
Citation: Zhou, F.; Shi, W.; Li, X.;

Yang, C.; Hao, T. Cooperative Game

Cooperative Control Strategy for

Electric Vehicles Based on Tariff

Leverage. Energies 2023, 16, 4808.

https://doi.org/10.3390/en16124808

Academic Editor: Byoung Kuk Lee

Received: 19 April 2023

Revised: 7 June 2023

Accepted: 13 June 2023

Published: 20 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Cooperative Game Cooperative Control Strategy for Electric
Vehicles Based on Tariff Leverage
Feng Zhou 1, Weizhen Shi 1, Xiaomei Li 2, Chao Yang 2 and Ting Hao 3,*

1 College of Electrical Engineering and Automation, Shandong University of Science and Technology,
Qingdao 266590, China

2 State Grid Shandong Electric Power Company, Qingdao Power Supply Company, Qingdao 266000, China
3 College of Economics and Management, Shandong University of Science and Technology,

Qingdao 266590, China
* Correspondence: haoting311@163.com

Abstract: To address the negative impact of large-scale disorderly grid connection of EVs on the
stable operation of the power grid, a cooperative game cooperative control strategy for EVs based
on tariff leverage is proposed, taking the grid-side and user-side economy as the objective function,
taking into account the EV load state constraint, distribution grid power constraint, bi-directional
charging and discharging pile power constraint, dynamic tariff constraint, and cooperative game
members’ revenue constraint. A dynamic cooperative game model based on bi-directional charging
and discharging piles is established, and the weight of users in the game is increased. Based on
the cooperative game model, an optimal real-time tariff is determined for both the electric power
operators and the charging and discharging pile users and based on the real-time updated dynamic
tariff and the EV power connected to the charging and discharging pile at the current moment, a
genetic algorithm is used to solve the simulation based on the Receding Horizon Control principle.
The simulation results show that this control strategy has a smoother load curve and better peak and
valley reduction than the fixed tariff and the time-of-use tariff, and it reduces the operating cost of the
electric power operators. In addition, it brings the best economic benefits to the users, with the overall
revenue of the charging and discharging piles increasing by up to 6.3% under the dynamic tariff.

Keywords: bi-directional charging and discharging piles; cooperative control; cooperative game;
tariff leverage; dynamic tariff; peak shaving and valley filling

1. Introduction

With the large-scale operation of EVs, the more EVs connected to the grid, the greater
the impact on system load fluctuations, and the negative impact on the stable operation of
the grid is exacerbated by the disorderly grid connection of large-scale EVs [1]. Therefore,
it is necessary to study the participation of EVs in grid regulation as distributed energy
storage units in an orderly manner [2]. The energy transition is diversified by developing
energy demand-side management plans to improve the efficiency of energy use [3].

V2G technology is a technology that uses multiple EVs with their own energy storage
batteries as buffers to deliver electrical energy to the grid [4]. EV users can purchase or sell
electricity from the grid according to the grid tariff at each time period using the difference
to gain revenue. With V2G technology, grid efficiency can be improved, the instability and
volatility of renewable energy can be mitigated, and some revenue can be generated for the
user [5].

Centrally managed V2G integrates the regulable EVs in a certain area, and the grid cen-
trally dispatches the EVs in the area and controls their charging and discharging behavior
according to the actual situation of the day’s load [6]. However, in real life, EVs are parked
in scattered locations and cannot be centrally managed and controlled, so distributed charg-
ing piles are generally used for charging, tariff information is released according to the
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current power demand or current voltage fluctuation of the grid, and V2G is automatically
implemented in combination with the battery charge state of EVs [7]. Karfopoulos et al.
proposed an adaptive pendant flow-based regulation and scheduling algorithm to achieve
distributed coordination of EVs [8], which was subsequently improved by Zhang et al.,
who proposed an innovative and effective framework to provide vehicle-to-grid regulation
services [9]. Each EV in this model is an individual, and the location is more dispersed and
unable to be managed in a unified manner, so the randomness of charging and discharging
each EV is high, making prediction difficult and unable to fully take into account the
individual needs of the vehicle owner.

In the tariff-guided EV scheduling strategy, when a large number of EVs are connected
to the grid and participate in scheduling, the tariff strategy can be used as a control signal
to guide vehicle owners to charge and discharge in an orderly manner when the tariff is
low, and the user performs charging behavior when the tariff is high and changes to a
discharging state, so as to improve the grid load curve, achieve peak and valley reduction,
and reduce charging costs and grid-side generation costs [10,11].

Cui et al. investigated the offset of the grid load curve by adjusting the tariff strategy
for the electricity consumption habits of customers under different tariff strategies [12].
Zhang et al. proposed a real-time updated dynamic with a time-sharing tariff issued by
the grid, and the tariff was readjusted by the owner’s independent response to finalize the
charging and discharging schedule [13]. Chen et al. considered the transformer capacity
at each moment and developed a dynamic tariff based on the current moment electricity,
upper and lower limits of power supply, and tariff range restrictions [14]. Based on fuzzy
Bayesian learning theory, Zhang et al. proposed a bilateral negotiation model with the
participation of electric power operators and EV agents [15]. Melendez et al. developed a
cooperative rule to reduce the cost of electricity and proposed a trade-off strategy to balance
the contradiction between cost and fairness [16]. Fei et al. developed a real-time tariff
for microgrids based on the law between the expected charging duration and the actual
parking duration of EVs considering the personalized charging demand of users, but the
strategy only discusses the charging behavior and does not consider the role of discharging
energy feedbacks [17]. Lai et al. proposed a dynamic pricing strategy with competitive
effects to attract more charging demand to avoid possible electricity congestion in the
grid. However, the strategy ignores the randomness of EVs and cannot guarantee overall
optimality [18]. In addition, San et al. pointed out that users under time-sharing tariffs
concentrate on charging at low tariffs, while the system cannot respond to the increase in
load at this time in real time and continues to maintain low tariffs to wake up users for
charging, thus triggering a clustering effect and forming a new load spike [19].

In summary, existing studies mainly focus on centralized charging stations and con-
sider the regulation of charging behavior and less simultaneously consider the impact
of charging and discharging plans on EV grid connections. The expenses generated by
EV users purchasing electricity are the main revenue of charging stations, while the main
revenue path for EV owners is discharging to the grid through idle periods. At the same
time, EV charging and discharging behavior will affect the load curve of the grid, and even
form new load spikes. Therefore, new regulation strategies need to be developed based
on real-time changes in distribution network load. It is necessary to study the impact of
dynamic system charging/discharging behavior on the load fluctuation of the grid and the
revenue of the supply and demand sides.

In this paper, when setting the pricing strategy, we set the parameter weights between
grid companies and users as equal values. Based on the cooperative game model to
determine the real-time tariff with optimal revenue for both electric power operators and
charging and discharging pile users, we use the tariff lever to guide the charging and
discharging behavior of users in real time. The control strategy of this cooperative game
does not consider the differences and special characteristics of each member’s market
position and raises the status of users to be equal to that of the grid, which improves
the enthusiasm of users to participate in the regulation system. A distributed energy
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storage cooperative scheduling optimization method based on bidirectional charging and
discharging piles is proposed to study the effects of different pricing strategies on users’
charging and discharging behaviors. For users, purchasing or selling electricity according
to a dynamic tariff can obtain the best return. For the electric power operators, the real-time
change for tariffs of this control strategy avoids the clustering effect and can more effectively
cut the peak and fill the valley, smooth the load curve, and reduce the operating costs.

2. Mathematical Model of Distributed Energy Storage Cooperative Game under
Tariff Leverage

To construct a mathematical model of a distributed energy storage cooperative schedul-
ing charging and discharging optimization system under tariff leverage with dynamic tariff
as the incentive, the following factors need to be considered: the variability of EVs con-
nected to the distribution network as fluctuating loads, the stability of the distribution
network operation, the economy of bi-directional charging and discharging pile operation
(i.e., the revenue on the user side), and the cooperative relationship between the EVs
connected to the grid and the distribution network participating in regulation.

2.1. Objective Function of Optimal Scheduling Model under Cooperative Game

If the participants seek to maximize only their own interests, the best interests of
the whole game may be affected, so it is necessary to establish cooperation among the
participants to form a collective to maximize the needs of the collective interests and thus
maximize individual interests. Under the cooperative game principle, collaboration among
each other generates additional benefits, so the total collective benefit is not simply the sum
of individual benefits, and individual members involved in the cooperative game can all
improve their own benefits.

Combined with the influence of tariff leverage on users’ participation in grid connec-
tions, the user side aims to maximize the revenue of bi-directional charging and discharging
piles, and the grid side aims to optimize the cost of power generation.

(1) Bi-directional charging and discharging pile user revenue model

The cost of electricity for bi-directional charging and discharging pile users can be
divided into three parts: the cost of purchasing electricity, the revenue of selling electricity
to the grid, and the loss of power battery by frequently changing charging and discharging
states. The electricity consumption cost function is defined as:

Cu =
(
αPdis

(
t
)
C1
(
t
)
+ βPcha

(
t
)
C2
(
t
)
+ Cbat

(
t
))

∆t (1)

where α is the discharge coefficient, Pdis is the discharge power, β is the charging coefficient,
Pcha is the charging power, and Cbat is the loss cost of power battery.

The EVs in this model are connected to the distribution grid through the bi-directional
charging and discharging piles, and the idle state EVs are not considered, and the EVs
are only divided into two vehicle fleet states: charging state and discharging state. When
Cu > 0, the user side pays for the purchase of electric energy from the grid, and when
Cu < 0, the user side sells electric energy to the grid to gain revenue.

The revenue model for users is defined as follows:
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∑
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To satisfy the maximization of user-side benefits, the bi-directional charging and
discharging pile user benefit optimization problem can be described as follows:

max f1 = −
T
∑

t=1

(
αPdis

(
t
)
C1
(
t
)
+ βPcha

(
t
)
C2
(
t
)
+ Cbat

(
t
)
∆t

α + β = 1
−PEV.max ≤ Pdis

(
t
)
< 0

0 < Pcha
(
t
)
≤ PEV.max

(3)

(2) Revenue model of the grid company

The revenue function of the grid company includes the revenue and spend generated
from the power interaction between the grid company and the charging and discharging
pile system, the revenue from the base load’s power purchase from the grid, and the cost of
renewable energy generation, expressed as:

Cg =
(
αPdis

(
t
)
C1
(
t
)
+ βPcha

(
t
)
C2
(
t
)
+PLoadC3

(
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)
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)
∆t (4)

Cre = CWTPWT
(
t
)
+ CPVPPV

(
t
)

(5)

where PLoad is the daily base load of the grid, C1 is the real-time dynamic tariff published by
the grid, C2 is the price of electricity sold by the EV owners to the grid, C3 is the traditional
price of electricity for the base load, Cre is the cost of renewable energy generation, and CWT
and CPV are the cost of wind power and photovoltaic power, respectively. When f2 > 0, the
grid company sells electricity at a profit, and when f2 < 0, the grid company loses money.

The grid company revenue model is defined as:
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To satisfy the grid-side revenue maximization, the grid-side revenue optimization
problem can be described as:

max f2 =
T
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t
)
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(7)

where C1.max, C1.min, C2.max, C2.min are the upper and lower limits of the charging and
discharging tariffs, respectively.

Therefore, the objective function is the collective total revenue after the cooperative
game, including EV users and electricity marketers. By analyzing various factors such as
the status and voice of the participating members, their pursued goals and preferences,
market demand and national policies, we consider how to achieve a relatively fair distribu-
tion of benefits among the members and improve the DP parameter indicator according to
the differences of different members to ensure that each participant in the collective can
obtain reasonable benefits and continue to participate in the cooperation. Gately proposed
an indicator parameter, DP (Disruption Propensity), used to describe the reasonable dis-
tribution of the overall gains of the cooperative game among individual participants [20].
Later, some scholars [21] proposed an improved DP indicator, MDP, which represents the
ratio of the average losses of other participants when participants i do not participate in the
cooperative game to the losses of participants i:

D(i) =
1

n− 1

∑
j∈{N\i}

x(j)− v(N\i)

x(i)− v(i)
(8)
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Set N contains all the participants of the cooperative game; set N/i denotes the entire
set excluding the participants i; x(i)− v(i) denotes the loss of participant i not participating
in the cooperative game.

In the traditional pricing strategy, the grid company, as the industry giant, dominates
the market and is the main leader among the participants, with a significant weight, while
the users of bi-directional charging and discharging piles are subordinate and have a
small weight. In order to improve the enthusiasm of users to participate in the regulation
system, this paper sets the pricing strategy without considering the differences and special
characteristics of each member’s market position, sets the parameter weights between the
grid company and users to equal values, and raises the users’ status to equal with the grid.
This improves the weight of users in the game and ensures the interests of users, thus
increasing their willingness to connect to the grid.

The equivalence index parameter indicates the equal status of each participant in the
cooperative game and the fair distribution of benefits, which ensures a stable cooperative
relationship. From Equation (8), D(i) intuitively reflects the benefits of the participants un-
der the cooperative game, and the benefits of the electric power operator and bi-directional
charging and discharging pile users are allocated according to the equivalence index, which
leads to the allocation Equation (10), which is simplified to obtain Equation (11).

D( f1) = D( f2) (9)

x( f1)− v( f1) = x( f2)− v( f2) (10)

x( f1) + x( f2) = C (11)

2.2. Constraint Conditions

(1) Set the charge state constraint from the user’s perspective

As an important means of transportation for people to travel, private EVs have high
requirements for range, so the constraints of distributed energy storage systems for the
charge state of EVs need to give priority to the requirements of users.

For comprehensive power batteries’ own safety and user experience of both aspects,
the threshold value of the setting needs to be combined with the range of both to take the
intersection. The regulation system needs to consider the convenience of the owner’s travel.
Before the EV is connected to the grid, the owner sets the upper and lower limits, SOCi.max
and SOCi.min, of the EV charge state SOC in the charging and discharging pile regulation
system according to the travel plan, satisfying:

SOCi.min ≤ SOCEV(t) ≤ SOCi.max (12)

Bi-directional charging and discharging pile control systems should fully consider the
common constraints of user requirements and EV battery life and meet the personalized
settings of users as much as possible under the premise of ensuring the safety and health of
the power battery. Therefore, the expected charge and discharge thresholds set by users
have certain limits, as shown in Figure 1. In order to ensure the good cycle life of an EV
power battery, the expected threshold set by the user cannot exceed the upper and lower
limits, SOCi.min and SOCi.max, of the EV power battery for a long time.
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SOCdown and SOCup are the final charge state constraint values after regulation by
the bi-directional charging and discharging pile system (Figure 2). The upper limit takes
the maximum value of the user’s expected charge state and the safe operation power
of the power battery, and the lower limit takes the minimum value of both, that is,
Equations (13) and (14). However, the expected charge state value set by the user can-
not exceed the safety limit of the power battery for a long time.

SOCdown= min(SOCEV,min, SOCi.min) (13)

SOCup = max(SOCEV,max, SOCi.max) (14)

SOCdown ≤ SOCEV(t) ≤ SOCup (15)
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In order to meet the requirements of the user’s travel plan range, the charge state of
the private EV when it exits the system after charging shall meet:

SOCend > SOC0 +
LEd

E
(16)

where L is the number of miles traveled by the EV owner on the day of the planned trip,

and Ed
/

E is the ratio of the electric energy consumed per kilometer to the total power
battery capacity.

Taking one hour as the period of dynamic tariff update, the charge state of each EV
participating in the dispatch in the next time period cycle satisfies:

SOC
(
t + 1

)
= SOC

(
t
)
+

(
Pcha + Pdis

)
∆t

E
(17)

(2) Power constraint for members of cooperative game

In order to ensure that the cooperative game model can produce correct results through
simulation, it is necessary to impose capacity constraints on the members participating
in the cooperative game in advance. In this way, it is possible to avoid the power of a
member exceeding the limit, which will break the balance and affect the benefit distribution
among other members. The maximum load P1 that the distribution network can bear
should satisfy the sum of the base load P2 of the distribution network and the charging
and discharging power P3 of the bidirectional charging and discharging pile, i.e.,
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Pt
dis ≥ Pt

Load + Pt
EV (18)

where the power interacting with the distribution network via the bi-directional charging
and discharging pile should meet the safety threshold of the bi-directional charging and
discharging pile, i.e.,

−Pmax
EV ≤ Pt

EV ≤ Pmax
EV (19)

(3) Bi-directional charging and discharging pile charging and discharging state constraints

As a distributed energy storage unit, the EV has both charging and discharging
functions, which can be used as a load to obtain power from the grid for charging and as a
power source to discharge to the grid during peak load periods.

PEV
(
t
)
= αPdis

(
t
)
− βPcha

(
t
)

(20)

where α, β are the working state parameters of EVs. α = 1 represents the group of vehicles
discharging as a distributed energy storage system at this time and providing power Pdis
to the load; α = 0 represents the group of vehicles connected to charging and discharging
piles without connecting to the grid for discharging; β = 1 represents the group of vehicles
connecting to the grid for charging as a load and absorbing power Pcha from the grid; β = 0
represents no charging. At any moment, the energy storage system works in only three
ways: charging, discharging, and idle.

The bi-directional charging and discharging piles can only perform a single operation
of charging or discharging at the same moment, i.e., the charging and discharging states
are mutually exclusive in a dynamic tariff update cycle, thus satisfying the operating state
constraint that:

Pcha · Pdis = 0 (21)

(4) Dynamic tariff upper and lower limit constraints

In the cooperative game model, based on the optimization of the objective function for
different purposes, the members involved in the game can set different weight parameters
between them. Under different parameter settings, the cooperative game model generates
different real-time updated tariff laws, but all must follow the price laws of the electricity
market and set constraints on the fluctuation range of tariffs. Considering the cost of the
grid and the consumption capacity of the user side, the dynamic tariff adjustment needs to
satisfy the set upper and lower limits of:

Cd.min ≤ Cd
(
t
)
≤ Cd.max (22)

(5) Alliance benefit constraint

Based on the characteristics of the cooperative game model, coalition members will
have additional benefits generated by cooperation with each other after cooperation, so
the benefits of the coalition as a whole should be greater than the sum of their respective
benefits when they are separated:

Csum
N >

n

∑
i∈N

Ci (23)
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3. Implementation of a Dynamic Cooperative Game Model Based on Bi-Directional
Charging and Discharging Piles
3.1. Bi-Directional Charging and Discharging Pile Operation Model

A V2G charging pile usually consists of two parts: an AC-DC circuit and a DC-DC
circuit, and the bidirectional flow of active and reactive power can be realized by controlling
the amplitude and phase of the AC-side voltage in the AC-DC circuit [22]. A bi-directional
charging and discharging pile is set up in each garage so that it can be used exclusively
for vehicles, which is more conducive to collecting user information, making accurate load
prediction, and facilitating grid regulation. EVs are connected to the new bi-directional
charging and discharging piles, which are connected to the power grid through the charging
and discharging piles. By combining the low usage rate of EVs at night, the current situation
of power consumption at night when the load of the power grid is at the bottom of the
valley, and the large spare capacity of the new energy generation system, tariff leverage and
power grid regulation information are used to regulate the energy of the power grid and
the consumption of the new energy. This approach can also generate significant revenue
while ensuring the maximum freedom and comfort of using the vehicles for users.

Users set their personalized travel plans and charging and discharging thresholds
through the setting interface of the charging and discharging piles. The charging and
discharging pile control system initially formulates the charging and discharging strategy
of the current vehicle according to the charging and discharging thresholds set by users
and their personal vehicle plans. It then adjusts and reformulates a reasonable charging
and discharging control strategy through the current system load situation and real-time
tariff transmitted by the power grid control center, converts the current working state
of the EV, and performs charging or discharging operations as needed. The charging or
discharging operation is carried out as needed. The real-time process of regulation will be
transmitted to the user side through the charging and discharging pile, and the current
charging and discharging status, real-time charge state, dynamic tariff, expected revenue,
and other related information will be fed back in real time. The workflow diagram of the
interaction between the bidirectional charging and discharging piles, and the distribution
network is shown in Figure 3:

(1) The grid dispatch command center sets the corresponding tariff based on the current
grid power consumption and renewable energy output, which is transmitted down to
the bi-directional charging and discharging piles.

(2) The bi-directional charging and discharging pile announces the tariff released by the
grid to the users through the user-setting interface.

(3) The user sets the charging and discharging threshold tariff, personal usage plan, and
other information in the control panel according to the previous day’s tariff and the
current day’s usage plan.

(4) According to the information set by the user, the bi-directional charging and discharg-
ing pile makes the corresponding charging and discharging strategy and uploads it to
the grid control center.

(5) The grid control center adjusts the control strategy of the bi-directional charging and
discharging pile according to the change in the day-ahead load, and a cooperative
game model is formed between the user and the grid to maximize the interests of
both parties.

(6) The details of charging and discharging are displayed on the control panel in real
time. After charging and discharging are completed, the bi-directional charging and
discharging pile uploads the completion signal and waits for the next instruction from
the grid control center.



Energies 2023, 16, 4808 9 of 20Energies 2023, 16, x FOR PEER REVIEW 9 of 20 
 

 

Electricity 
Information

Users

Bi-directional charging and discharging piles

Grid Control Center

  

  

1t 2t

0S

 

  

   

 

Figure 3. Workflow diagram of a bi-directional charging and discharging pile. 

3.2. Implementation of the Dynamic Cooperative Game Model 

According to the relationship between charging duration 
mT  and docking duration 

sT  of EVs, the private EVs integrated into the grid are divided into an elastic load vehicle 

group and an inelastic load vehicle group. The charging time of the elastic load group 

m sT T  and the inelastic load group 
m sT T . 

According to the i time period gaming process, the grid regulation center timely 

adjusts the charging and discharging tariffs for each time period through the real-time 

grid entry of bi-directional charging and discharging pile users and sends the real-time 

tariffs for that time period to the users. After receiving the dynamic tariff information 

released by the grid, users are divided into flexible and inelastic vehicle groups according 

to their travel plans, and make different charging plans according to their own condi-

tions: inelastic vehicle groups are equivalent to fixed loads, respond to the dynamic tariff 

strategy of the grid, and participate in charging during that time; flexible vehicle groups 

participate in charging during low load hours when the charging tariff is lower than the 

user’s expected value, and during peak load hours of the grid, the charging tariff is not 

involved in charging when the charging tariff is higher than the upper limit of the user’s 

expected value. Bi-directional charging and discharging pile users update their respec-

tive charging information, send the adjusted entry strategy for each time period to the 

grid regulation center, and roll over to the next round of the game. 

A genetic algorithm is used to solve the game problem between electric power op-

erators and bidirectional charging and discharging pile users (Figure 4). The discrete 

population of the genetic algorithm is the game tariff strategy, the appropriate coding 

method is selected, the evaluation indexes are evaluated individually with the revenue of 

Figure 3. Workflow diagram of a bi-directional charging and discharging pile.

3.2. Implementation of the Dynamic Cooperative Game Model

According to the relationship between charging duration Tm and docking duration
Ts of EVs, the private EVs integrated into the grid are divided into an elastic load vehicle
group and an inelastic load vehicle group. The charging time of the elastic load group
Tm < Ts and the inelastic load group Tm ≥ Ts.

According to the i time period gaming process, the grid regulation center timely adjusts
the charging and discharging tariffs for each time period through the real-time grid entry
of bi-directional charging and discharging pile users and sends the real-time tariffs for that
time period to the users. After receiving the dynamic tariff information released by the grid,
users are divided into flexible and inelastic vehicle groups according to their travel plans,
and make different charging plans according to their own conditions: inelastic vehicle
groups are equivalent to fixed loads, respond to the dynamic tariff strategy of the grid, and
participate in charging during that time; flexible vehicle groups participate in charging
during low load hours when the charging tariff is lower than the user’s expected value, and
during peak load hours of the grid, the charging tariff is not involved in charging when the
charging tariff is higher than the upper limit of the user’s expected value. Bi-directional
charging and discharging pile users update their respective charging information, send the
adjusted entry strategy for each time period to the grid regulation center, and roll over to
the next round of the game.

A genetic algorithm is used to solve the game problem between electric power op-
erators and bidirectional charging and discharging pile users (Figure 4). The discrete
population of the genetic algorithm is the game tariff strategy, the appropriate coding
method is selected, the evaluation indexes are evaluated individually with the revenue of
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both sides of the game, and the optimized game strategy is obtained by crossover mutation
and elite strategy.

Energies 2023, 16, x FOR PEER REVIEW 10 of 20 
 

 

both sides of the game, and the optimized game strategy is obtained by crossover muta-

tion and elite strategy. 

Charging pile 
releases grid tariff 

information c(i)

Non-flexible 
vehicle fleet 

access to grid 
charging

Peak load 
period

Flexible fleet 
charging

Flexible 
vehicle fleet 

without 
charging

Y

Y

Charging 
pile pricing 

strategy 

User load 
response 
strategy

Charging 
pile pricing 
strategy c(t)

User load 
response 
strategy

  

Charging 
pile pricing 

strategy 
C(T)

User load 
response 
strategy

0
( )U t

1
( )

n
U t

−

0
( )C t

1
( )C t

( )
n

C t

u
C (t)>C ( )?

i
t

C (t)
i

N

N

 

Figure 4. Dynamic cooperative game flow chart. 

4. Simulation of Cooperative Game Control Strategy 

4.1. Optimal Genetic Algorithm under Receding Horizon Control 

In this paper, based on the principle of Receding Horizon Control, an improved op-

timal genetic algorithm is used to solve the orderly grid-connected regulation problem of 

EVs, which is used to solve the optimal control problem with a finite time duration. 

The traditional fixed time-domain optimization produces a control sequence 

{ ( ), ( 1), , ( 1)}u i u i u i N+ + −…  starting from the moment i to the end of the moment 

1i N+ − , but the prediction results under this strategy have disadvantages. If the system 

is perturbed outside the prediction in the interval [ , 1]i i N+ − , the original control se-

quence is no longer applicable at this time, and it is no longer possible to obtain infor-

mation from the objective function at the short interval near the moment 1i N+ −  be-

cause of the short interval. In order to avoid Receding Horizon Control and the problem 

of inaccurate prediction results caused by these drawbacks, Receding Horizon Control is 

introduced. 

Receding Horizon Control (RHC) is a special time-invariant state feedback control 

law, which is a model-based finite-time domain closed-loop optimal control algorithm, 

where the same input can be obtained by taking the same state quantities with a constant 

model and objective function [23]. The RHC algorithm can exclude the influence of dis-

turbances on prediction by rolling prediction, so it can also play a good role in solving the 

mathematical model with less accurate accuracy, and it is widely used in industrial 

production. 

The control process can be expressed by the mathematical equation as: 

Figure 4. Dynamic cooperative game flow chart.

4. Simulation of Cooperative Game Control Strategy
4.1. Optimal Genetic Algorithm under Receding Horizon Control

In this paper, based on the principle of Receding Horizon Control, an improved
optimal genetic algorithm is used to solve the orderly grid-connected regulation problem
of EVs, which is used to solve the optimal control problem with a finite time duration.

The traditional fixed time-domain optimization produces a control sequence {u(i),
u(i + 1), . . . , u(i + N − 1)} starting from the moment i to the end of the moment i + N − 1,
but the prediction results under this strategy have disadvantages. If the system is perturbed
outside the prediction in the interval [i, i + N− 1], the original control sequence is no longer
applicable at this time, and it is no longer possible to obtain information from the objective
function at the short interval near the moment i + N − 1 because of the short interval. In
order to avoid Receding Horizon Control and the problem of inaccurate prediction results
caused by these drawbacks, Receding Horizon Control is introduced.

Receding Horizon Control (RHC) is a special time-invariant state feedback control law,
which is a model-based finite-time domain closed-loop optimal control algorithm, where
the same input can be obtained by taking the same state quantities with a constant model
and objective function [23]. The RHC algorithm can exclude the influence of disturbances on
prediction by rolling prediction, so it can also play a good role in solving the mathematical
model with less accurate accuracy, and it is widely used in industrial production.

The control process can be expressed by the mathematical equation as:

x(i + 1) = f (x(i), u(i))(i = 0, 1, · · · , N − 1) (24)
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x(0) = x0 (25)

y(i) = h(x(i), u(i)) (26)

where x(i) ∈ Rn is the system state quantity constraint, u(i) ∈ Rm is the input quantity
constraint, and y(i) ∈ Rn is the output quantity constraint.

The Receding Horizon Control model predictive optimal control process is shown in
Figure 5.
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(1) Solve the optimal control problem for the interval [i, i + N − 1] based on the current
state xi, taking into account the constraints of both the current moment and the
next moment.

(2) Perform the first step of the prediction to obtain the predicted state quantity xi+1 for
moment i + 1.

(3) Measure the actual control quantity ui+1 at moment i + 1. The predicted state quantity
should be the same as the actual control quantity if the system is not disturbed by
anything other than prediction, i.e., ui+1 = xi+1.

(4) Repeat the above process prediction on the basis of xi+1 to obtain the control quantity
of the interval [i, i + N − 1].

The optimization performance index can be a quadratic optimization function:

minJ(k) =
N

∑
i=1

∥∥y(k + i|k)− ỹ (k + i)
∥∥2

Q (27)

where the k moment is the current moment of the actual control quantity input; y(k + i|k)
denotes the output variable at k + i moments predicted based on the current moment;
ỹ(k + i) denotes the output reference value at k + i moments.

Solve the quadratic optimization performance index to find the optimal control sequence:

∆uM(k) = [∆uT(k + 1|k), ∆uT(k + 2|k), · · · , ∆uT(k + M|k)] (28)

where ∆uT(k + M|k) denotes the column vector of control variables at M moment predict-
ing the future K + M− 1 to K + M moments.

The improved genetic algorithm control model under the RHC principle is shown in
Figure 6.



Energies 2023, 16, 4808 12 of 20

Energies 2023, 16, x FOR PEER REVIEW 12 of 20 
 

 

The improved genetic algorithm control model under the RHC principle is shown in 

Figure 6. 

Load data

SOC date

Tariff 
data

Real-time 
load 

forecasting

Renewable 
energy power 

output

Distributed 
bi-directional 
charging and 
discharging 

piles

Objective 
function

Constraints

Optimization 
model

Rolling 
solution

 

Figure 6. Control model of the genetic algorithm under RHC. 

Under the constraints of the current moment and the next moment of the collabora-

tive scheduling optimization strategy are satisfied, the optimal solution 
EV ( )P k  at mo-

ment k is found using the RHC genetic algorithm based on the load power Load
kP  of the 

system at the current moment, the dynamic tariff data of the cooperative game, and the 

power star
kSOC  of the EVs connected to the charging and discharging piles at the mo-

ment, so that the system achieves the minimum user-side and grid-side objective function 

f under the currently found optimal interaction power of the system. Then let 1t k= + , 

repeat the above process, and keep rolling forward the solution in an hourly cycle to re-

alize the real-time control of the charging and discharging pile interaction power. This 

method can fully take into account the impact of real-time changes in the power system 

on the prediction in the future period and can achieve a better control effect without es-

tablishing an extremely detailed prediction model by eliminating disturbances through 

rolling prediction. 

The flow of the RHC-GA is shown in Figure 7. 

Start

Initializing the 
population

Adaptability 
assessment

Selection

Crossover

mutation

Number of
generations 

reached

End

Y

N

Initialize RHC
K=0

Genetic algorithm 
to obtain the 

optimal solution

EV
( )P k

K=N

K=K+1

Get the final 
real-time 

interactive 
power

 

Figure 7. RHC-GA flow chart. 

Figure 6. Control model of the genetic algorithm under RHC.

Under the constraints of the current moment and the next moment of the collaborative
scheduling optimization strategy are satisfied, the optimal solution PEV(k) at moment k is
found using the RHC genetic algorithm based on the load power Pk

Load of the system at the
current moment, the dynamic tariff data of the cooperative game, and the power SOCk

star of
the EVs connected to the charging and discharging piles at the moment, so that the system
achieves the minimum user-side and grid-side objective function f under the currently
found optimal interaction power of the system. Then let t = k + 1, repeat the above process,
and keep rolling forward the solution in an hourly cycle to realize the real-time control
of the charging and discharging pile interaction power. This method can fully take into
account the impact of real-time changes in the power system on the prediction in the future
period and can achieve a better control effect without establishing an extremely detailed
prediction model by eliminating disturbances through rolling prediction.

The flow of the RHC-GA is shown in Figure 7.
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4.2. Setting of Load Parameters under Tariff Leverage

Through the research and analysis of the EV market situation in 2021, the market
retention rates of several common different models of EVs in China and their various
parameters for charging and discharging in daily use are summarized, as shown in Table 1.

Table 1. Common EV model market share and charging data.

EV Types Battery Capacity/
kW·h

Charging Power (Fast
Charging)/

kW

Charging Power (Slow
Charging)

/kW

Annual Sales
Volume/Unit

Wuling Hongguang MINI 9.3 — 1.5 380,278

Tesla Model 3 55 120 5.5 144,592

Tesla Model Y 77 120 5.5 129,353

BYD QinPLUS 53 84 6 93,582

BYD Han 80 140 6.2 85,787

This experiment is based on the daily load curve of a region in Shandong Province in
2021 during the non-heating period, and considering the randomness of the EV owner’s
travel, the initial charging time t1, the ending charging time t2 and the driving path
D1 of each EV are generated by MCMC prediction. It is set that each EV has the same
battery type, and the user’s initial charge S0 is randomly distributed between 0.2–0.5.
From the perspective of battery protection, the battery itself is set with a safe charging
and discharging threshold. Combined with the bi-directional charging and discharging
pile user personalized perspective, assuming that the user unified expected charge and
discharge charge is set to SOCi.max = 0.9, SOCi.min = 0.2, the specific EV parameters are
set as shown in Table 2.

Table 2. EV parameters.

Parameters Numerical Value Parameters Numerical Value

Power Battery
Capacity E/kW·h 53 Discharge Threshold

SOCdown
0.2

Maximum charging
power of charging
pile PEV.max/kW

6 Charging Threshold
SOCup

0.9

Maximum discharge
power of charging
pile PEV.min/kW

−6
Power consumption

per kilometer
Ed/kW·h

0.2

Time interval ∆t/h 1

Table 3 shows the base load of electricity consumption in a residential district in
one day, and its peak value is 970.3 kW. Based on the method described in this section,
the orderly charging and discharging of EVs in the district is optimally regulated, and the
maximum capacity of the distribution network in the residential district is set to 1000 kW.
Each household has at least one charging post, and there is no queuing for charging. There
are a total of 200 charging piles, and EVs are charged in slow-charging mode.

Table 3. Daily base load of a residential community.

Time Load/kW Time Load/kW

1:00 270.696 13:00 670.162

2:00 251.722 14:00 574.804
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Table 3. Cont.

Time Load/kW Time Load/kW

3:00 232.764 15:00 552.65

4:00 216.974 16:00 648.272

5:00 239.392 17:00 893.498

6:00 350.924 18:00 938.198

7:00 481.572 19:00 951.054

8:00 497.614 20:00 970.294

9:00 497.742 21:00 894.026

10:00 536.068 22:00 731.82

11:00 612.606 23:00 642.838

12:00 755.974 0:00 461.534

4.3. Simulation Results Analysis under Different Optimal Scheduling Control Strategies

Considering the cooperative game, the real-time tariff is obtained based on the update
of the cooperative game model with equal weight index assignment with the objective of
maximizing the interests of the user side and the grid side, as shown in Figures 8 and 9.
Scenario 1 shows the game tariff after 50 private EVs participate in the regulation system
using equal weight index assignment, and Scenario 2 shows the tariff after 100 private EVs
participate in the regulation under equal weight index assignment.
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As can be seen from Figures 8 and 9, with the increase in the number of EV users, it can
be seen that the dynamic tariff response speed is more sensitive and the tariff fluctuations
are more stable, which can avoid the damage to battery life caused by frequent changes in
charging and discharging status due to tariff changes for private EVs. The dynamic tariff
change speed of 50 samples has a certain lag compared to 100 EV samples. During the load
valley period of 0:00–7:00, the tariff shows a low trend, guiding EV users to participate in
the regulation system for charging. When the load gradually rises to the first peak of a
typical day, at 8:00–11:00, the dynamic tariff as a whole shows a rising trend in order to
avoid users’ connection to the grid to increase the burden of the power system and cause
further growth of the load curve, reducing users’ charging behavior through the tariff lever
and making users increase their EV discharging behavior to gain revenue. During the peak
load hours of 15:00–22:00, with the increase in the number of EV users, the change in the
real-time dynamic tariff gradually becomes smaller, and the tariff is lower and tends to
be stable, which can guide vehicle owners to concentrate on discharging and achieve the
peak-shaving effect.

With the real-time update of the dynamic tariff, the users connected to the bi-directional
charging and discharging piles are awakened and connected to the grid for charging and
discharging behavior. Figure 10 shows the wake-up problem of tariff leverage on the users
connected to the grid in the case of real-time updated dynamic tariff.
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As can be seen from Figure 10, during the peak daily base load hours of 15:00–21:00,
the number of users waking up is low, with only about 20% of users connected to charging
and discharging piles performing charging and discharging behaviors to participate in
system regulation. during the hours of 18:00–20:00, most users end their trips for the day
and connect their private EVs to bi-directional charging and discharging piles, but subject
to the regulation principle of tariff leverage. Most private EVs (flexible groups of vehicles)
whose power is in the safe range will enter the dormant state after connection and wait
for the price change to the expected price set by the users before changing the charging
and discharging state according to the regulation strategy. Some vehicles with insufficient
power or in need of emergency use (non-flexible vehicles) are connected to the grid for
charging immediately after connecting to the bi-directional charging and discharging piles
to ensure the user’s experience and comfort. The highest wake-up rate in this period is up
to 68.9%.

In order to simplify the sample model, three optimal scheduling control strategies
under the traditional fixed tariff, peak-valley leveling time tariff, and the cooperative game
dynamic tariff proposed in this paper are simulated to study the load profile of bidirectional
charging and discharging pile users participating in orderly charging and discharging,
taking 50 EVs as an example, as described below:
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Control strategy 1: Study the orderly charging and discharging of EVs under a tradi-
tional fixed tariff. The control strategy does not consider the impact of tariff changes on
users’ participation in grid connections, and the access and charging behavior are carried
out spontaneously by users, without the guidance of pricing regulation on the grid side.

Control strategy 2: To study the orderly charging and discharging of EVs under the
current peak-to-valley tariff in China. This control strategy considers the incentive effect
of tariff changes on users’ participation in grid connections and takes advantage of the
consumer mentality of users. During idle hours, when users are not in a hurry to use their
cars, private EVs are not immediately connected to the grid for charging behavior after
accessing the charging piles, use peak and valley tariffs to sell electricity during periods of
high tariff rates, and then change the access state for charging during periods of low rates.

Control strategy 3: Study the charging and discharging of EVs under the dynamic
tariff generated by the cooperative game model. This control strategy considers the impact
of real-time updated dynamic tariff on users’ participation in grid connection and uses the
flexible changing tariff as a tariff lever to wake up users who are connected to the system
at that moment but do not perform charging and discharging behavior to participate in
system regulation.

The analysis shows that tariff leverage can wake up users, and the sample size of
users also affects the simulated load curve. Figures 11–13 show the effect of the different
numbers of private EVs connected to the distribution network via bi-directional charging
and discharging piles for power interaction on the optimization effect of the distributed
energy storage cooperative scheduling control strategy under the three control strategies.
Setting the number of users as 50 and 100, the results are as follows:
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The simulation results show that the number of users participating in the regulation
system has an important impact on the results of the control strategy, regardless of whether
it is a traditional fixed tariff, a time-of-use tariff, or the dynamic tariff set in this paper.
Therefore, the more obvious the effects of peak and valley reduction on the grid.

By comparing the optimization results under the three control strategies through the
genetic algorithm under RHC, the load curve is obtained as shown in Figure 14.
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Compared with the traditional fixed tariff in Strategy 1, Strategy 2 adopts a time-of-use
tariff, which can increase the motivation of vehicle owners to participate in the distribution
network through bi-directional charging and discharging piles by lowering the tariff in
the valley and increasing the tariff in the peak period, and this strategy has a certain
effect of valley filling. However, strategy 2 will lead to a “new peak” phenomenon in
the second peak period after 18:00–22:00 on a typical day. This is because the time-of-use
tariff is a static tariff based on the historical load situation, which cannot be updated in
time according to the change of the previous day’s load and the fluctuation of private EVs
connecting to the grid; therefore, there will be the phenomenon of users connecting to the
grid in the valley tariff period after the peak period, which leads to a higher load in the
valley period and a “new peak”.

Considering the impact of tariffs on users’ demand-side responses, further analysis
is performed on the basis of time-of-use tariffs. Control strategy 3 adopts the real-time
dynamic tariff proposed in this paper, using the principle of tariff leverage to further
enhance the enthusiasm of charging and discharging pile users to participate in distribution
network interaction, and the effect of valley filling is better than control strategy 2 during
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the low electricity consumption period of 23:00–7:00. Within 18:00–21:00, a large number of
EV owners participate in the interactive system to discharge because the difference between
the purchase price and the sale price is the largest during this period, so the peak-shaving
effect is more obvious. Compared with the existing time-of-use tariff strategies, such as the
control strategy of time-of-use tariff proposed by Guo et al., [10], the real-time update of
dynamic tariff is more flexible and can better reflect the changes of grid load in the current
period. It can more reasonably guide the charging and discharging behavior of users, so
that they can discharge moderately during peak period and charge and store energy during
valley period, thus reducing the peak load, increasing the load during valley period, and
smoothing the load curve.

The sources of power acquired by the load are mainly grid and renewable energy
sources. The load acquires power from the main grid with the billing method of the tariff
corresponding to the three control strategies, and the cost of power exchange by the load
on the renewable energy side depends on the generation cost of wind power PV. The
user-side economics objective function f1 reflects the overall user-side spending, and f1 is
expressed as:

f1 = minCsum =
96

∑
t=1

(
Pt

WT
CWT + Pt

PV
CPV + Ct

EV
)

(29)

Ct
EV = αPt

dis
Ct

1 − βPt
chaCt

2 (30)

where C1 is the tariff issued by the grid, and C2 is the price of electricity sold by the vehicle
owner to the grid.

To model the economics of EV orderly grid-connected systems based on user-side benefits:
Without the renewable energy consumption case:

Pt
Load = Pt

WT + Pt
PV + Pt

EV

Pt
EV = αPt

dis
− βPt

cha

Pt
WT = 0

Pt
PV = 0

(31)

Full utilization of renewable energy:

Pt
Load = Pt

WT + Pt
PV + Pt

EV

Pt
EV = αPt

dis
− βPt

cha

Pmin
WT ≤ Pt

WT ≤ Pmax
WT

Pmin
PV ≤ Pt

PV ≤ Pmax
pv

(32)

The economics of the control strategy are calculated according to Equations (29)–(32).
The calculated benefits of bi-directional charging and discharging piles under different
control strategies are shown in Table 4.

Table 4. Total revenue of charging and discharging under different strategies.

Control Strategy 50 Vehicles 100 Vehicles

Gain under strategy 1/yuan — —
Gain under strategy 2/yuan 1003.7 2108.5
Gain under strategy 3/yuan 1060.7 2163.7

The total revenue of bi-directional charging and discharging piles under dynamic
update tariff is 1060.7 yuan. This is mainly due to the leverage of the tariff, where the load
is low between 23:00 and 5:00 a.m. When the tariff is lower and users choose to charge
during this time, the cost of electricity purchase is lower, while users choose to discharge
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during peak load hours to earn revenue. For example, Lai et al. proposed a dynamic
pricing strategy with competitive effects, and existing studies mainly consider charging
behavior regulation and less simultaneously consider the impact of discharge schedules on
user benefits [18]. The third control strategy considers that EV users can earn revenue by
discharging to the grid during idle periods, which ensures user benefits. Compared with
the first two control strategies, this control strategy takes special consideration to ensure
the interests of users and bring the best economic benefits. The overall revenue of charging
and discharging piles can be increased by up to 6.3% under dynamic tariffs.

5. Conclusions

For the negative impact of the large-scale disorderly grid connection of EVs on the
stable operation of the power grid, a cooperative game cooperative control strategy for
EVs based on tariff leverage is proposed. A cooperative game model with electric power
operators and users as participants is established, a dynamic tariff strategy with real-time
updates is obtained, the optimal interaction power under different control strategies is
obtained using an RHC genetic algorithm, and the corresponding economic benefits are
calculated. The main conclusions are as follows:

(1) A dynamic cooperative game cooperative control strategy for private EVs based on
in-home bi-directional charging and discharging piles is proposed, which improves
the weight of users in the game, determines the real-time tariff with optimal returns
for electric power operators and charging and discharging pile users, and guides the
charging and discharging behavior of users according to the dynamic tariff.

(2) Compared with the two control strategies of fixed tariff and time-of-use tariff, the
control strategy of cooperative game has a smoother load curve, better achieves
peak shaving and valley filling, and the total revenue of bi-directional charging and
discharging pile users is the best, which can be improved by up to 6.3%.

(3) Compared with the time-of-use tariff, the wake-up rate of users is about 20% during
the load peak period under dynamic tariff; the highest wake-up rate is as high as
68.9% during load valley period, which shows that dynamic tariff enhances the
enthusiasm of charging and discharging pile users to participate in distribution
network interaction.

The cooperative game control strategy of EVs based on tariff leverage proposed in
this paper not only solves the adverse impact of large-scale grid connection of EVs on the
distribution network, avoids the load “new peak” problem caused by time-of-use tariff,
reduces the operation cost of electric power operators, but also increases the revenue of
bi-directional charging and discharging pile users, ensures the users’ satisfaction, realizing
a win–win situation between power marketers and users.
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