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Abstract: This paper proposes an adaptive strategy of co-regulating the three parameters—P/ω
droop coefficient, virtual inertia, and damping coefficient—for the virtual synchronous generator
(VSG). This approach is able to solve the uncoordinated performance between the virtual inertia and
the damping using the conventional adaptive control in which the system may experience serious
frequency fluctuations. Through the mathematical modeling of the VSG grid-connected system, the
segmental analysis of the VSG transient process is carried out, and the parameter adjustment law
of each stage is obtained. The VSG angular velocity change and the angular velocity instantaneous
change rate are associated with the inertia to realize the adaptive adjustment of the inertia, and the
adaptive adjustment of the P/ω droop coefficient is carried out in real time according to the VSG
angular velocity change. A functional relationship is established between the P/ω droop coefficient,
virtual inertia, and damping coefficient so that the P/ω droop coefficient, virtual inertia, and damping
coefficient are coordinated to keep the system in the best damping ratio state all the time. Finally, the
superiority of the proposed strategy is proved by simulation comparison.

Keywords: virtual synchronous generator grid-connected system; adaptive co-regulation strategy;
optimal damping ratio

1. Introduction

With the increasingly serious environmental pollution and the exhaustion of tradi-
tional fossil energy, clean energy, such as wind and light, has become an indispensable
alternative [1]. New energy power generation is generally connected to the AC microgrid
through the inverter device, but since the inverter device does not have the inertia and
damping of the synchronous generator when it is connected in a large proportion, the iner-
tia and damping of the system will be insufficient. When disturbed, its ability to suppress
interference becomes weak and even causes the system frequency to collapse in severe
cases [2,3].

The virtual synchronous generator control [4] simulates the inertia and damping
characteristics of the synchronous generator, while the inverter equipment can also provide
inertia and damping support for the system. Virtual inertia and damping are the core
control parameters of VSG, which are flexible and adjustable, and proper adjustment of
these parameters can effectively improve the control performance of VSG. With the increase
in the proportion of new energy connected to the power system, VSG technology has
received more and more attention from researchers. Ref. [5] proposes a virtual inertial
control strategy for the microgrid system with energy storage, which effectively improves
the frequency characteristics of the microgrid system. However, when the proportion of
new energy inside the system changes, its inertia takes a fixed value, and the frequency
response characteristics of the system deteriorate. To solve this problem, adjustment
techniques based on adaptive strategies have been proposed by researchers [6–13]. Ref. [8]
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proposed a VSG virtual inertia adaptive control algorithm based on stick control. When the
rate of change of the angular frequency is less than a certain threshold, the inertia takes
a smaller value; otherwise, it takes a larger value. However, stage adjustment and the
optimal tracking of inertia to frequency changes cannot be achieved. Ref. [9] proposes a
virtual inertia adaptive control strategy that is jointly determined by the VSG rotor angular
frequency change rate and deviation, which solves the adaptive effective tracking to a
certain extent, but the selection range of virtual inertia and the basis for the selection of
key parameters are not given in the paper. Refs. [11,12] proposed a coordinated adaptive
control strategy of inertia and damping. When the VSG angular frequency change rate
increases, the inertia value is higher, and when the angular frequency deviation increases,
the damping value is higher, which effectively improves the dynamic and static state of
the system frequency performance; however, only the adaptive expression is given, and
the selection basis of the correlation coefficient in the expression cannot be given. Ref. [13]
proposed a cooperative adaptive control strategy for VSG parameters. The strategy uses
an exponential adaptive algorithm to determine the virtual inertia, which reduces the
sensitivity of the relevant control parameters in the adaptive algorithm and combines the
performance index constraints to achieve the coordination of the damping coefficient, which
realizes the optimal tracking of inertia and damping for frequency changes. However,
the paper ignores the effect of the P/ω droop coefficient. The literature [14] proposes an
adaptive inertial damping integrated control (SA-RIDC) method, which decides whether
to adjust the virtual inertia or the damping coefficient according to the derivative of the
angular frequency differential during frequency oscillations in order to achieve alternating
control of the virtual inertia and the damping coefficient. The literature [15] proposes a
control strategy based on a joint adaptive virtual rotational inertia and damping coefficient
with an optimal damping ratio. The literature [16] proposes an adaptive VSG control
strategy for battery energy storage systems to ensure the stability of the power system.
The literature [17] draws on the work angle and angular frequency curves of synchronous
generators to design a refined virtual inertia fuzzy regulation law, while considering the
four performance indicators of active overshoot, the frequency rate of change, regulation
time, and rise time to select a suitable damping ratio, and the virtual damping is coordinated
and adaptively adjusted according to the selected damping ratio with the change of virtual
inertia. In the paper [18], virtual synchronous generator technology was introduced in the
IIDG control system to optimize the active-frequency control, the reactive-voltage control,
and the voltage-current control, respectively. The impact of the damping coefficient on
the output of the microgrid system is analyzed by means of a small signal model, and a
self-adaptive damping control strategy is proposed.

In this paper, an improved VSG multiparameter optimal cooperative control strategy is
proposed. Based on the optimal damping ratio, the initial value of the virtual inertia and the
adaptive control of the P/ω droop coefficient are set, and combined with the performance
index constraints, the coordination between the P/ω droop coefficient, inertia coefficient,
and damping coefficient is realized. This not only realizes the optimal tracking of the P/ω
droop coefficient, inertia coefficient, and damping coefficient for frequency changes but also
avoids the influence of parameter incoordination on the quality and stability of the system.

2. Topology and Mathematical Model of VSG
2.1. Topology of VSG

A traditional VSG system is shown in Figure 1. The main circuit of the system consists
of a DC source, voltage-type converter, filter circuit, load, and power grid. The control
loop collects the output voltage, current, active power, reactive power, and other signals
of the main circuit; generates modulation signals through the virtual governor, excitation
controller, voltage and current double-loop controller; and finally generates the pulse
signal to control the converter [19,20]. Topology and control block diagram of Figure 1:
Labc is the filter inductor; Cabc is the filter capacitor; Pe and Qe are the active and reactive
power output by the converter, respectively; iabc_inv and uabc_inv are the output current
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and voltage, K is the integral loop coefficient, Un is the amplitude of the given voltage,
Uinv is the RMS value of the three-phase voltage output from the converter, Rr is the stator
resistance; Lr is the inductance, Rg is the line resistance, Lg is the line inductance; ug is the
grid voltage, iLabc is the inductor current, uabc_ref is the modulation voltage reference, gPWM
is the modulation signal.

Energies 2023, 16, x FOR PEER REVIEW 3 of 16 
 

 

2. Topology and Mathematical Model of VSG 
2.1. Topology of VSG 

A traditional VSG system is shown in Figure 1. The main circuit of the system consists 
of a DC source, voltage-type converter, filter circuit, load, and power grid. The control 
loop collects the output voltage, current, active power, reactive power, and other signals 
of the main circuit; generates modulation signals through the virtual governor, excitation 
controller, voltage and current double-loop controller; and finally generates the pulse sig-
nal to control the converter [19,20]. Topology and control block diagram of Figure 1: Labc 
is the filter inductor; Cabc is the filter capacitor; Pe and Qe are the active and reactive power 
output by the converter, respectively; iabc_inv and uabc_inv are the output current and voltage, 
K is the integral loop coefficient, Un is the amplitude of the given voltage, Uinv is the RMS 
value of the three-phase voltage output from the converter, Rr is the stator resistance; Lr is 
the inductance, Rg is the line resistance, Lg is the line inductance; ug is the grid voltage, iLabc 
is the inductor current, uabc_ref is the modulation voltage reference, gPWM is the modulation 
signal. 

Udc

g1

g2

g3

g4

g5

g6

RLa

RLb

RLc

La

Lb

Lc

Ca Cb Cc

Rga Lga

Rgb Lgb

Rgc Lgc

uga

ugb

ugc

PQ 
Calculation

Pe
Qe

ωN+
-
ω

KP
+
+
Pref

+
-
Pm

Pe+
- ×

÷
1/Js
D

+
+
ωN

1/sδ

+
-
Uinv

Kv
+
+
Qref

Un

Qe
-

K/sEeabc

uabc_inv

iabc_inv

+-Rr+jwLr

uabc_ref

iLabc

gPWM

iabc_inv

PWM

Voltage and 
Current Double 

Closed-loop 
Control

E δ∠

Topology

Control block 
diagram

 
Figure 1. Topology and control block diagram of VSG. 
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Figure 1. Topology and control block diagram of VSG.

2.2. Mathematical Model of VSG

The stator electrical equation and the typical second-order rotor motion equation of
the synchronous generator are [6]:

e = u + i(R + jωL)
Tm − Te = Pm−Pe

ω = J dω
dt + D∆ω

∆ω = ω−ωN
dδ
dt = ω

(1)

Among them, R is the stator resistance; L is the inductance; u is the armature terminal
voltage; Tm is the mechanical torque; Te is the electromagnetic torque; J is the moment of
inertia; D is the damping coefficient; ω is the mechanical angular velocity; ωN is the rated
angular velocity of the system; δ is the output power angle.

As shown in Figure 1, drawing on the principles of the synchronous generator gover-
nor and excitation regulator, the active power regulation and reactive power regulation
equations are designed so that the entire converter system can truly simulate the character-
istics of the synchronous generator.

ω = 2π f
E = K

s [Qref + KV(Un −Uinv)−Qe]
∆T = [Pref + KP(ωN −ω)− Pe]/ω

(2)

In (2), Pref and Qref are the system active and reactive commands respectively; KV is
the voltage regulation coefficient; KP is the active power droop coefficient; K is the integral
loop coefficient; E is the virtual potential command; Un is the amplitude of the given
voltage; Uinv is the effective value of the three-phase voltage output by the converter; f is
the frequency of the terminal voltage of the virtual synchronous generator.
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Finally, after combining the above-obtained voltages in the voltage synthesis link
reference value and phase angle, the output voltage of VSG can be obtained as

e =


√

2E sin δ√
2E sin

(
δ− 2π

3
)

√
2E sin

(
δ + 2π

3
) (3)

3. Multiparameter Cooperative Adaptive Control of VSG
3.1. The Influence of VSG Parameters on the System

According to the equivalent diagram in Figure 2, the output active power of the
grid-connected inverter of VSG can be expressed as:

Pe =
EU
X

sin δ (4)
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Combining Formulas (1) and (4), we can obtain:

∆ω

∆P
=

ωN −ω

Pref − Pe
= − 1

JωNs + DωN + KP
(5)

Therefore, the closed-loop transfer function of the VSG active loop can be deduced as:

ϕ(s) =
Pe

Pref
=

EU
JωNX

s2 + DωN+KP
JωN

s + EU
JωNX

(6)

The corresponding natural oscillation angular frequency and damping ratio are:
ξ = 0.5(DωN+KP)√

JωNEU
X

ωn =
√

EU
JωNX

(7)

When 0 < ξ < 1, the power-frequency system is an underdamped system; when
ξ = 1, the power-frequency system is a critically damped system; When ξ > 1, the power-
frequency system is an overdamped system. Considering the two dynamic indicators of
response speed and overshoot, the “Siemens second-order optimal system” control strategy
is adopted, that is, the damping ratio is set to 0.707. Among them, in the underdamped
state, within a certain allowable error, the adjustment time ts and σ% are: ts =

4
ξωn

= 8JωN
DωN+KP

σ% = e
− πξ√

1−ξ2 × 100%
(8)

When the droop coefficient is constant, it can be seen from Figure 3a that the damping
ratio ξ of the VSG system is proportional to the damping coefficient D and inversely
proportional to the virtual inertia J.

While the system adjustment time in Figure 3b is the opposite, it is proportional to the
virtual inertia J and inversely proportional to the damping coefficient D.
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The above analysis does not consider the influence of the droop coefficient on the
dynamic response of the system. Combining Formulas (7) and (8), it can be known that
when the virtual inertia and damping coefficient are constant, the damping ratio increases
with the increase of the droop coefficient, and the adjustment time decreases with the
increase of the droop coefficient. Relative to the damping ratio, the system adjustment time
is more deeply affected by the droop factor.

It can be seen from the above analysis that the virtual inertia J, damping coefficient D,
and droop coefficient KP in the traditional virtual synchronous machine control strategy
remain unchanged. If any one of the values is changed alone, although the transient
characteristics of the VSG grid connection can be significantly improved, it cannot take into
account the stability and rapidity of the transient process after the system is disturbed.

3.2. Cooperative Adaptive Selection Strategy of Control Parameters

In this paper, the frequency oscillation process of VSG is divided into four different
stages, as shown in Figure 4. The characteristics of the different phases are analyzed, the
virtual inertia J and the droop coefficient KP are adjusted in real time, and the damping
coefficient D is coordinated according to the relationship between the three to achieve
stable control of the grid-connected VSG transient process.
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Figure 4. Angular velocity fluctuation graph.

∆ω·dω/dt > 0 exists in both stage 1 and stage 3 and |∆ω| gradually increases in both
stages. These two stages are defined as the acceleration stage of rotor angular velocity.
This stage requires larger virtual inertia J and larger droop coefficient KP to reduce the
amplitude of rotor angular velocity offset.
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∆ω·dω/dt < 0 exists in both stage 2 and stage 4. Since |∆ω| gradually decreases, the
two stages are defined as the deceleration stage of rotor angular velocity. In this stage, the
virtual inertia J and the droop coefficient KP need to be reduced to make the rotor angular
velocity return to a stable value as soon as possible.

However, in the acceleration stage of the rotor, although the increase in inertia can
improve the anti-interference, it will reduce the response speed. In this stage, the damping
method can be used to improve the response speed.

In the deceleration stage, the virtual inertia J and the droop coefficient KP are reduced,
and the system’s suppression of the fluctuation of the rotor angular velocity is weakened to
speed up the decay rate of the rotor angular velocity; nevertheless, it will cause an increase
in the amplitude of the fluctuation of the rotor angular velocity. Therefore, at this stage, the
damping coefficient can be increased to reduce the overshoot of the system and make the
frequency return to stability as soon as possible.

The selection of J is determined by ∆ω and dω/dt at the same time. In order to avoid
the complicated control strategy, the change rule is set as:

• When ∆ω and dω/dt change in the same direction, J needs to be increased;
• When ∆ω and dω/dt change in opposite directions, J should be kept unchanged.

The virtual inertia J and the droop coefficient KP are associated with the VSG angular
velocity and the instantaneous value of the angular velocity to obtain the control parameter
adaptive strategy, as shown in Formulas (9) and (10).

J =

{
J0 + k J

∣∣∣∆ω dω
dt

∣∣∣, ∆ω · dω
dt > 0

J0, ∆ω · dω
dt ≤ 0

(9)

KP = KP0 + kω · |∆ω| (10)

In the formulas, J0 and KP0 are the virtual inertia and droop coefficient of VSG fixed
parameters, respectively; kJ is the inertia adjustment coefficient and kω is the adjustment
coefficient of the droop coefficient.

The coordinated control design of the droop coefficient, virtual inertia, and damping
coefficient is carried out. Combining Formulas (7), (9) and (10), the damping coefficient D
design under the correlation can be obtained:

D = 2ξ

√
J

EU
ωNX

− 1
ωN

KP (11)

Based on automatic control theory, in order to keep the system in the optimal control
operation state, ξ can be set to 0.707. It can be known from Formula (11) that when other
parameters in the system are constant, the droop coefficient, virtual inertia, and damping
coefficient can be jointly designed according to the requirements of system characteristics.

3.3. The Setting of Parameter Value Range

The adaptive adjustment coefficient of VSG inertia can be selected according to the
value range of inertia. According to the setting principle of the virtual inertia value of the
VSG scheme of the University of Leuven [21], the maximum value of the virtual inertia
must satisfy:

Jmax <
Pmax

max
{

ω
(

dω
dt

)} (12)

In Formula (12), Pmax is the maximum power that the system can withstand. In
order to ensure the stable operation of the system, the angular frequency of the system is
limited with reference to the current national standard power system frequency deviation
(50 ± 0.2 Hz).
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The maximum and minimum frequencies are ωmax and ωmin, respectively; then, the
damping coefficient selection in Formula (10) should satisfy Formula (13):

0 ≤ 1
DωN + KP

≤ ωmax −ωmin

Pmax − Pmin
(13)

In Formula (13), Pmin is the minimum output power of VSG. Therefore, the minimum
value of the damping coefficient D is:(

Pmax − Pmin

ωmax −ωmin
− KP

)
/ωN ≤ D (14)

And the droop factor shall also be taken to satisfy Formula (15):

KP ≤ Pmax/∆ωmax (15)

In addition, in order to make the system have good response rapidity, each transient
component of its response should have a large decay factor—that is, the closed-loop pole
of the system should be far away from the imaginary axis, and the closed-loop pole should
satisfy [22–25]:

Re(si) = −ωnξ = −D + KP/ωN

2J
≤ −10 (16)

In VSG control, moderate damping, a fast response, and a small overshoot are usually
desired in the control system. The damping ratio ξ is therefore chosen to be in the range
(0.7, 1). In summary, the range of virtual inertia J and droop factor KP can be obtained as
shown in Figure 5.
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To sum up, the flow chart of the core algorithm in this paper is shown in Figure 6,
where Nω is the threshold for setting a triggering adaptive function.
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Based on the above design, the bode diagram of the whole system is shown in Figure 7.
In the figure, the amplitude margin as well as the phase margin of the control strategy
proposed in this paper is the largest, so that the error value is the smallest and not prone
to damped oscillations, resulting in the highest stability and the best system performance.
Fuzzy adaptive optimal control is the next most effective control strategy. Traditional
adaptive control is the least effective.
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4. Simulation Analysis

In order to verify the control strategy proposed in this paper, an improved VSG system
simulation model on the MATLAB/Simulink platform is built into this work, and the
relevant control parameters used are shown in Table 1.

The system is in a grid-connected operation state, the simulation duration is set to 2 s,
the initial steady state is assumed, and the grid frequency is equal to the rated frequency.
In order to simulate the change in load power, the load power is set to increase by 10 kW at
1 s, and the reactive power is constant at 0 kVar during this period.

Table 1. Simulation parameters of VSG.

Parameter Numerical Value Parameter Numerical Value

Rated voltage on AC grid ug (V) 380 Filter inductor Labc(mH) 0.8
Rated voltage on DC side Udc (V) 800 Filter capacitor Cabc (uF) 10
Rated active power (W) 50,000 Initial value of virtual inertia J0 (kg·m2) 1.127
Rated reactive power (Var) 0 Initial value of droop coefficient KP0 5000

4.1. Effect of Changes in System Parameters on System Frequency

Figures 8–10 show the frequency variation curve of the system with different inertia,
damping, and droop coefficient. When the virtual damping D and droop factor KP are
fixed, the greater the virtual inertia J is, the longer the dynamic adjustment time is, but the
frequency overshoot is reduced. The system transitions from an overdamped state to an
underdamped state, as shown in Figure 8.
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When the virtual inertia J and sag factor KP are fixed, the smaller the virtual damping
D is, the longer the dynamic adjustment time is, and the greater the frequency overshoot is,
the system transitions from an overdamped state to an underdamped state, as shown in
Figure 9.

When the virtual inertia J and virtual damping D are fixed, the larger the sag coefficient
KP is, the smaller the frequency overshoot is, as shown in Figure 10. The correctness of the
theoretical analysis in this paper is verified.

4.2. Simulation under Varying System Loads
4.2.1. Simulation Comparison of Different Control Strategies

In order to verify the superiority of this control strategy in grid-connected mode, it
is compared with coordinated inertia damping (ξ = 0.707), J and D coordinated adaptive
control and parametric coordinated fuzzy adaptive control strategy, respectively. The
frequency change is shown in Figure 11.
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The frequency change curve and a partially enlarged view can be seen in Figure 11.
It can be seen from Figure 11 that the coordinated inertia damping (ξ = 0.707) control
strategy is adopted—when the parameters are fixed, the maximum offset of the frequency
fluctuation reaches 0.17 Hz, and it takes about 0.3 s to reach the steady state. When using
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J and D coordinated adaptive control, the maximum frequency offset is reduced to 0.133 Hz,
and the adjustment time is about 0.22 s. When using a parametric coordinated fuzzy
adaptive control strategy, the maximum frequency offset is reduced to 0.132 Hz, and the
adjustment time remains the same. When the multiparameter cooperative adaptive control
strategy is adopted, the maximum frequency offset is 0.123 Hz, and the adjustment time is
0.22 s. The specific performance indicators are shown in Table 2.

The maximum deviation of the multiparameter cooperative adaptive control is opti-
mized by 7.52% compared with the J and D coordinated adaptive control and is optimized
by 27.65% compared with the coordinated inertia damping (ξ = 0.707) control strategy. The
adjustment time of the multiparameter cooperative adaptive control is equivalent to that of
the J and D coordinated adaptive control and is 26.67% higher than that of the coordinated
inertia damping control.

Table 2. Control strategy performance indicators.

Control Strategy Nadir (Hz) Deviation (Hz) Adjustment Time (s) ROCOF

Fixed parameters 49.83 0.17 0.3 maximum
J, D adaptive control 49.867 0.133 0.22 medium
Parametric coordinated fuzzy adaptive
control strategy 49.868 0.132 0.22 medium

Multiparameter cooperative adaptive control 49.877 0.123 0.22 minimum

4.2.2. Comparison of Parameter Changes

Figures 12 and 13 show the variation of the J and D coordinated adaptive control pa-
rameters and the variation of the multiparameter collaborative adaptive control parameters
in this paper, respectively.
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Figure 12, as well as Figure 13b,c, shows the frequency change caused by the load
change at 1 s; the angular frequency rate of change and frequency offset are both negative,
and in the angular frequency acceleration phase, the virtual inertia and damping coefficient
increase rapidly. During the frequency fluctuation, when the angular frequency rate of
change and frequency offset have different signs, the virtual inertia and damping coefficient
decrease rapidly in the angular frequency deceleration stage.

However, when J and D adaptive control is in a perturbation cycle of the change
process, during the same moment only one quantity changes (that is, the control for
alternate), other quantities are not affected. This control system is simple, ignoring the
influence of the droop coefficient.

It also can be seen from Figure 13a that the droop coefficient will have a corresponding
adaptive change when the frequency changes caused by the load change, to further syner-
gistically optimize the damping coefficient. During dynamic changes, the droop coefficient
varies continuously in the range of 4600 to 5000, and the virtual inertia varies in the range
of 1 to 4, while the damping coefficient varies in the range of 38 to 85 under the combined
effect of both.

4.3. Simulation under Grid Frequency Variation

To further verify the performance of the proposed control strategy, the grid frequency
was simulated: at 0.5 s, the grid frequency increased by 0.2 Hz, and after 1 s, the frequency
returned to 50 Hz.

4.3.1. System Frequency Performance

The frequency change curve and a partially enlarged view can be seen in Figure 14. As
can be seen from the graph, frequency overshoot exists using the fixed parameter control
strategy; when using conventional adaptive control, the overshoot is reduced. The rate of
change in frequency is greater for both of these approaches. When using fuzzy adaptive
control and the strategy proposed in this paper, there is no overshoot in the frequency, and
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the frequency variation rate of the system is minimal under the control strategy proposed
in this paper.
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4.3.2. Variation of the Three Parameters

It can also be seen in Figure 15a that the VSG needs to adjust its output when the grid
frequency rises by 0.2 Hz throughout; therefore, it needs to adjust the droop coefficient,
which varies dynamically between 5000 and 5600. The virtual inertia also varies at this
point between around 1.1 and 3.9, as shown in Figure 15b. The damping coefficient is
adjusted in real time according to the mathematical logic between the three and varies
between 36 and 82, as shown in Figure 15c. Unlike the load variation, the sag coefficient,
virtual inertia, and the damping coefficient keep interacting with each other throughout
the process, without stopping to vary when the frequency is stable.
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5. Conclusions 
Although the traditional virtual synchronous generator technology can improve the 
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5. Conclusions

Although the traditional virtual synchronous generator technology can improve the
stability of the system by simulating the operating characteristics of the synchronous
generator, it has problems, such as the inability to take into account multiple performance
indicators for parameter design, long adjustment time, and large transient overshoot.
To address these problems, this paper uses an improved VSG parameter optimization
cooperative control strategy, and the effectiveness of this control strategy is verified by
simulation through simulated load variation and frequency variation. The main work and
contributions are as follows:

(1) Analyze the effect of droop factor, virtual inertia, and damping factor on the VSG
system and determine the range of values for the system parameters.

(2) The existing J and D coordinated adaptive control is optimized. The droop coefficient
and virtual inertia can be adjusted in real time according to the system frequency
state, and the damping coefficient can be changed cooperatively according to the
corresponding relationship. The three are always coordinated and adjusted during
the change process, which effectively improves the dynamic performance of the
system frequency. The effectiveness and reliability of the proposed multiparameter
cooperative adaptive control strategy have been verified by simulation.
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