an output vector
y, where y is a function of the weighted sum of the activations of the neurons in the
previous layer. Let us consider a feedforward MLP with L layers, where the input layer
has d input neurons, the output layer has k output neurons, and each hidden layer has m
neurons. The output of the j-th neuron in the l-th layer, denoted as a(l)j , is computed as

a(l)j = g
(

∑m(l−1)

i=1 w(l)
ij a(l−1)

i + b(l)j

)
where g(z) is an activation function, w(l)

ij is the weight

connecting the i-th neuron in layer l − 1 to the j-th neuron in layer l, b(l)j is the bias term

for the j-th neuron in layer l, and m(l−1) is the number of neurons in the previous layer.
The activation function g(z) introduces nonlinearity to the network, allowing it to learn
complex mappings between the input and output.

To train an MLP, we need to minimize a loss function that measures the difference
between the predicted output and the true output. One common loss function is the
mean squared error (MSE) [81], which is defined as L = 1

n ∑n
i=1 |yi − f (xi)|2 where n is

the number of training samples, yi is the true output for the i-th sample, and f (xi) is the
predicted output for the i-th sample. To minimize the loss function, one can use stochastic
gradient descent (SGD) [26], which updates the weights and biases of the network in the
direction of the negative gradient of the loss function with respect to the weights and biases.
The weight update rule for the jth neuron in the lth layer is given by w(l)

ij ← w(l)
ij − η ∂L

∂w(l)
ij

where η is the learning rate, which controls the step size of the weight update, and ∂L
∂w(l)

ij

is

the partial derivative of the loss function with respect to the weight w(l)
ij .

The vanishing gradient problem is a common issue in training deep multilayer per-
ceptrons, as the gradients of the loss function with respect to the weights in the lower
layers tend to become very small as they propagate backward through the network [46].
This can cause the weights in the lower layers to be updated very slowly, or not at all,
leading to poor performance. Deep learning methods address this issue by introducing
specialized activation functions, weight initialization schemes, and optimization techniques
that are specifically designed to prevent the gradients from vanishing or exploding [24].
For example, activation functions like ReLU and variants of it have a non-zero derivative
in most regions of their domain, which helps to mitigate the vanishing gradient problem.
Additionally, weight initialization schemes such as He initialization [82] and optimiza-
tion techniques such as adaptive learning rate methods (e.g., Adam) [83] have also been
shown to improve training performance in deep neural networks. These techniques have
enabled the training of very deep neural networks with many layers, allowing them to
learn complex patterns and representations in the data.
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2.1. ReLU Neural Networks

ReLU neural networks are a class of deep neural networks that use the ReLU activation
function in their hidden layers. ReLU is a piecewise linear function that returns the input
value if it is positive, and zero otherwise. It has become a popular choice for neural
networks due to its simplicity, computational efficiency, and effectiveness in preventing
the vanishing gradient problem. One of the main advantages of ReLU activation functions
is that they have a non-zero derivative for all positive inputs, which helps to prevent the
vanishing gradient problem. Additionally, the ReLU function is computationally efficient
to evaluate, as it only involves a simple thresholding operation. This makes it well-suited
for large-scale neural networks that require many activations to be computed during
training and inference. Another advantage of ReLU neural networks is their ability to
learn sparse representations of the input data [84]. Since the ReLU function sets negative
values to zero, the activations of many neurons in the network will be zero for most input
samples, resulting in a sparse representation. This can lead to faster training and improved
generalization performance, as the network focuses on the most relevant features of the
data. However, ReLU activation functions are not without their drawbacks. One issue is
that they can suffer from the “dying ReLU” problem [85], where the gradient of the function
is zero for all negative inputs, causing the neuron to stop learning. This can happen if the
weights of the neuron are initialized such that it only receives negative inputs. To address
this issue, various modifications to the ReLU function have been proposed, such as leaky
ReLU [86], which adds a small slope to the negative part of the function.

Table 1 shows the applications of discriminative deep neural networks for power
systems operation, management, and planning. Due to their high generalization power,
deep ReLU networks are widely applied in power systems classification and regression
problems. For instance, as shown in Table 1, Deep ReLU networks result in accurate
voltage stability assessments with a root mean squared error (RMSE) of 0.083 and mean
absolute percentage error (MAPE) equal to 0.095 on the New England 10-generator 39-bus
system [29]. In addition, Deep ReLU models achieve an RMSE of 0.045 and MAPE of 0.083
for power system reliability assessment of the IEEE-RTS-79 system [87]. Furthermore, this
type of deep learning model is employed for load identification and estimation of complex
load parameters. In this area, the deep ReLU network is applied to the loads of the 68-bus
New England and New York Interconnect System, which yields an RMSE of 0.045 and a
MAPE of 0.074 in real-time load modeling tasks [88]. Since the feedforward algorithm of
these neural networks takes merely several milliseconds, these approaches can be easily
tested on real-world power systems in a real-time fashion. The use of this approach for
sustainable energy prediction results in high accuracy and reliability for both wind and
solar energy prediction tasks [89,90]. The RMSE and MAPE of the deep ReLU network for
hourly wind power prediction are 0.078 and 0.092, respectively. These results are reported
for the Wind Integration National Dataset. Additionally, the RMSE and MAPE of this
approach for the hourly photovoltaic power prediction are 0.093 and 0.104 using the Solar
Power Data for Integration Studies. Energy disaggregation is another application in which
the deep ReLU network shows high performance. This technique results in an F-score of
68.72 with a precision equal to 80.54 on the Reference Energy Disaggregation Dataset [16].
Similar high classification accuracies are reported for fault identification [91]. For instance,
the use of deep ReLU networks for fault detection in the New England 39-bus test system
results in an F-score of 77.49 which is a reasonable accuracy for real-world scenarios.
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Table 1. Discriminative deep neural networks in power system studies.

Application Dataset Model Performance Metric Result

Voltage Stability Assessment [28,29,92,93] New England 10-generator 39-bus system

ReLU RMSE
MAPE

0.083
0.095

SAE RMSE
MAPE

0.071
0.086

LSTM RMSE
MAPE

0.035
0.046

CNN-LSTM RMSE
MAPE

0.021
0.038

Power System Reliability Evaluation [38,87,94,95] IEEE-RTS-79 system

ReLU RMSE
MAPE

0.045
0.083

SAE RMSE
MAPE

0.032
0.071

CNN RMSE
MAPE

0.031
0.068

LSTM RMSE
MAPE

0.026
0.033

Load Modeling [39,88,96] 68-bus New England and New York Interconnect System

ReLU RMSE
MAPE

0.045
0.074

SAE RMSE
MAPE

0.041
0.069

CNN RMSE
MAPE

0.036
0.049

LSTM RMSE
MAPE

0.029
0.032

Demand Forecasting [40,97–103] Household Electric Power Consumption

CNN RMSE
MAPE

0.083
0.096

LSTM RMSE
MAPE

0.075
0.084

CNN-LSTM RMSE
MAPE

0.048
0.055

Wind Energy Forecasting [33,49,89,104,105] Wind Integration National Dataset

ReLU RMSE
MAPE

0.078
0.092

SAE RMSE
MAPE

0.066
0.084

CNN RMSE
MAPE

0.059
0.079

LSTM RMSE
MAPE

0.045
0.068

CNN-LSTM RMSE
MAPE

0.029
0.036

Solar Energy Forecasting [90,106,107] Solar Power Data for Integration Studies

ReLU RMSE
MAPE

0.093
0.104

SAE RMSE
MAPE

0.085
0.093

CNN RMSE
MAPE

0.071
0.083

LSTM RMSE
MAPE

0.059
0.074

CNN-LSTM RMSE
MAPE

0.034
0.056
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Table 1. Cont.

Application Dataset Model Performance Metric Result

Non-intrusive Load Monitoring [15,16,108–110] Reference Energy Disaggregation Dataset

ReLU
Precision

Recall
F-score

80.54
59.92
68.72

SAE
Precision

Recall
F-score

82.38
61.09
70.16

CNN
Precision

Recall
F-score

87.24
63.39
73.43

LSTM
Precision

Recall
F-score

89.83
65.78
75.93

CNN-LSTM
Precision

Recall
F-score

92.26
68.14
78.39

PMU Event Classification [111–114] IEEE 34-bus system

CNN
Precision

Recall
F-score

87.13
71.04
78.27

CNN-LSTM
Precision

Recall
F-score

89.15
73.36
80.49

Power Fluctuation Identification [43] Market Trading Reports

ReLU MAE
MAPE

0.042
1.079

LSTM MAE
MAPE

0.038
1.057

Fault Identification [91,115–118] New England 39-bus test system

ReLU
Precision

Recall
F-score

86.23
70.36
77.49

SAE
Precision

Recall
F-score

88.14
72.26
79.41

CNN
Precision

Recall
F-score

89.97
75.50
82.10

LSTM
Precision

Recall
F-score

91.72
77.18
83.82

2.2. Stacked Autoencoder

Stacked autoencoder (SAE) neural networks are a class of deep neural networks that
use unsupervised learning to pretrain multiple layers of the network before fine-tuning the
entire network with supervised learning [45]. Autoencoders are a type of neural network
that learns to compress and reconstruct the input data. Stacked autoencoders use multiple
layers of autoencoders to learn increasingly complex representations of the input data. The
neural architecture of a stacked autoencoder consists of multiple autoencoders where each
autoencoding building block consists of an encoder network and a decoder network. The
encoder network maps the input data to a compressed representation, while the decoder
network maps the compressed representation back to the original input data. The objective
of the autoencoder is to minimize the reconstruction error between the input and the
output, which is typically measured using a loss function such as mean squared error
(MSE) [24,119].

The first layer of the stacked autoencoder is trained as a standard autoencoder, using
the input data as both the input and the target output. The compressed representation
learned by this layer is then used as the input to the next layer of the network. This process
is repeated for each subsequent layer of the network, with each layer learning to compress
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and reconstruct the output of the previous layer. Once all the layers have been pretrained
in an unsupervised manner, the entire network is fine-tuned using supervised learning to
learn the final classification or regression task. This involves adding one or more output
layers to the network, and updating all the weights of the network using backpropagation
and a supervised loss function such as cross-entropy or mean squared error.

The pretraining phase of the stacked autoencoder allows the network to learn useful
highly nonlinear feature representations of the input data in an unsupervised manner. This
can be particularly useful for tasks with limited labeled data [120], as the network can learn
to extract relevant features from the unlabeled data to improve its performance on the
labeled data. Additionally, the use of multiple layers in the stacked autoencoder allows for
the learning of hierarchical representations of the data, with each layer learning to extract
increasingly abstract and complex features [24].

The mathematical equations for the pretraining phase of the stacked autoencoder
can be written as follows. Let x be the input data, and fi and gi be the encoder and
decoder functions for the i-th layer of the network (i.e., i-th autoencoder), respectively.
The compressed representation hi learned by the i-th layer is given by hi = fi(hi−1) where
h0 = x. The reconstructed output of the i-th layer is computed via ĥi−1 = gi(hi) ' hi−1. The
objective of the i-th autoencoder is to minimize the reconstruction error between its input
hi−1 and the reconstructed output ĥi−1, which is typically measured using mean squared
error Li = ||hi−1 − ĥi−1||22. The pretraining phase involves minimizing the reconstruction
error for each layer of the network, using the compressed representation hi learned by the
previous layer as the input. The weights of each layer are updated using backpropagation
through the decoder network, with the gradients of the reconstruction error with respect
to the weights being backpropagated through the decoder network and then through
the encoder network. Once all the layers have been pretrained in this manner, the entire
network is fine-tuned using supervised learning, by adding one or more output layers
and updating all the weights of the network using backpropagation and a supervised
loss function.

As shown in Table 1, SAEs are widely employed in power systems studies due to
their simple implementation and strong unsupervised features captured by these methods.
Generally speaking, SAEs provide better classification and regression accuracies in com-
parison to the deep ReLU model as these techniques seek to learn an unsupervised set of
features from the data before mapping the input measurements to the supervised (desired)
output. Table 1 shows that SAE yields an RMSE of 0.071 and MAPE of 0.086 for voltage
stability assessments of the New England system [92]. Moreover, as shown in the table, SAE
improves the accuracy of deep ReLU network in power system reliability evaluation and
load modeling, as well as sustainable energy prediction. For instance, the SAE yields 28.8%
better RMSE and 14.5% better MAPE compared to the deep ReLU network in the reliability
assessment of the IEEE-RTS-79 system [87]. Furthermore, this neural network yields an
RMSE of 0.085 and MAPE of 0.093 for the hourly prediction of photovoltaic energy using
the Solar Power Data for Integration Studies [107].

2.3. Long Short-Term Memory Network

Long Short-Term Memory (LSTM) networks are a type of recurrent neural network
(RNN) that are designed to handle the vanishing and exploding gradient problems that
can occur in traditional RNNs [121,122]. LSTMs use a combination of memory cells and
gating mechanisms to selectively remember or forget information from previous time steps,
allowing them to capture long-term dependencies in sequential data. At each time step t,
an LSTM cell receives an input xt and a hidden state ht−1 from the previous time step, and
produces an output yt and a new hidden state ht. The LSTM cell consists of several gates
that control the flow of information into and out of the cell. These gates include the input
gate it, the forget gate ft, and the output gate ot. The input gate determines how much
of the input xt should be added to the cell state ct. It takes as input the current input xt
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and the previous hidden state ht−1 and produces an activation at
i that is passed through a

sigmoid activation function to produce the gate output it:

at
i = Wixxt + Wihht−1 + bi

it = σ(at
i)

(1)

The forget gate determines how much of the previous cell state ct−1 should be retained
in the current cell state ct. It takes as input the current input xt and the previous hidden state
ht−1, and produces an activation at

f that is passed through a sigmoid activation function to
produce the gate output ft:

at
f = W f xxt + W f hht−1 + b f

ft = σ(at
f )

(2)

The cell state ct is updated by:

c̃t = tanh(Wcxxt + Wchht−1 + bc)

ct = ft ∗ ct−1 + it ∗ c̃t
(3)

The output gate determines how much of the cell state ct should be used to compute
the output yt. It takes as input the current input xt and the previous hidden state ht−1 and
produces an activation at

o that is passed through a sigmoid activation function to produce
the gate output ot:

at
o = Woxxt + Wohht−1 + bo

ot = σ(at
o)

(4)

The final output yt is computed by multiplying the cell state ct by the output gate ot
and passing it through a Tanh activation function:

yt = tanh(ct) ∗ ot (5)

LSTM networks can be stacked to create deeper architectures, with each layer con-
sisting of multiple LSTM cells [123]. The hidden state of the previous layer is passed as
input to the current layer, allowing the network to learn increasingly abstract and complex
representations of the input data [24].

Due to their high generalization power and great adaptation to new time-dependent
patterns and scenarios, LSTMs are widely used in power system research, especially for
temporal pattern recognition in time series datasets and measurements. For instance, as
shown in Table 1, LSTM shows high accuracy with an RMSE of 0.035 and MAPE of 0.046 for
the voltage stability assessment in the New England 10-generator test system [93]. Further-
more, this model shows the best performance among discriminative neural architectures
with an RMSE of 0.026 and MAPE of 0.033 for power system reliability assessment in
the IEEE-RTS-79 system [94]. The LSTM units are also employed for load modeling and
have shown state-of-the-art performance with an RMSE of 0.029 and MAPE equal to 0.032
for load parameter identification in the 68-bus New England and New York Interconnect
power grid [39]. In addition, the time series pattern recognition tasks such as load forecast-
ing, wind prediction, and solar power prediction are time-dependent tasks where LSTM
has shown state-of-the-art performance [99]. For instance, in the hourly load prediction
of the Household Electric Power Consumption dataset, the LSTM network shows great
performance with 0.075 RMSE and 0.084 MAPE. Various classification tasks can also be
accurately solved through LSTM units. For example, in energy disaggregation, the LSTM
network shows a precision of 89.83 and F-score of 75.93, which is close to the state-of-the-art
performance [108]. Additionally, in fault identification, the LSTM network shows the best
results with a precision of 91.72 and recall of 77.18 which gives a classification F-score of
83.82 [115].
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In addition to recurrent structures, the following non-recursive techniques can be
applied to capture temporal dependencies in the data:

(1) Feature Engineering: By creating relevant features that represent the temporal charac-
teristics of the data, one can capture time-dependent patterns indirectly. For instance,
we can compute statistical features such as rolling means, standard deviations, or ex-
ponential moving averages over different time windows. These features can provide
insights into trends, seasonality, or other temporal patterns and have been applied to
battery state-of-charge estimation [124] and load forecasting [125].

(2) Time Encoding: One can encode the timestamp or time information into a format that
can be easily interpreted by machine learning algorithms. For example, we can convert
timestamps into cyclical representations such as hour of the day, day of the week, or
month of the year. This encoding can help algorithms capture periodic patterns and
time dependencies and has been applied to energy disaggregation problems [45].

(3) Nonlinear Transformations: Sometimes nonlinear transformations of the data can re-
veal time-dependent structures that are not evident in the original form. For instance,
we can apply mathematical functions such as logarithmic or exponential transfor-
mations to the data. These transformations can help normalize the data or highlight
specific temporal patterns. This method has been applied to power system state
estimation [126], fault detection [127], and power grid time domain simulation [128].

(4) Dynamic Time Warping (DTW): DTW is a technique used to measure the similarity
between two time series, even when they have different lengths or shapes. This
method allows for finding the optimal alignment between two sequences, which can
help capture time dependencies. DTW can be useful when we have similar patterns
occurring at different time scales or with time shifts. This technique is widely applied
to peak load prediction [129], fault diagnosis [130], and controlled islanding [131].

2.4. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of neural network that is specifi-
cally designed for the classification and regression of vectors as well as two-dimensional
data points. CNNs use convolutional layers to extract features from vectors and matrices,
and pooling layers to reduce the spatial dimensions of the feature maps [95,96,132]. The
final layers of the CNN consist of fully connected layers that perform the classification or
regression task. The key components of a CNN are the convolutional layers, which perform
the convolution operation on the input data using a set of learnable filters. The output of
the convolution operation is a feature map that represents the activation of the filter at each
location of the input data. The filter weights are learned during the training process via
backpropagation [101].

The convolution operation can be represented mathematically by:

zij =
k−1

∑
p=0

k−1

∑
q=0

xi+p,j+qwp,q + b (6)

where xi,j is the pixel value at location (i, j) of the input data, wp,q is the weight of the filter
at position (p, q), b is the bias term, and k is the size of the filter. The output feature map hij
is obtained by passing the result of the convolution operation through a nonlinear activation
function, such as the rectified linear unit (ReLU) function [96]. After each convolutional
layer, a pooling layer is typically added to reduce the spatial dimensions of the feature
maps. The most common type of pooling layer is the max pooling layer, which takes the
maximum value within a local region of the feature map. The max pooling operation can
be represented mathematically as:

hij = max
p,q

hip,jq (7)
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The final layers of the CNN consist of fully connected layers, which perform the supervised
task. The output of the last convolutional layer is flattened into a vector and passed through
a series of fully connected layers, each of which applies a linear transformation to the input
followed by a nonlinear activation function [115]. The final output of the network is a
probability distribution over the different classes in classification or the probability of
real-valued numbers in regression.

As shown in Table 1, CNNs are widely applied for various applications in power
systems due to their high generalization power, feature sparsity, and the spatial and
temporal coherence assumption of this model that usually holds in most real-world input
measurements. For instance, CNN is combined with LSTM networks for the assessment
of voltage stability for the New England 10-generator 39-bus system, which results in an
RMSE of 0.021 and a MAPE of 0.038 [28]. This is the state-of-the-art performance compared
with other deep neural architectures including SAEs and LSTMs. The main reason for such
accuracy improvements is the fact that CNN is a cutting-edge solution for capturing spatial
data dependencies, while the LSTM is among the best models for modeling temporal
dependencies in power systems measurements [96]. CNNs also show great performance
in the reliability assessment of power grids. These methods improve the results of the
deep ReLU network by 31.1% RMSE and 18.1% MAPE on the IEEE-RTS-79 system [95].
Similar improvements are shown in load modeling and demand forecasting [98]. In
sustainable energy prediction, the CNN provides higher accuracy in comparison to deep
ReLU networks and SAEs since the CNN is capable of capturing the spatial dependencies
between the wind or solar power measurements of neighboring sites while the classing
deep ReLU and SAE-based techniques can merely handle one station at a time and do not
have enough capacity to see the entire stations in a wide region. Moreover, the sparsity
of CNN features helps this model to need less number of training samples to achieve a
high accuracy. The CNN also improves the energy disaggregation accuracy of SAE by 5.9%
precision and 3.76% recall on the Reference Energy Disaggregation Dataset [15]. This model
also shows state-of-the-art classification performance for PMU event categorization of the
IEEE 34-bus system with a precision of 89.15 and recall of 73.36 when it is incorporated
into the LSTM units [112]. Similar high accuracies can be seen in the fault identification
studies where the CNN provides a high F-score equal to 82.10 for the New England 39-bus
system [116].

2.5. Strengths and Shortcomings of Discriminative Deep Architectures

Figure 1 outlines the strengths and weaknesses of various deep discriminative models
within the context of power system research. As detailed in the table, the ReLU neural
network offers a simple implementation characterized by low training time complexity and
fast feedforward mechanisms. Nevertheless, this supervised model does not inherently
account for temporal or spatial features within datasets. ReLU networks lack explicit
mechanisms for capturing spatial information in data. They are primarily designed for
processing vector inputs, where the spatial relationships between the input features are not
considered. That is, the ReLU operations do not assume any similarity metrics between their
input variables (i.e., vector entries). Therefore, ReLU networks may struggle to effectively
handle data with inherent spatial coherence, such as images or sequential data. On the
other hand, CNNs are specifically designed to capture spatial coherence in data since they
apply convolutional layers that define a set of learnable filters or kernels to local regions of
the input data, scanning the entire input through the filters to extract relevant features [24].
The SAE shares a similar limitation as it cannot well capture spatial and temporal patterns
directly. However, SAE is suited for unsupervised learning or learning with limited data.
Unlike SAE, LSTM can process temporal data due to its recurrent structure, which enables
the model to represent time-dependent relationships and variable-sized input. However,
due to the larger quantity of parameters in LSTM compared to conventional recurrent
neural networks, LSTM runs a higher risk of overfitting and shows significant sensitivity to
observation noise. Finally, CNN leverages filtering and pooling layers to extract informative
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sparse representations from spatial datasets using straightforward gradient-based methods.
Given that the filters can be trained in a distributed fashion, CNN emerges as a highly
efficient methodology for pattern recognition in large-scale systems. However, due to the
lack of a recursive structure in this supervised model, it struggles to accurately capture
time-dependent structures of the data.

ReLU

Advantages

Minimal implementation

Fast feed-forward procedure

low time-complexity during training

Restrictions

limited spatial/temporal feature 

extraction capacity

limited feature coherence

Supervised setting only

SAE

Advantages

Minimal implementation

Fast feed-forward procedure

Unsupervised Learning

Restrictions

Signi�cant estimation bias

limited spatial/temporal feature 

extraction capacity

limited feature coherence

Sensitivity to over�tting

LSTM

Advantages
Learns temporal features

Flexible input size

Restrictions

Sensitivity to over�tting

Lack of spatial representation

Sensitivity to initial state

Supervised setting only

ReLU

Advantages

Spatial representation

Sparsity

Easy to train with gradient descent

Distributed implementation

Restrictions

Lack of temporal data capability

High time-complexity during 

training

High memory-complexity during 

training

Supervised setting only

Models

Figure 1. Strengths and Shortcomings of Discriminative Deep Architectures.
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3. Probability-Based Deep Neural Architectures

Probability-based Deep Neural Architectures, also known as Generative Neural Net-
works (GNNs), are a class of neural networks that are capable of generating new data
samples that resemble the input data [132,133]. The GNNs can also learn the probability
distribution of the input data. This means that the GNN can generate new samples that not
only resemble the input data but also follow the same statistical patterns as the input data.
Therefore, this class of neural networks is widely used for probabilistic estimations such as
probabilistic load modeling [134], uncertainty-aware sustainable energy prediction [135],
and power grid synthesis [136].

3.1. Deep Belief Network

Deep Belief Networks (DBNs) are a class of neural networks that are composed of
multiple layers of Restricted Boltzmann Machines (RBMs). RBMs are generative models
that consist of two layers: a visible layer and a hidden layer. The visible layer represents
the input data, and the hidden layer represents the latent variables that capture the un-
derlying structure of the input data. RBMs are trained using the Contrastive Divergence
algorithm [137], which maximizes the log-likelihood of the training data.

DBNs are trained using a greedy layer-wise approach, where each layer is trained
independently using an unsupervised learning algorithm such as the Contrastive Diver-
gence algorithm. After each layer is trained, the output of the previous layer is used as the
input to the current layer. Once all the layers are trained, the DBN can be fine-tuned using
a supervised learning algorithm such as backpropagation.

The probability of the input data given the hidden variables in an RBM is defined by
the energy function:

E(v, h) = −
V

∑
i=1

H

∑
j=1

wijvihj −
V

∑
i=1

aivi −
H

∑
j=1

bjhj (8)

where v is the visible layer, h is the hidden layer, V is the number of visible units, H is the
number of hidden units, wij is the weight between visible unit i and hidden unit j, ai is the
bias of visible unit i, and bj is the bias of hidden unit j.

The joint probability distribution of the visible layer and hidden layer is given by the
Boltzmann distribution:

p(v, h) =
e−E(v,h)

Z
(9)

where Z is the partition function, which normalizes the distribution. The conditional
probability of the hidden layer given the visible layer is given by:

p(h|v) =
H

∏
j=1

p(hj|v) =
H

∏
j=1

σ(
V

∑
i=1

wijvi + bj) (10)

where σ is the sigmoid function. The conditional probability of the visible layer given the
hidden layer is given by:

p(v|h) =
V

∏
i=1

p(vi|h) =
V

∏
i=1

σ(
H

∑
j=1

wijhj + ai) (11)

where σ is the sigmoid function.
DBNs are trained using a greedy layer-wise approach, where each layer is trained

independently using the Contrastive Divergence. This training process is composed of two
phases: pretraining and fine-tuning.

In the pretraining phase, each layer is trained independently as an RBM. The input
to each RBM is the output of the previous layer, or the raw input data in the case of the
first layer. The Contrastive Divergence algorithm is used to maximize the log-likelihood of
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the training data, by adjusting the weights and biases of the RBM. The goal of pretraining
is to learn a set of feature detectors that can capture the underlying structure of the input
data. Once all the layers have been pretrained, the DBN is fine-tuned using a supervised
learning algorithm such as backpropagation. During the fine-tuning phase, the weights
and biases of the entire network are adjusted to minimize a cost function, which is typically
the cross-entropy between the predicted labels and the true labels. The output of the DBN
is obtained by passing the input data through each layer, and the output of the final layer is
used as the prediction.

The advantage of the greedy layer-wise approach is that it allows the DBN to learn
a hierarchy of features, where each layer captures increasingly complex and abstract fea-
tures [24]. This makes the DBN more robust to variations in the input data, and enables it
to generalize well to new, unseen data [57]. However, the disadvantage of the greedy layer-
wise approach is that it may not always lead to the optimal solution, and the pretraining
phase may take a long time to converge. During pretraining, the convergence of each layer
of DBN may be too slow due to the following challenges: (1) Initialization: RBMs are sensi-
tive to weight initialization [57]. Initializing the weights inappropriately can result in slow
convergence or even convergence to poor local optima. Proper initialization techniques,
such as sampling from a small Gaussian distribution or using unsupervised pre-training,
can help accelerate convergence; (2) Learning Rate: The learning rate determines the step
size at each update during training. If the learning rate is too high, it can cause unstable
updates and hinder convergence. On the other hand, if the learning rate is too low, the
convergence may become excessively slow. Finding an appropriate learning rate or using
adaptive learning rate methods can be crucial for efficient convergence [25]; (3) Sampling
Method: RBMs use sampling techniques, such as Gibbs sampling or Contrastive Diver-
gence, to approximate the model’s distribution and update the weights. The number of
sampling steps can significantly impact convergence. Using a higher number of sampling
steps improves the approximation but increases the computational cost, potentially slowing
down convergence [58,59]; and (4) Local Optima: Similar to many optimization problems,
RBMs can get stuck in local optima, where the network fails to find the global minimum
of the objective function. The network may converge to a suboptimal solution, leading to
slower convergence or reduced performance. Exploring different weight initializations,
employing techniques such as momentum or simulated annealing, or using more advanced
optimization algorithms can help overcome local optima and improve convergence [24].

DBNs are widely applied to various power systems problems in recent studies. Table 2
shows the applications of the probabilistic deep neural architectures in power systems
research. As shown in this table, DBN is applied to the transient stability assessment
problem of the Central China Region Power Grid and has shown a precision of 80.24,
recall of 78.92, and an F-score equal to 79.57 in this application [138]. Moreover, DBN
is shown to accurately learn probabilistic features from time-dependent datasets [57].
For instance, DBN provides highly accurate hourly demand predictions on the Texas
Urbanized Area Dataset with an RMSE and MAPE of 0.045 and 0.091, respectively [139].
Additionally, this model has shown great prediction accuracies for hourly sustainable power
prediction tasks. For example, on the Solar Integration National Dataset, the DBN shows a
prediction RMSE of 0.082 and MAPE equal to 0.093 [140]. State estimation is another major
application of DBNs in power engineering research. This deep learning framework yields
an RMSE and MAPE of 0.092 and 0.156, respectively, on the US PG&e69 power system [11].
Moreover, DBN is employed for classification tasks such as fault identification as well
as cyberattack detection. In fault classification, DBN provides a classification precision,
recall, and F-score of 81.32, 76.59, 78.88, respectively, when applied to the IEEE 33-bus
distribution network [13]. In cyberattack categorization, DBN yields an F-score of 79.44,
which shows the great generalization capacity and highly nonlinear decision boundary of
this type of deep learning technique in classification tasks [141]. Similar high accuracies are
reported for data synthesis problems. For instance, this model shows an RMSE of 0.085
and MAPE of 0.125 in the synthesis of the Columbia University Synthetic Power Grid [121].
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Furthermore, it offers an F-score of 74.75 for the disaggregation of residential loads in the
Reference Energy Disaggregation Dataset [45].

Table 2. Generative deep neural networks in power system studies.

Application Dataset Model Performance Metric Result

Transient Stability Assessment [25,58,138,142–144] Central China Regional Power Grid

DBN
Precision

Recall
F-score

80.24
78.92
79.57

VAE
Precision

Recall
F-score

85.64
81.05
83.28

GAN
Precision

Recall
F-score

87.32
84.12
85.69

Demand Forecasting [139,145–149] Texas Urbanized Area Dataset

DBN RMSE
MAPE

0.045
0.091

VAE RMSE
MAPE

0.036
0.075

GAN RMSE
MAPE

0.028
0.066

Wind Power Prediction [5–7,150,151] Wind Integration Dataset

DBN RMSE
MAPE

0.078
0.095

VAE RMSE
MAPE

0.064
0.071

GAN RMSE
MAPE

0.051
0.063

Solar Energy Prediction [8–10,140,152–156] Solar Integration National Dataset

DBN RMSE
MAPE

0.082
0.093

VAE RMSE
MAPE

0.071
0.082

GAN RMSE
MAPE

0.062
0.070

State Estimation [11,12,157] US PG&E69 distribution system

DBN RMSE
MAPE

0.092
0.156

VAE RMSE
MAPE

0.074
0.093

GAN RMSE
MAPE

0.065
0.081

Fault Identification [13,158–166] IEEE-33 node 10kV distribution network

DBN
Precision

Recall
F-score

81.32
76.59
78.88

VAE
Precision

Recall
F-score

87.45
79.69
83.39

GAN
Precision

Recall
F-score

90.05
85.13
87.52
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Table 2. Cont.

Application Dataset Model Performance Metric Result

Cyberattack Identification [141,167–171] Industrial control system cyber attack datasets

DBN
Precision

Recall
F-score

85.06
74.52
79.44

VAE
Precision

Recall
F-score

89.19
76.31
89.25

GAN
Precision

Recall
F-score

92.28
78.56
82.25

Power Grid Synthesis [65,172–176] Columbia University Synthetic Power Grid

DBN RMSE
MAPE

0.085
0.125

VAE RMSE
MAPE

0.052
0.096

GAN RMSE
MAPE

0.033
0.071

Energy Disaggregation [177–180] Reference Energy Disaggregation Dataset

DBN
Precision

Recall
F-score

78.64
71.23
74.75

VAE
Precision

Recall
F-score

85.34
82.95
84.13

GAN
Precision

Recall
F-score

92.05
89.73
90.88

3.2. Variational Autoencoder

Variational Autoencoders (VAEs) are a class of generative neural networks that use an
encoder and a decoder to learn a low-dimensional representation of high-dimensional data.
VAEs are commonly used for image and video generation, but can also be applied to other
types of data, such as text and audio. The VAE architecture consists of two neural networks:
an encoder network, qφ(z|x), which maps the input data, x, to a low-dimensional latent
representation, z, and a decoder network, pθ(x|z), which maps the latent representation, z,
back to the original data space. The objective of the VAE is to learn the joint probability
distribution of the input data and the latent representation, p(x, z), and use it to generate
new samples. The encoder network maps the input data, x, to a latent representation, z,
using a Gaussian distribution with mean, µ, and standard deviation, σ, which are functions
of the input data, x. Hence, we have:

µ = fφ,µ(x)

log σ2 = fφ,σ(x)

z ∼N (µ, σ2 I)

(12)

where fφ,µ and fφ,σ are the encoder network functions, and N (µ, σ2 I) is the Gaussian
distribution with mean µ and covariance matrix σ2 I. The standard deviation is usually
modeled using the logarithm to ensure positivity. The decoder network maps the latent
representation, z, back to the original data space, x, using a similar Gaussian distribution
with mean, µ′, and standard deviation, σ′:

µ′ = gθ,µ(z)

log σ′2 = gθ,σ(z)

x ∼ N (µ′, σ′2 I)

(13)

where gθ,µ and gθ,σ are the decoder network functions. During the training process, the
VAE learns to maximize the evidence lower bound (ELBO), which is the lower bound on
the log-likelihood of the data under the model [181]. The ELBO is computed by:
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ELBO(x) = Ez∼qφ(z|x)[log pθ(x|z)]− DKL(qφ(z|x)||p(z))

= Ez∼qφ(z|x)[log pθ(x|z)]−KL(qφ(z|x)||p(z))
(14)

where DKL is the Kullback–Leibler divergence [158] between the encoder distribution and
the prior distribution, p(z), which is usually assumed to be a unit Gaussian distribution.
The first term in the ELBO is the reconstruction loss, which measures the similarity between
the input data and the reconstructed data, while the second term is the regularization term,
which encourages the latent representation to follow the prior distribution [64].

During the training process, the weights of the encoder and decoder networks are
updated using backpropagation and stochastic gradient descent, where the gradient is
backpropagated from the ELBO objective function to the network weights [50]. As the
VAEs learn the probability distribution of the input data, they can be utilized to generate
synthetic samples that follow the distribution of the original data. To generate a data sample
x̃ ∼ P(x|z), one can generate a random Gaussian sample z̃ with the same dimension as the
VAE’s latent feature from the Normal distribution, and feed z̃ into the decoder ANN that
implements pθ(x|z) to generate a synthetic data sample in its output layer.

The VAEs have been applied to a wide range of power systems applications as both
an unsupervised feature extraction model and a supervised technique for supervised
estimation of discrete labels (classification) or continuous variables (regression). As shown
in Table 2, in this area, VAE is applied to the transient stability assessment of the Central
China Regional Power Grid, which results in a precision, recall, and F-score of 85.64, 81.05,
and 83.28, respectively [143]. These results show a significant improvement over the DBN
method since is better able to model the uncertainties in the data using its variational loss
function compared to the DBN which is more data-hungry due to its Gibbs sampling-based
training process. Additionally, VAE is applied to a wide range of time series prediction
tasks such as hourly prediction of electricity demand in residential units, wind energy,
and photovoltaic power [182]. VAE provides a slightly better demand prediction model
compared to the DBN when applied to the Texas Urbanized Area Dataset for hourly
prediction of residential loads [145]. This model results in RMSE and MAPE of 0.036 and
0.075, respectively, which are slightly lower than the DBN. In addition, the results of VAE’s
hourly wind power predictions on the Wind Integration Dataset show an RMSE and MAPE
of 0.064 and 0.071, respectively [150]. The RMSE of VAE in this application is 17.94% and its
MAPE is 25.26% better than the DBN method as it can provide a more reliable estimation
of the probability densities of the underlying data. Similar improvements can also be
seen in the state estimation applications where the VAE provides an RMSE of 0.074 and
MAPE of 0.093 on the US PG&E69 distribution network [11]. In terms of classification
problems, the VAE outperforms the DBN as it is more data-efficient and robust to noise and
uncertainties. For instance, the VAE yields an F-score of 83.39 on the IEEE 33-bus system
which is 5.72% higher than the DBN in fault identification [158]. Similar improvements
can be seen in attack recognition problems, which are classification challenges [141,170].
VAEs can also be employed for data augmentation and synthesis of power networks. In
this domain, they provide an RMSE and MAPE of 0.052 and 0.096, respectively, for the
synthesis of the Columbia University Synthesis Power Grid [136]. Additionally, the VAEs
outperform DBNs in non-intrusive load monitoring and energy disaggregation tasks. For
instance, on the Reference Energy Disaggregation Dataset, VAE provides a 12.55% better
load decomposition F-score compared with a similar technique using DBN for feature
extraction [177].

3.3. Generative Adversarial Network

Generative Adversarial Networks (GANs) are a class of generative neural networks
that use two neural networks, a generator and a discriminator, to learn the underlying prob-
ability distribution of the data [133]. The GAN architecture consists of two neural networks:
a generator network, G, and a discriminator network, D. The generator network takes a
random noise vector, z, as input, and produces a sample, x, from the target distribution,
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p(x). The discriminator network takes a sample, x, as input, and produces a binary output,
d, indicating whether the sample is real or fake. The objective of the generator network is
to produce samples that are indistinguishable from real samples, while the objective of the
discriminator network is to correctly distinguish between real and fake samples [161].

The training process of GANs can be formulated as a minimax game between the
generator network and the discriminator network [160]. The generator network tries to
minimize the difference between the distribution of its generated samples, G(z), and the
distribution of real samples, p(x), while the discriminator network tries to maximize the
difference between the distribution of real samples and the distribution of fake samples,
D(G(z)). The objective function for the GAN can be written as:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log(1− D(G(z)))] (15)

where pdata(x) is the true data distribution and pz(z) is the noise distribution. The first
term in the objective function maximizes the log-likelihood of the discriminator network
correctly classifying real samples, while the second term maximizes the log-likelihood of
the discriminator network incorrectly classifying fake samples [175]. During the training
process, the generator network tries to generate samples that fool the discriminator net-
work, while the discriminator network tries to correctly classify real and fake samples.
The weights of the generator network and the discriminator network are updated using
backpropagation and stochastic gradient descent, where the gradient is backpropagated
from the discriminator network to the generator network.

The advantage of GANs is that they can generate realistic samples that capture the
underlying distribution of the training data. However, the training of GANs can be
difficult and unstable, and the quality of the generated samples may depend heavily on
the architecture and hyperparameters of the network. In addition, GANs may suffer from
mode collapse [155], where the generator network only learns to generate a few modes of
the target distribution, rather than capturing the entire distribution.

Table 2 shows the applications of GANs in power systems research and clear com-
parisons with VAEs. GANs offer several advantages over VAEs. Firstly, GANs produce
more realistic and high-quality synthetic samples compared to VAEs. GANs leverage
a discriminator network that learns to distinguish between real and generated samples,
leading to sharper and more convincing output. Secondly, GANs do not suffer from the
blurry and noisy output issue commonly observed in VAEs. VAEs tend to average over the
latent space, resulting in less distinct and fuzzy synthetic data samples. In contrast, GANs
generate samples by directly modeling the data distribution, allowing for more diverse
and detailed outputs. For instance, as shown in Table 2, GAN shows 2.89% better F-score
compared to VAE for the transient stability assessment of the Central China Regional Power
Grid [144]. Additionally, GAN improves the MAPE of demand forecasting on the Texas
Urbanized Area Dataset by 12.0% compared to the VAE model [148]. Similar improvements
can be seen in other time series forecasting tasks in the power system area. For example,
as shown in the table, GAN provides a 14.63% less MAPE compared to the VAE for the
hourly prediction of solar energy using the Solar Integration National Dataset [154]. In
state estimation of the US PG&E69 distribution power network, GAN yields an RMSE
of 0.065, which is 12.16% lower than the same model that employs a VAE [12]. Further-
more, for fault identification, GAN provides a 4.95% better F-score in comparison with
the VAE on the IEEE 33-bus system [160,161]. Similar improvements can be seen in the
cyberattack detection problem as a challenging classification task [170]. As discussed in
this section, GANs are capable of generating realistic data points as they accurately learn
data probability densities. Therefore, as shown in Table 2, these methods are applied to
generate synthetic power networks. On the Columbia University Synthetic Power Grid
dataset, the synthesis task by GAN shows an RMSE of 0.033 and MAPE of 0.071 which are
significantly lower than applying VAEs and DBNs for the same task to generate realistic
power networks [136]. Similar improvements are shown in the table for the energy disag-
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gregation application, where GAN can improve the VAE by 8.02% in the F-score for the
disaggregation of residential loads in the Reference Energy Disaggregation Dataset [179].

3.4. Strengths and Shortcomings of Probability-Based Deep Neural Architectures

Figure 2 highlights the benefits and limitations of deep generative modeling as applied
to power system research. As the table indicates, DBN, GAN, and VAE exhibit proficiency
in managing measurement uncertainties, concurrently offering a robust unsupervised
data representation. DBN, in comparison with GAN and VAE, possesses lower sample
complexity, which subsequently reduces the amount of training data needed for effective
feature extraction. However, DBN’s reliance on Gibbs sampling during training introduces
considerable time-complexity. Moreover, DBN makes a strong independence assumption
regarding its latent variables. Contrarily, GAN and VAE are capable of learning data
distributions directly without any prior assumptions, making them well suited for power
system data synthesis. Due to its more complex architecture, GAN demands a larger
number of training examples relative to DBN. However, GAN’s feature diversity is limited,
and it does not guarantee parameter convergence. In comparison, while VAE exhibits
similar sample complexity to GAN, it provides a more reliable estimation of distribution.
Yet, the less pronounced sharpness of VAE relative to GAN makes the latter a superior
choice for probabilistic applications.
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Figure 2. Strengths and Shortcomings of Deep Generative Models.
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4. Deep Reinforcement Learning

Deep reinforcement learning is a subfield of machine learning that deals with training
agents to perform tasks in a given environment. In DRL, the agent learns to interact with
the environment by taking actions and receiving rewards based on those actions. The goal
is to learn a policy that maximizes the expected cumulative reward over time. The key
components of a DRL system are the agent, the environment, and the reward function. The
agent is typically implemented as a neural network that takes the state of the environment
as input and outputs a probability distribution over possible actions. The environment
is modeled as a Markov decision process (MDP) which consists of a set of states, actions,
transition probabilities, and rewards. The reward function maps states and actions to
scalar rewards [183]. The objective of the agent is to learn a policy that maximizes the
expected cumulative reward over time. This can be formulated as the expected sum of
discounted rewards:

J(θ) = Eτ∼pθ(τ)

[
∞

∑
t=0

γtrt

]
(16)

where θ represents the parameters of the agent’s policy, τ represents a trajectory of states
and actions, pθ(τ) is the probability of generating a trajectory τ under the agent’s policy, rt
is the reward at time step t, and γ is a discount factor that trades off immediate rewards
versus future rewards. The key challenge in DRL is to learn an effective policy that can
generalize to unseen states and actions. One way to achieve this is to use a neural network
to represent the policy [184]. The neural network takes the state of the environment as input
and outputs a probability distribution over possible actions. The policy is trained using
gradient descent to maximize the expected cumulative reward over time. The gradient of
the expected cumulative reward with respect to the policy parameters can be computed
using the policy gradient theorem:

∇θ J(θ) = Eτ∼pθ(τ)

[
∞

∑
t=0
∇θ log πθ(at | st)

∞

∑
t′=t

γt′−trt′

]
(17)

where πθ(at|st) is the probability of taking action at in state st under the policy parame-
terized by θ. The policy gradient can be estimated using Monte Carlo methods [66] by
sampling trajectories from the current policy and computing the gradient of the expected
cumulative reward with respect to the policy parameters. To estimate the policy gradient
using Monte Carlo, one needs to perform the following steps:

(1) Sample multiple trajectories using the current policy πθ(a|s). For each trajectory, we
compute the returns G(t) = ∑T−1

t′=t γt′−trt′ for each time step t using the
observed rewards.

(2) Compute the policy gradient estimate by averaging the gradients of the logarithmic
policy multiplied by the corresponding returns:

∇J(θ) ≈ 1
N

N

∑
i=1

T−1

∑
t=0
∇log(πθ(ai

t|si
t)) ∗ G(t)i (18)

where N is the number of sampled trajectories and the superscript i denotes the
trajectory index.

(3) Update the policy parameters θ using gradient ascent written as θ ← θ + α ∗ ∇J(θ)
where α is the learning rate.

By repeatedly sampling trajectories, estimating the policy gradient, and updating the
policy parameters, the agent can iteratively improve its policy toward maximizing the
expected cumulative reward.
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4.1. Deep Q-Network (DQN)

Deep Q-Network (DQN) is a deep reinforcement learning algorithm that combines
a deep neural network with Q-learning to learn an optimal policy [67,185]. The DQN
algorithm has been successfully applied to various tasks, including playing Atari games
and controlling robotic systems. The goal of the DQN algorithm is to learn a function
Q(s, a) that estimates the expected return for taking action a in state s. The Q-function is
updated iteratively using the Bellman equation:

Q(s, a)← Q(s, a) + α
[
r + γ max

a′
Q(s′, a′)−Q(s, a)

]
(19)

where r is the reward received after taking action a in state s, s′ is the next state, α is the
learning rate, and γ is the discount factor.

To deal with the curse of dimensionality and to enable the DQN algorithm to learn
a function approximation for Q(s, a), a deep neural network is used to represent the
Q-function. The network takes a state s as input and outputs Q-values for all possible
actions. During training, the DQN algorithm uses experience replay to store the agent’s
experiences in a replay buffer, which is then used to sample batches of experiences to train
the network [46]. The loss function for the DQN is the mean squared error between the
Q-value estimated by the network and the target Q-value, which is computed using the
Bellman equation:

L(θ) = E
[(

r + γ max
a′

Qtarget(s′, a′; θ−)−Q(s, a; θ)
)2
]

(20)

where θ represents the parameters of the network, Qtarget(s′, a′; θ−) is the target Q-value
computed using a separate target network with parameters θ−, and the expectation is taken
over a batch of experiences.

To stabilize training, the DQN algorithm uses two key techniques: target network [68]
and ε-greedy exploration [69]. The target network is used to generate the target Q-values
and is updated periodically by copying the parameters from the Q-network. The ε-greedy
exploration strategy is used to encourage the agent to explore the environment by se-
lecting a random action with probability ε and the action with the highest Q-value with
probability 1− ε.

Overall, the DQN algorithm is a powerful deep reinforcement learning technique that
has been shown to achieve state-of-the-art performance on a wide range of power engi-
neering tasks. Table 3 shows the applications of deep reinforcement learning techniques in
power system research. As shown in this table, DQN is a successful technique in the volt-
age control of the IEEE 123-bus system with an average control reward of 153.46 [186,187].
This method also yields a normalized reward of 0.795 for the emergency control of the
IEEE 39-bus system [188]. It is also studied for transportation electricity management
using the California Freeway Performance Measurement System dataset, which shows
a cost efficiency metric equal to 0.141 [189,190]. In demand-response scheme learning,
the DQN provides an operational cost of $161.93 on the Steel Powder Manufacturing
Dataset [191,192]. Moreover, the DQN provides a profit of £5.24× 105 on the ISO New
England Inc. environment in electricity market problems [193]. This methodology has also
been used to solve power scheduling problems, with an average income of $4268.17 using
the Center for Renewable Energy Systems Technology Model [194,195]. Another major
application of DQN is the cyberattack detection and identification problem. In this area, the
DQN results in precision, recall, and F-score of 83.70, 79.08, and 81.32, respectively, when
applied to the IEEE 39-bus system [74,196].
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Table 3. Deep Reinforcement Learning neural networks in power system studies.

Application Dataset Model Performance Metric Result

Voltage Control [66,67,186,187,197–200] IEEE 123-Bus System

DQN Average Control Reward 153.46

DDQN Average Control Reward 161.74

DDPG Average Control Reward 165.92

Emergency Control [188,201–204] IEEE 39-bus

DQN Normalized Reward 0.795

DDQN Normalized Reward 0.864

DDPG Normalized Reward 0.920

Transportation Electrification Management [68,186,189,205–208] California Freeway Performance Measurement System (PeMS)

DQN Cost Efficiency
(Compared to binary control) 0.141

DDQN Cost Efficiency
(Compared to binary control) 0.163

DDPG Cost Efficiency
(Compared to binary control) 0.189

Demand-Response Strategy Learning [70,191,192,209–213] Steel Powder Manufacturing Dataset

DQN Operation Cost($) 194.06

DDQN Operation Cost($) 175.23

DDPG Operation Cost($) 161.93

Electricity Market and Economics [69,193,214–216] ISO New England Inc.

DQN Profit (£) 5.24× 105

DDQN Profit (£) 6.74× 105

DDPG Profit (£) 7.34× 105

Energy Scheduling [194,195,207,217–220] Centre for Renewable Energy Systems Technology Model

DQN Average Income($) $4268.17

DDQN Average Income($) $4805.65

DDPG Average Income($) $5139.06

Cyberattack Detection [14,74,196,221–223] IEEE 39-Bus System

DQN
Precision

Recall
F-score

83.70
79.08
81.32

DDQN
Precision

Recall
F-score

87.29
91.22
89.21

DDPG
Precision

Recall
F-score

94.07
93.38
93.72

4.2. Double DQN

Double Deep Q-Network (DDQN) is an extension of the Deep Q-Network (DQN)
algorithm that addresses the problem of overestimation of Q-values. The DDQN algorithm
uses two separate deep neural networks to decouple the selection of actions and the evalu-
ation of their Q-values, resulting in more accurate estimates of the Q-function [68]. Similar
to DQN, the DDQN algorithm uses experience replay to store the agent’s experiences in a
replay buffer and uses a deep neural network to represent the Q-function. The Q-function
is updated iteratively using the Bellman equation computed by:

Q(s, a)← Q(s, a) + α
[
r + γ max

a′
Q(s′, arg max

a′′
Q(s′, a′′; θ); θ−)−Q(s, a)

]
(21)

where θ represents the parameters of the Q-network, θ− represents the parameters of a
separate target network, r is the reward received after taking action a in state s, s′ is the
next state, α is the learning rate, and γ is the discount factor.

In DDQN, the Q-values for selecting actions are computed using the Q-network, while
the Q-values for evaluating the selected actions are computed using the target network.
This decoupling of action selection and evaluation helps to reduce the overestimation of
Q-values. The loss function for the DDQN is the mean squared error between the Q-value
estimated by the Q-network and the target Q-value, which is computed using the target
network as follows:

L(θ) = E
[(

r + γQ(s′, arg max
a′′

Q(s′, a′′; θ); θ−)−Q(s, a; θ)
)2
]

(22)

where the expectation is taken over a batch of experiences.
Overall, DDQN is a powerful deep reinforcement learning technique that has been

shown to achieve state-of-the-art performance on a wide range of tasks while addressing
the problem of overestimation of Q-values. As shown in Table 3, the DDQN generally
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shows better accuracies and objective values compared to the DQN method. For instance,
as shown in the table, DDQN provides a 5.39% better average control reward over the DQN
for the voltage control of the IEEE 123-bus system [186,187]. Moreover, the DDQN shows
8.68% higher normalized average reward over the DQN in the emergency control task of the
IEEE 39-bus test case [201]. Similar results can be seen in the transportation electrification
management tasks, where the DDQN results in a 0.163 cost efficiency [186,189]. In the
demand-response problems, this method yields a 9.70% lower operational cost compared
to the DQN on the Steel Powder Manufacturing model [191,192]. Moreover, in the ISO
New England Inc., the DDQN provides a 28.63% higher profit compared to the DQN for
electricity market management [193,214]. Similar profit improvements are shown for the
energy scheduling of the Center for Renewable Energy Systems Technology model [217,219].
Finally, in the cyberattack identification problem of the IEEE 39-bus system, this method
shows a 4.29%, 15.35%, and 9.70% higher precision, recall, and F-score compared with the
DQN method [74], which is mainly due to the fact that DDQN handles the problem of
overestimation of Q-values that exists in the DQN model.

4.3. Deep Deterministic Policy Gradient (DDPG)

Deep Deterministic Policy Gradient (DDPG) is a model-free, off-policy algorithm for
continuous action spaces in reinforcement learning. It combines the ideas of DQN and
deterministic policy gradient methods to learn a deterministic policy that maps states
to actions.

The DDPG algorithm uses a deep neural network to represent both the actor (policy)
and critic (action-value function) networks. The actor network takes in the state as input
and outputs the action to be taken. The critic network takes in both the state and action as
input and outputs the corresponding action-value function. The Q-value for a state-action
pair is defined as:

Q(s, a) = E
[
r + γQ(s′, µ′(s′); θQ′)|s, a

]
(23)

where µ is the actor network, θQ′ are the target network parameters, and µ′ is the target
actor network that is used to compute the target Q-value. The target Q-value is then used
to update the critic network parameters using the Bellman equation:

θQ ← θQ − αQ
∂L

∂θQ
(24)

where L is the mean squared error between the predicted Q-value and the target Q-value.
To update the actor network, the deterministic policy gradient theorem is used. The

objective is to maximize the expected return:

J(θµ) = Est∼ρβ ,at∼µθ
[Qµ(st, at)] (25)

where ρβ is a replay buffer and Qµ(st, at) is the Q-value estimated by the critic network for
a given state-action pair. The gradient of the objective is given by:

∇θµ
J(θµ) ≈

1
N ∑

i
∇aQ(s, a; θQ)|s=si ,a=µ(si ;θµ)∇θµ

µ(s; θµ)|si (26)

where N is the batch size and ∇aQ(s, a; θQ) is the gradient of the Q-value with respect to
the action. The actor network is updated by descending along this gradient:

θµ ← θµ + αµ∇θµ
J(θµ) (27)

where αµ is the learning rate for the actor network.
DDPG has several advantages over deep Q-Network algorithms. Firstly, DDPG is

capable of handling continuous action spaces, whereas DQN is primarily designed for
discrete action spaces. This makes DDPG well-suited for real-world power engineering
tasks. Secondly, DDPG is an off-policy algorithm, meaning it can learn from a batch of
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experiences collected independently from the current policy. This enables more efficient
learning by reusing past experiences and reducing the sample complexity. On the other
hand, DQN is an on-policy algorithm that requires interactions with the environment to
collect new data for each update. Lastly, DDPG utilizes actor–critic architecture, allowing it
to learn both a deterministic policy (actor) and estimate the value function (critic) simulta-
neously. This improves the stability and convergence of the learning process compared to
the separate target and behavior networks used in DQN.

As shown in Table 3, DDPG outperforms DQN and DDQN in various data-driven
power engineering studies. For instance, as shown in the table, the DDPG method provides
a 2.58% higher average control reward compared to the DDQN for voltage control of the
IEEE 123-bus system [67]. DDPG also shows a higher normalized reward in the emergency
control problem of the IEEE 39-bus test case compared to the DDQN [203]. It provides
a 6.48% better normalized reward value which is mainly due to the fact that DDPG can
learn from a batch of experiences and it has better convergence in real-time applications.
In addition, DDPG obtains a 15.95% higher cost efficiency in the transportation energy
management problem [224] of the California Freeway Performance Measurement System
compared to the DDQN method [68,205]. In the demand-response problem of the Steel
Powder Manufacturing Dataset, the DDPG shows a 7.59% lower cost compared with the
DDQN model [192,209]. A similar improvement can also be observed in the electricity mar-
ket management case using IOS New England Inc. dataset [214,215]. The average income
obtained by the DDPG is 20.40% and 6.94% higher than DQN and DDQN, respectively,
in the power scheduling problem solved for the Centre for Renewable Energy Systems
Technology model [195]. DDPG also provides better classification accuracies compared
with the DQN and DDQN since DDPG shows better stability and convergence during its
training and provides a more reliable classification decision boundary. For instance, in
cyberattack identification for the IEEE 39-bus test case, DDPG’s classification precision,
recall, and F-score are 7.76%, 18.08%, and 15.25% higher than DQN, respectively [222,223].
Additionally, DDPG has 5.06% better F-score compared with the DDQN for the same
classification problem.

4.4. Strengths and Shortcomings of Deep Reinforcement Learning

Figure 3 shows the strengths and limitations of deep reinforcement learning method-
ologies in the context of power system implementations. DQN and DDQN exhibit reliable
and resilient training dynamics, making them highly applicable to datasets characterized
by elevated uncertainty. Nevertheless, these techniques do not ensure the definitive con-
vergence of their parameters. By reducing the overestimation bias of state-action values,
Double DQN enables better decision-making and more accurate value estimation, leading
to enhanced performance and stability in reinforcement learning tasks. Empirical studies
such as [68,225] have shown that Double DQN provides more stable and reliable learning
compared with the original DQN algorithm. It exhibits improved convergence properties
and can learn more efficiently, especially in domains with high-dimensional state spaces or
complex action spaces.

DQN and DDQN primarily concentrate on refining deterministic strategies within
discrete action spaces. This implies that, relative to the DDPG, they may not be well suited
for practical situations which require continuous actions. The DDPG method has significant
benefits for DRL. First, DDPG integrates the advantages of actor-critic methods and deep
neural networks, making learning in high-dimensional action spaces efficient and scalable.
Second, DDPG utilizes off-policy learning, which enables the agent to learn from a replay
buffer of previous experiences, thereby enhancing sample efficiency and overall stability.
In addition, DDPG includes target networks that are periodically updated to provide more
consistent and reliable value estimations. Despite DDPG potentially being susceptible to
parameter instability during its training phase, it guarantees fast and reliable convergence
towards an accurate stochastic local policy.
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Figure 3. Strengths and Shortcomings of Deep Reinforcement Learning Models.

5. Future Directions of Research

Over the past few years, several new and emerging topics have garnered considerable
attention and sparked innovative research in the area of deep learning for power engineer-
ing. In this section, we discuss several cutting-edge emerging methodologies that can be
incorporated into state-of-the-art, data-driven methods for power systems to improve the
accuracy of the existing works.
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5.1. Attention Mechanism

Attention models have emerged as a groundbreaking topic within the realm of deep
learning, revolutionizing the way models process and focus on relevant information. In-
spired by the human cognitive process, attention mechanisms enable deep learning models
to selectively attend to different parts of input data, assigning varying degrees of impor-
tance to each element. This attention-based approach allows models to efficiently capture
and leverage crucial features, leading to improved performance across a wide range of
tasks. At the heart of attention models lies the attention mechanism, which computes
attention weights for different elements of the input based on their relevance to the task
at hand. By assigning larger weights to important elements and lower weights to less
relevant elements, attention models can dynamically adapt their focus and processing on
a per-element basis. This dynamic allocation of attention enables models to effectively
handle complex relationships, dependencies, and long-range interactions within the data,
thus, enhancing their ability to understand and generate meaningful representations. More-
over, attention models have been widely adopted in various deep learning architectures,
including transformer models [226], which have achieved remarkable success in natural
language processing tasks. Transformer models leverage self-attention mechanisms to
attend to different positions in the input sequence, capturing contextual information and
facilitating parallel processing. Beyond text, attention models have also found applications
in computer vision [227], speech recognition [228], and reinforcement learning [229], among
other areas. Furthermore, the introduction of attention models has significantly advanced
the field of deep learning, enabling models to focus on relevant information and achieve
state-of-the-art performance on numerous challenging tasks. The ongoing research into
attention mechanisms continues to develop novel architectures and techniques that expand
the potential of these models and drive innovation in the field of deep learning.

5.2. Transfer Learning and Domain Adaptation

Domain adaptation has emerged as a new topic in deep learning, addressing the
challenges posed by the domain shift problem. The domain shift problem arises when a
model trained on a specific set of data fails to generalize well to data from a different, but
related, domain. In such cases, domain adaptation models aim to leverage the knowledge
acquired from the source domain to adapt to the target domain, thereby mitigating the
effects of domain shift. The core idea behind domain adaptation models is to learn a
shared representation space between the source and target domains in which the domain-
specific differences are minimized and the shared characteristics are maximized. This is
achieved by optimizing a loss function that simultaneously maximizes the task performance
on the source domain while minimizing the discrepancy between the source and target
domains. Various techniques have been developed to address the domain adaptation
problem, including adversarial training [133], where a domain discriminator is trained
to distinguish between the source and target domains, while the model is trained to
fool the discriminator by producing domain-invariant features. Another approach is
based on discrepancy minimization [230], in which the model is trained to minimize the
discrepancy between the distributions of the source and target domains in the feature space.
Furthermore, recent research has explored the use of meta-learning and self-supervised
learning techniques [231] for domain adaptation, where the model learns to adapt to new
domains by leveraging knowledge acquired from previous adaptation tasks or by learning
to predict transformations between the domains. Domain adaptation has been applied to
various domains, including computer vision [232], natural language processing [233], and
speech recognition [234], among others. The ongoing development of domain adaptation
models continues to produce novel techniques and architectures that advance the field
of deep learning by producing models that better generalize across diverse domains and
which achieve improved performance on challenging tasks.
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5.3. Interpretable Feature Learning

Interpretable models have emerged as a significant new topic in deep learning, ad-
dressing the inherent black-box nature of complex neural networks. As deep learning
models become increasingly sophisticated, there is a growing need to understand the
decision-making processes and inner workings of these models. Interpretable models aim
to bridge this gap by providing explanations and insights into the factors influencing the
model’s predictions. One approach to interpretability is through feature attribution [235],
which assigns importance or relevance scores to input features that indicate their contri-
bution to the model’s output. Techniques such as gradient-based methods [236], saliency
maps [237], and attention mechanisms [229] help highlight the regions or features that the
model focuses on during its decision-making process. Another approach is to learn disen-
tangled representations [238], where the model learns to separate factors of variation in the
data, making it easier to understand the underlying relationships. In addition, rule-based
models and decision trees [239] provide interpretability by explicitly capturing decision
rules and conditions. These models can be trained to mimic the behavior of complex deep
learning models, providing a more interpretable alternative. Furthermore, post-hoc inter-
pretability methods aim to interpret black-box models by analyzing their behavior after they
have been trained. Techniques such as LIME (Local Interpretable Model-agnostic Explana-
tions) [240] and SHAP (Shapley Additive Explanations) [241] provide explanations at the
instance level, highlighting the features that contribute the most to individual predictions.
Interpretable models have significant implications, including ethical considerations [242],
transparency [243], and trust in AI systems, especially in high-stakes applications such
as healthcare [244] and finance [245]. The ongoing advancements in interpretable feature
learning continues to produce more reliable and higher-performing models that not only
provide accurate inferences but also understandable and explainable insights into how
they made those inferences, thus fostering greater transparency into the decision-making
process for various domains.

5.4. Physics-Guided Machine Learning

Physics-guided models have recently emerged as a compelling new topic in deep
learning, combining the power of data-driven approaches with the foundational principles
of physics. These models aim to incorporate prior knowledge and physical laws into the
learning process, enabling the development of more accurate and reliable models, partic-
ularly in scenarios with limited or noisy data. By integrating physics-based constraints,
such as conservation laws, symmetries, or known relationships, deep learning models
can capture the underlying structure of the data and make predictions that align with the
fundamental principles of the domain [246]. Physics-guided models offer several advan-
tages, including improved generalization, better extrapolation capabilities, and the ability
to handle data scarcity. They can also provide interpretability by explicitly incorporating
known physics principles [247] into the model architecture, allowing for insights into the
decision-making process. Various approaches have been developed to incorporate physics
into deep learning models, including physics-informed neural networks [248], where the
model is trained to satisfy the physical equations and constraints during the learning
process. Another approach involves coupling traditional physics-based models with deep
learning architectures, leveraging the strengths of both approaches to achieve more accu-
rate and efficient predictions. Physics-guided models find applications in a wide range of
fields, including fluid dynamics [249], materials science [250], medical imaging [251], and
climate modeling [252], among others. The ongoing research and development in this area
focus on developing new techniques for effectively integrating physics knowledge into
deep learning frameworks, enabling the development of robust and interpretable models
that align with the laws of nature. By combining the predictive power of deep learning
with the foundational understanding of physics, physics-guided models pave the way for
advancements in scientific discovery, engineering, and decision-making processes across
various domains.
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6. Conclusions

With consistent increases in time and storage complexity of problems associated with
power system applications, the demand for sophisticated statistical pattern identification
techniques has led to the implementation of deep learning-based approaches. This recently
developed category of techniques can be classified primarily as discriminative, generative,
and reinforcement learning techniques. This paper analyzes the deep discriminative
algorithms which offer a precise approach for mapping the complicated input of power
system problems to accurate solutions of the supervised problem. Due to their excellent
ability for generalization, these models are extensively used for stability evaluation, fault
detection, as well as wind and solar power generation forecasting. Then, deep generative
methods that offer a probabilistic estimate of data probability densities are discussed.
These models can learn complicated probabilistic patterns for a broad range of electrical
engineering purposes, such as state estimation, renewable scenario generation, and power
grid synthesis. The article concludes with a discussion of deep reinforcement learning
algorithms that attempt to optimize an objective using observed rewards captured from the
problem’s environment. The empirical and mathematical analysis of the adopted methods
inspires future studies in the field of deep learning to expand the potential uses of this
strong type of framework in new areas of power engineering.
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