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Abstract: Heavy-duty diesel engines operating in plateau regions experience deteriorated combustion.
However, the lack of up-to-date information on the spray-combustion process limits the fundamental
understanding of the role of altitude. In this work, the in-cylinder thermodynamic conditions of a real
diesel engine operating under different altitudes were reproduced in a constant-volume combustion
chamber (CVCC). The liquid spray, ignition, and combustion processes were visualized in detail using
different optical diagnostics. Apart from predictable results, some interesting new findings were
obtained to improve the understanding of free spray-combustion processes with different altitudes.
The spatial distributions of ignition kernels provided direct evidence of higher peak pressure rise
rates for high-altitude diesel engines. The percent of stoichiometric air was calculated to confirm that
the net effect of altitude was an increase in the amount of air-entrained upstream of the lifted flame;
therefore, the soot levels deduced from flame images were inconsistent with those from real engines,
revealing that accelerating the soot oxidation process could effectively reduce engine soot emissions
in plateau regions. Finally, a novel schematic diagram of the spray flame structure was proposed to
phenomenologically describe the role of altitude in influencing the spray-combustion process of a
free jet.

Keywords: altitude; heavy-duty diesel engine; visualization experiment; ignition; combustion; lift-off
length; soot; flame structure

1. Introduction

An inescapable fact that the internal combustion engine (ICE) community has needed
to take seriously in recent years is that many believe the death of the ICE is desirable and
imminent [1]. To this end, many practitioners have provided rational evidence to prove
the potential for future progress and the short-term irreplaceability of ICEs [1–3]. One
application scenario in which ICEs are indispensable is plateau regions. Indeed, there are
large populations and industrial operations located in high-altitude regions all over the
world. Serrano et al. [4] studied the general topography of Europe and concluded that
19.1% of the European population, that is, almost 100 million people, live in plateau areas
with altitudes over 1000 m. Giraldo and Huertas [5] focused on Latin America, where most
large cities are located over altitudes of 2000 m, and the traffic densities in these cities are
very high. Liu et al. [6] pointed out that nearly 26% of China’s territory is located over
1000 m above sea level, where more than 15 million vehicles are operating. Therefore, it is
a global issue to investigate high-altitude engine operation.
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Diesel engines provide a primary solution for economic activities and road trans-
portation, especially in plateau regions [7]. The unavoidable reduction in atmospheric
pressure with increasing altitude reduces the density of the air inhaled into the cylinder, and
thus, when operating in plateau regions, diesel engines suffer from dramatic performance
degradation in terms of power, economy, emissions, and durability [8–14]. In addition,
increasingly strict environmental regulations, which include altitude and cold tests, place
more stringent requirements on diesel engines operating in high-altitude regions [7]. The
aforementioned issues have attracted an unprecedented level of attention from the diesel
engine community over the past few decades. As a way to cope with these issues, many
researchers have concentrated diverse efforts on understanding the influence of altitude on
the spray-combustion process in diesel engines.

Numerous investigations have been performed using dedicated altitude simulation
systems, which provide engine intake and exhaust pressure to mimic high-altitude atmo-
spheric conditions. In early research, Shen et al. [15] studied the combustion characteristics
of both naturally aspirated and turbocharged diesel engines at three simulated altitudes,
and they found that with the increase in the altitude, the ignition delay, the early period rate
of the heat release, and the rate of the pressure rise increased, while the indicated thermal
efficiency and combustion duration decreased. Moreover, Szedlmayer et al. [16] analyzed
the combustion of a turbocharged diesel engine in detail under the altitude conditions of 0,
1524, 3048, and 4572 m and proposed several suggestions for improving the performances
of high-altitude diesel engines. In a novel study, Agudelo et al. [17] analyzed the energy and
exergy of a diesel engine operated under the altitude conditions of 500, 1500, and 2400 m,
using the first and second laws of thermodynamics. They found that the heat rejected to
the gases and the exergy destruction increased, and the in-cylinder exergy decreased with
increasing altitude. Benjumea et al. [18] conducted comparative research on the combustion
characteristics of a diesel engine fueled with diesel and palm oil biodiesel under the altitude
conditions of 500 and 2400 m, and they found that the use of biodiesel fuel led to better
engine performances under higher altitude conditions. Recently, Jiao et al. [19] continued
to assess the potential of using oxygenated fuel to overcome the altitude effect based on the
combustion characteristics of a diesel engine fueled with blended alternative fuels under
altitude conditions up to 5500 m.

Despite being convenient and cost-saving, dedicated altitude simulation systems are
based on specific principles and settings, leading to differences in the boundary conditions
used in different studies. This might explain the discrepancies between laboratory and
real-world measurements [20]. Hence, some investigations have been conducted on test
benches in actual plateau regions. Wang et al. [21] studied the combustion behavior of an
idling heavy-duty diesel engine under various altitude conditions of 550 to 4500 m. Their
results demonstrated that although the combustion duration was shorter due to increases
in the in-cylinder average temperature and exhaust temperature with increasing altitude,
the timings of the end of combustion under various altitude conditions were only slightly
different, and in addition, the peak heat release increased under the altitude conditions
of less than 3300 m while it decreased at 4500 m. Subsequent real-world experimental
investigations, such as those conducted by Wang et al. [20] and Yu et al. [22], have improved
our understanding of the effects of biodiesel fuel on diesel engine performances in high-
altitude regions.

Another group of investigations focused on numerical simulations due to their ability
to obtain temporal and spatial information, which is difficult or impossible to obtain in
experiments. Simulations also avoid the challenge of mimicking in-engine situations under
different altitude conditions in experiments. For instance, Zhou et al. [23] obtained the
distributions of the mixture and temperature fields separately through three-dimensional
computational fluid dynamics (CFD) simulations to analyze the in-cylinder combustion
process under different altitude conditions. A series of studies conducted by Zhu et al. [24]
optimized the fuel supply parameters for a diesel engine operating under 4500-m altitude
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conditions using a combination of a genetic algorithm model and a zero-dimensional
predictable combustion model based on a neural network.

It should be pointed out that investigations dealing with bench tests, either in laborato-
ries at fixed locations or in actual plateau regions, have been generally conducted on engine
dynamometers, and they essentially analyzed the effects of altitude on the in-cylinder pres-
sure history and the heat release process, giving no insights into in-cylinder phenomena,
such as the distributions of the diesel spray and flame. In addition, because the boundary
conditions of diesel engines change with different altitudes, more quantitative and highly
vetted datasets are needed to improve the predictive ability of combustion models when
applied to different altitude scenarios. Overall, the aforementioned studies have left room
for optical investigations of the spray-combustion process of diesel engines operating un-
der different altitude conditions. Furthermore, regarding the engine combustion network
(ECN) envisaged in recent years, a contemporary approach for improving the predictability
of simulation models is to establish reliable libraries of high-quality optical measurements
obtained using high-fidelity optical diagnostics under well-defined boundary conditions
applicable to engine combustion [25,26]. Unfortunately, pertinent, elaborate, and detailed
optical visualizations of fundamental diesel spray combustion under different altitude
conditions have been absent until now, and thus, there is no guidance for the improvement
of high-altitude combustion based on the current visualization results.

Moreover, it is well recognized that visualization experiments are difficult to perform
on realistic diesel engines because of the cycle-by-cycle variations and complex engine
geometry. Thus, out-of-engine experiments, as an alternative, have been adopted to provide
detailed information about spray combustion to understand engine processes [2,27]. For
this purpose, a constant volume combustion chamber (CVCC), as one type of dedicated op-
tically accessible system, is more appropriate due to good repeatability and well-controlled
boundary conditions. With the aid of this core device, the separate stages of the diesel
spray-combustion process under engine-like conditions, such as atomization, vaporization,
fuel–air mixing, ignition, and combustion, have been systematically investigated in past
decades. One excellent and condensed investigation was conducted by Dec [28], who
presented a “conceptual model” to depict the combustion process under typical modern
diesel engine conditions. Pickett and Siebers [29] and Tree and Svensson [30] also made
concerted efforts to establish basic conceptual models of soot formation and oxidation in
modern diesel engines.

Previous investigations that examined the effects of ambient conditions can provide
some useful theories for clarifying the role of altitude in influencing the characteristics
of diesel spray combustion, and some of the reported observations and trends are quite
notable. For instance, Naber and Seibers [31] examined the effect of ambient density on
the penetration and dispersion of diesel spray using large nozzles with diameters varying
from 0.19 to 0.30 mm in 1996. In 2001, Higgins and Siebers [32,33] systematically studied
the flame lift-off length under a wide range of conditions, including nozzle diameters from
0.1 to 0.363 mm. Based on the same database, in 2005, Pickett et al. [34] discussed the
relationship between the ignition processes and the lift-off length. Earlier, in 2005, Pickett
and Siebers [35] also investigated the effect of the nozzle diameter, ranging from 0.045 to
0.18 mm, on the diesel flame structure. In 2010, Sepert et al. [36] applied two injectors with
diameters of 0.08 and 0.13 mm to study the air-entrainment process of diesel spray with
variable ambient densities. In 2017, experiments using a 0.12-mm nozzle under different
ambient and injection conditions were conducted by Liu et al. [37] to study the ignition
characteristics during the start-up process. Nishida et al. [38] quantitatively analyzed the
reason that the mixture formation and combustion processes could be facilitated using a
nozzle with an orifice diameter of as small as 0.08 mm when the injection pressure was up
to 300 MPa and ambient densities varied from 11 to 20 kg/m3.

In summary, most investigations have mainly focused on small nozzles (D < 0.2 mm)
since the beginning of this century. The previous visualization investigations on large
nozzles (D > 0.2 mm) were published more than two decades ago, and thus, the optical
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equipment and technologies were not as good as those available today. Therefore, recent re-
search on the use of large nozzle diameters, which can be encountered in heavy-duty diesel
engines, is scarce. Only a few investigations have considered this scenario. Payri et al. [39]
focused on two heavy-duty diesel engine nozzles with diameters of 0.194 and 0.228 mm
using modern techniques and equipment in 2016 in order to improve the understanding
of spray evaporation and the prediction accuracy of CFD models. However, to the best
of the authors’ knowledge, comprehensive visualizations of spray-combustion evolution
in large-nozzle heavy-duty diesel engines, as well as engines operating under different
altitude conditions, are still lacking.

Based on the aforementioned facts, this investigation aimed to provide elaborate
information on the in-cylinder spray-combustion process of heavy-duty diesel engines
operating under different altitude conditions by means of standard optical techniques. A
CVCC was used to mimic the in-cylinder thermodynamic conditions prior to injection
in a real heavy-duty diesel engine with a 0.32-mm nozzle operating under different alti-
tude conditions. Three standard optical techniques, including diffused back-illumination
imaging, broadband chemiluminescence imaging, and flame natural luminosity imaging,
were employed to visualize the liquid spray, ignition, and flame development processes,
respectively. This paper presents the first part of this investigation based on the assumption
that the diesel jet is fully developed in an unlimited domain, and a distinct narrative
about the parameters that characterize the free spray combustion under different altitude
conditions is constructed. The results obtained are expected to clarify the basic physics of
free spray-combustion evolution with altitude, providing a theoretical foundation for the
control and optimization of combustion for high-altitude diesel engines.

2. Experimental Apparatus and Procedure
2.1. Optical Chamber and Injection System

All of the visualization experiments in this investigation were performed in a CVCC.
A schematic diagram of the system is shown in Figure 1. By means of the pre-combustion
technique, the CVCC was able to mimic the target conditions at pressures and temperatures
representative of those prior to injection in a heavy-duty diesel engine operated under
different altitude conditions. The major structure of the CVCC was a symmetric cube with
a length of 380 mm, and inside the CVCC, there was a closed cubical combustion chamber
with a length of 136 mm. This means that the distance from the injector tip to the end
wall of the chamber was 136 mm, which satisfied the requirement for fully developed
spray-combustion studies of a free jet. In addition, the CVCC had six main ports for optical
access or injector installation. Two quartz windows with a maximum optical diameter
of 130 mm and a thickness of 50 mm were installed in line with the light beam to form
line-of-sight optical access for visualization. For the other four ports that did not require
optical access, metal blanks were installed.

A Bosch model CRIN2 fuel injector with a single sac-type nozzle located on the injector
axis was mounted vertically at the center of one main metal port so that the diesel spray
flame could be guided to the center of the combustion chamber. A Bosch CP3.3 fuel pump
was used to pressurize the injection system, and the fuel pressure was monitored using a
transducer installed on the Bosch HFRN-16 common rail. The injection duration was set to
2.0 ms in all of the tests in order to achieve a quasi-steady state of spray and flame.

2.2. Pre-Combustion Technique

This section provides a description of the pre-combustion technique, and more details
can be found in previous publications [27,40]. Briefly, this technique was employed to
generate a high-temperature, high-pressure environment in the combustion chamber by
conducting premixed combustion of a configurable mixture charge. In order to ensure
the precise control of the charging pressure and record the in-chamber pressure of the
CVCC, a Kistler 6052C pressure sensor (Winterthur, Switzerland), a Kistler 5018 charge
amplifier, and an NI USB-6251M high-speed data sample card were combined to form an
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independent pressure acquisition system. Then, the following procedure was executed
to simulate engine-like conditions. Initially, three gases, acetylene (C2H2), oxygen (O2),
and nitrogen (N2), were input into the CVCC sequentially via a manual valve (Figure 1)
to achieve the precalculated partial pressures, forming a combustible gas mixture with a
specified density. The density corresponded to the in-cylinder ambient density of the diesel
engine operated under the simulated altitude conditions. Then, this mixture was ignited
with a spark plug (Figure 1). By means of the pressure acquisition system, the in-chamber
pressure profile from premixed combustion to spray combustion was recorded in Figure 2.
When the pressure had decreased to the pre-calculated value during the cooldown stage,
the diesel injector was triggered, and the fuel injection, autoignition, and combustion
processes ensued, which caused the pressure to increase again (Figure 2). Moreover, the
high-speed color camera was triggered simultaneously with the fuel injection to record the
spray and flame images.
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Figure 2. Pressure profile from premixed combustion to spray combustion.

Two experimental environments were constructed using the pre-combustion technique
to conduct the evaporation and combustion tests in this investigation. The global reaction
equation for the pre-combustion process is as follows:

aC2H2 + bO2 + cN2 → dCO2 + eH2O + fO2 + gN2 (1)

The oxygen concentration could be controlled by adjusting the mixing ratio of the three
gases in the reactant mixture. The coefficients of the equation for the evaporation and com-
bustion tests are listed in Table 1. In the evaporation tests, the oxygen concentration after
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pre-combustion was manipulated to be 0% to prevent the fuel from the ignition, enabling
visualization of the evaporating spray in the absence of combustion. In the combustion
tests, the oxygen concentration was set to 21%, reproducing typical engine operation with-
out exhaust gas recirculation (EGR), so the subsequently injected fuel autoignited and
combusted rather than merely atomizing and evaporating. In addition, the concentration of
C2H2 was always set to 4% in order to avoid misfiring and knocking during the premixed
combustion. The coefficients in Equation (1) were also used in the calculation of the partial
pressures of the three charge gases.

Table 1. Coefficients of pre-combustion reaction equation under different experimental tests.

Test Type O2 (%)
Coefficients

a b c d e f g

Evaporation test 0.0 4.0 10.0 86.0 8.0 4.0 0.0 86.0
Combustion test 21.0 4.0 30.6 65.4 8.0 4.0 20.6 65.4

2.3. Optical Techniques and Processing Methods

Three standard optical techniques were employed to visualize the liquid spray, ignition,
and combustion flame separately. The camera settings for the three techniques are listed
in Table 2. The corresponding optical arrangements and image processing methods are
described in detail below.

Table 2. Details of the optical setup for the employed techniques.

Technique Diffused Back-Illumination
Imaging

Broadband Chemiluminescence
Imaging

Flame Natural Luminosity
Imaging

Camera PCO Dimax S1 high-speed color camera (PCO Imaging, Kelheim, Germany)
Lens Tokina 100 mm (f/2.8) (Tokina, Tokyo, Japan)

Light source LED None None
Filter None 600 nm low pass ND8

Exposure time (µs) 20 54 4
Frame rate (fps) 16,000

Resolution 760 × 320
Scale (mm/pixel) 0.18

2.3.1. Visualization of Liquid Spray Penetration

Diffused back-illumination imaging (DBI) can be used to recognize the liquid spray
phase from the silhouette obtained by the obstruction of a beam of diffused light by
the jet [41]. Because it is less sensitive to the experimental setup, such as the intensity
and position of the illumination source, DBI is recommended by the ECN as the standard
technique for liquid boundary detection of a vaporizing spray [42]. The optical arrangement
for DBI employed in this investigation is illustrated in Figure 3. A 40-W high-power light-
emitting diode (LED) light was used as the illumination source. The light passed through a
piece of frosted glass to turn it into a diffused bundle of rays, which then went through
the CVCC and were directly collected by a high-speed color camera. Finally, spray images
with a homogenized background were acquired.
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Figure 4 presents the processing sequence of the acquired DBI images, and the corre-
sponding steps are described below:

• Step 1: Background subtraction. In order to eliminate environmental disturbances in
subsequent spray images, the background image, which was regarded as the frame
right before the fuel injection, was subtracted arithmetically from the raw images;

• Step 2: Liquid boundary detection. After the background subtraction, a threshold was
carefully selected for image binarization to optimally determine the boundary of the
liquid spray. This means that only the pixels connected to the center of mass of the
spray were conserved while avoiding underestimation of the liquid boundary;

• Step 3: Contour analysis. Once the liquid boundary was determined, several interest-
ing macroscopic parameters, including the liquid phase penetration and liquid length,
were calculated to characterize the liquid spray process. The liquid phase penetration
is defined as the distance from the injector tip to the most downstream of the detected
boundary. During the quasi-steady period, the average of the liquid phase penetration
is referred to as the liquid length.
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image; (c) Binary image; (d) Determined boundary.

2.3.2. Visualization of High-Temperature Ignition Process

Previous studies [43–45] confirmed that diesel ignition is strictly linked with chemilu-
minescence emissions during combustion. Because of this, broadband chemiluminescence
imaging, introduced by Lillo et al. [44], was proven to be feasible for directly measuring the
timing and location of spray ignition due to the ability to detect a large range of chemilumi-
nescent species that appear at the onset of high-temperature ignition. Figure 5 illustrates
the optical arrangement. A 600-nm low-pass filter was used to reject the higher wavelength
thermal emissions from the reaction species and subsequent soot incandescence while
being allowed the collection of other radicals (e.g., CH* and C2*).
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Figure 5. Optical arrangement for broadband chemiluminescence imaging.

For the acquired ignition images, a standard processing methodology was developed
in related studies [27,43,44]. Initially, a region of interest near the expected lift-off length
(or far from the soot luminosity) should be virtually drawn. Then, the maximum intensity
calculated in this area can be plotted versus time (Figure 6). The intensity increases by
several orders of magnitude from the weak chemiluminescence of a cool flame to an intense
glow, and the latter stabilizes at a certain level, which is defined as the high-temperature
chemiluminescence level. Following the recommendation of the ECN, the ignition threshold
was fixed at 50% of the magnitude of the high-temperature chemiluminescence level. The
moment when the chemiluminescence exceeded the ignition threshold was defined as the
moment of ignition, and the duration from the start of injection to this moment is defined
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as the ignition delay. The ignition distance is defined as the axial distance from the injector
tip to the location where the high-temperature chemiluminescence emerged.
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2.3.3. Visualization of Combustion Flame Propagation

Spectroscopic studies associated with hydrocarbon flames have confirmed that the
natural luminosity of a flame during combustion mainly includes the chemiluminescence of
intermediate species radicals and the incandescence of soot, and the latter is several orders
of magnitude stronger than the former [34,46,47]. Hence, it is accepted that the natural
flame luminosity can not only directly reflect the geometric shape of the combustion flame
but also the soot formation information to some extent. Therefore, flame natural luminosity
imaging has been widely used in recent spray-combustion studies due to its simplicity
and explicitness [40,48,49]. The optical arrangement was similar to that for DBI (Figure 3),
except that an ND8 filter was used in place of a low-pass filter to reduce the brightness of
the flame to 1/8 of its original value in order to avoid camera sensor saturation.

The flame images were processed in a similar way to the DBI images, and choosing an
appropriate threshold was also key for flame boundary detection. Based on the identified
contour, a number of parameters can be used to characterize the flame geometry and soot
formation characteristics mentioned above. The parameters relevant to this investigation
are as follows:

• Flame lift-off length: As an important controlling parameter in the fuel–air mixing
prior to the combustion region, the flame lift-off length is defined as the distance from
the injector tip to the most upstream location of the flame contour;

• Flame area: The flame area was calculated by multiplying the pixel area by the number
of pixels within the flame boundary to reflect the spatial distribution of the flame.

• Spatially integrated natural luminosity (SINL): By summing up the intensity values of
all the pixels inside the flame boundary of each flame image, the SINL is obtained to
represent the instantaneous intensity of the natural luminosity of the flame;

• Time-integrated natural luminosity (TINL): The TINL is calculated by integrating the
SINL with time to quantify the natural luminosity over the entire combustion duration.

2.4. Experimental Conditions

The detailed experimental conditions are listed in Table 3, which were determined
based on a real heavy-duty intercooled–turbocharged diesel engine with a compression
ratio of 14.25. By means of the pre-combustion technique described in Section 2.2, the
in-cylinder thermodynamic conditions of a prototype engine at the start of fuel injection
when operating under the altitude conditions of 0, 3000, and 4500 m were reproduced in the
CVCC. Both the ambient pressure and ambient temperature are influenced by the altitude.
However, environmental pressure was previously confirmed to be the main factor [50].
Moreover, the intake temperature after the inter-cooler was maintained at 353 K, regardless
of the altitude, based on the prototype engine. Consequently, it is reasonable to characterize
the simulated altitude solely in terms of the ambient density. The nozzle diameter of the
fuel injector was 0.32 mm, and the injection pressure was set to 90 MPa to mimic realistic
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scenarios of the prototype engine. In addition, each test condition was repeated at least five
times to ensure experimental reliability and repeatability.

Table 3. Test conditions.

Parameters Value

Fuel #0 diesel fuel
Fuel density (kg/m3) 835

Injector type Single-hole
Nozzle diameter (mm) 0.32

Injection pressure (Mpa) 90
Injection duration (ms) 2.0

Ambient temperature (K) 800
Ambient pressure (Mpa) 3.69 3.05 2.61

Ambient density (kg/m3) 16.07 13.31 11.37
Simulated altitude (m) 0 3000 4500

3. Results and Discussion
3.1. Liquid Spray Characteristics
3.1.1. Liquid Spray Morphology

Figure 7 presents the evolution of the liquid spray under the altitude conditions of 0,
3000, and 4500 m. Intuitively, the evolution for all of the altitudes should exhibit typical
diesel spray behavior under engine-like thermodynamic conditions [51]. Initially, the liquid
fuel penetrated quickly, and the concentration of the liquid phase was large, mainly due to
the restricted atomization. Then, as it penetrated further, the fuel evaporated quickly due
to the continuous breakup of droplets and entrainment of hot ambient gas, and thus, the
concentration gradient of the liquid phase at the liquid spray tip became more progressive.
Eventually, the liquid fuel evaporated completely, so the liquid spray stopped penetrating
further beyond a certain distance downstream even though the fuel injection continued,
indicating that the liquid spray had fully developed in the CVCC.

Additionally, it is important to note, in particular, that the atomization and evap-
oration processes evolved gradually, and there was no distinct boundary between the
liquid and vapor phases, which is consistent with previous observations [52,53]. Thus, as
was described in Section 2.3.1, a threshold should be carefully selected to determine the
boundary of the liquid spray, and only then could the liquid phase penetration and the
liquid length be accurately calculated as macroscopic parameters for quantifying the liquid
spray morphology.

3.1.2. Liquid-Phase Penetration and Liquid Length

A plot of the liquid-phase penetration versus time under the altitude conditions of 0,
3000, and 4500 m is shown in Figure 8. The error bars denote the standard deviation (also
in the following figures). In the initial development period, the liquid spray penetrated
almost linearly, and the curves for all of the altitudes virtually overlapped, which may have
been mainly because, during this period, the predominant injection momentum remained
unchanged due to the identical injection pressure, regardless of the altitude. As time
proceeded, a point was reached where the curve broke over, and thereafter, the spray tip
fluctuated around a fixed axial location, meaning that the liquid spray development had
shifted to a quasi-steady period. During this stage, it is clear that the ambient gas resistance,
instead of the injection momentum, played a dominant role in the spray penetration, which
was totally different from the initial development period.

In other words, the altitude significantly influences spray penetration in the quasi-
steady period. For this reason, it is necessary to compare the liquid length under different
altitude conditions, as shown in Figure 9. The liquid lengths were calculated to be 42.8, 50.9,
and 57.4 mm for the altitudes of 0, 3000, and 4500 m separately. This positive correlation
with altitude was expected because the lower ambient density induced by the higher
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altitude significantly slowed the vaporization rate of the liquid fuel by reducing both the
droplet breakup rate and the amount of air entrained into the liquid spray [54].
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It should be noted that the variation in altitude was characterized by the change in the
ambient density in this investigation. Although the available literature has reported on the
effect of the ambient density on liquid spray characteristics [51,54,55], the results described
above are essential because they confirm the reliability of the DBI method employed in
this investigation and supply robust data on the liquid length under different altitude
conditions for deeper analysis in the following sections.

3.2. Ignition Characteristics
3.2.1. Ignition Morphology

The time sequences of the broadband chemiluminescence images recording the high-
temperature ignition processes under the altitude conditions of 0, 3000, and 4500 m are
presented in Figure 10. In order to visualize the entire ignition process from 0 to 4500 m, the
displayed sequences began slightly prior to the appearance of chemiluminescence under
the altitude condition of 0 m and ended shortly after the occurrence of ignition under the
condition of 4500 m. Concurrent with the fuel injection, the spray in the CVCC underwent
breakup, vaporization, and entrainment with the hot ambient gas to form a richer mixture.
After further fuel–air mixing, the mixture became lean and then started emitting very weak
chemiluminescence from a series of chemical reactions in the low-temperature range. There-
fore, this emission was low-temperature or cool-flame chemiluminescence [27,44,56]. As
the low-temperature reactions kept releasing heat and continuously accumulating radicals,
the chemiluminescence became strong, i.e., high-temperature chemiluminescence [27,44].
Following the convention described in Section 2.3.2, the high-temperature ignition was
determined, and the ignition kernels are annotated in Figure 10. As the occurrence of high-
temperature ignition was delayed when the altitude was increased from 0 to 4500 m, it was
qualitatively concluded that higher altitudes had a distinct inhibitory effect on the ignition.
For a more in-depth understanding, several typical metrics of the ignition morphology and
the spatial distribution of the ignition kernels are discussed quantitatively.

3.2.2. Ignition Delay and Ignition Distance

As shown in Figure 11, when the altitude was increased from 0 to 4500 m, the ignition
delay increased from 0.54 to 0.92 ms, and the ignition distance increased from 17.5 to
37.0 mm. Thus, the higher altitude prolonged the ignition delay and lengthened the
ignition distance, demonstrating both spatial and temporal inhibitory effects. This can be
explained by the fact that with increasing altitude, the ambient density decreased, which
weakened fuel–air mixing dynamics, thereby resulting in a higher equivalence ratio [57], so
it took the spray more time to mix and, at the same time, it penetrated further downstream
to entrain more ambient gas in order to make the fuel–air mixture suitable for ignition.
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3.2.3. Spatial Distribution of Ignition Kernels

It is well-known that diesel spray exhibits a type of intrinsically stochastic behavior
driven by high momentum and high turbulence under high-temperature and high-pressure
conditions. Consequently, the ignition process has been found to be highly stochastic [44,58].
One manifestation of this is the variations in the locations and shapes of the ignition kernels
annotated in Figure 10. This section discusses the spatial distribution of the ignition
kernels under different altitude conditions to further clarify the effect of altitude on the
ignition characteristics.

To this end, broadband chemiluminescence images from three repetitions under iden-
tical altitude conditions were selected, and then, the borders of all of the ignition kernels
were drawn as white, red, and green lines. Next, all of the colored borders were super-
imposed onto one image and overlaid with the liquid spray image taken at the same
time. This culminated in the spatial distributions of the ignition kernels under different
altitude conditions, as shown in Figure 12. At first glance, the ignition kernels of the three
repetitions under each altitude condition presented an irregular spatial pattern and did not
coincide with each other, which verified the inherently stochastic behavior of the ignition
process, especially under higher altitude conditions. Furthermore, it was found that the
ignition kernels were mainly distributed at the outer periphery of the liquid spray, away
from the centerline. This observation can be explained as follows. The eddy structures,
which formed and shed along the periphery of the spray, provided a relatively quiescent
environment for the fuel–air mixing and chemical reaction without the disruptive effect of
the fluid mechanics of the liquid spray [59], making the vapor mixture along the periphery
of the liquid spray the most favorable for the occurrence of autoignition.

Another interesting observation from Figure 12 is that the ignition occurred at multiple
sites simultaneously, and the projected area generally increased as the altitude increased.
To quantify this trend, Table 4 presents the average number and area of the ignition kernels
under each altitude condition shown in Figure 12. When the altitude was increased from 0
to 3000 m, the average number of the ignition kernels increased from one to two, and the
average area increased from 5.0 to 10.9 mm2, which was mainly related to the inhibitory
effect of the higher altitude on the ignition, demonstrating that more fuel–air mixture
took part in the ignition. However, when the altitude was further increased to 4500 m,
the average number of ignition kernels decreased to 1.7, and the average area increased
significantly to 23.9 mm2. This could be because both the longer ignition delay and ignition
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distance led to more of the mixture reaching the ignitability limit almost simultaneously,
and thus, the ignition under the condition of 4500 m occurred at multiple sites and then
rapidly filled the space between these sites through augmentation by adjacent sites. For
real diesel engines operating under higher altitude conditions, this kind of coalescence
would potentially trigger pressure waves and the formation of shock waves [59], which
could cause a higher peak pressure rise rate [16,19]. More refined observations should be
captured by ignition models to improve their adaptability for diesel engines operating in
plateau regions.
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Table 4. Numbers and areas of ignition kernels under different altitude conditions.

Repetitions
N.O.

Ignition Kernels under Altitude
Condition of 0 m

Ignition Kernels under Altitude
Condition of 3000 m

Ignition Kernels under Altitude
Condition of 4500 m

Number (-) Area (mm2) Number (-) Area (mm2) Number (-) Area (mm2)

1 1 6.1 2 16.4 1 18.5
2 1 4.9 2 10.2 2 21.2
3 1 3.9 2 6.2 2 32.1

Average 1 5.0 2 10.9 1.7 23.9

3.3. Flame Characteristics
3.3.1. Flame Morphology

Figure 13 shows the evolution of the luminous flame under the altitude conditions of
0, 3000, and 4500 m. Immediately after the aforementioned high-temperature ignition, a
weak natural luminosity appeared and subsequently became stronger. As the luminosity
region continuously moved downward, driven by the momentum provided by the fuel
injection, both the size and luminosity of the combusting flame increased due to increased
soot formation. As time proceeded, the flame evolution reached a quasi-steady state, and
the flame turned into a lifted, turbulent diffusion flame until the end of the injection [32],
which is consistent with the conceptual model of mixing-controlled combustion proposed
by Dec [28]. During this period, the flame simultaneously propagated downstream and
extended upstream to a stabilized location. The flame lift-off length defined in Section 2.3.3
was calculated and will be discussed in the next section. After the end of the fuel injection,
the injection momentum decreased suddenly, and much of the ambient gas was entrained,
allowing the flame to exhibit a tendency to propagate back toward the maximum up-
stream [60]. In addition, in the downstream zone, the flame tip interacted with the end wall
of the chamber for a moment and then spread out along the periphery of the chamber wall.
As the luminosity region gradually became narrower, the flame contracted to the near-wall
region and eventually disappeared. Overall, when the altitude was increased from 0 to
4500 m, the appearance and disappearance of the flame luminosity region were retarded,
and the overall flame luminosity seemed to be dimmer.
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Figure 13. Temporal sequence of flame images under different altitude conditions.

It is interesting that the criterion for determining the occurrence of ignition employed
in this work (described in Section 2.3.2) was significantly different from that employed
in other studies, which adopted the appearance of the initial flame as the occurrence of
ignition [37,52,61,62]. As the comparation in Figure 14 shows, the appearance of the initial
flame annotated in Figure 13 apparently lagged behind, both temporally and spatially;
the high-temperature ignition is annotated in Figure 10. Pertinent studies have confirmed
that the combustion of diesel spray is characterized by the first onset of low-temperature
ignition (first-stage ignition), followed by high-temperature ignition (second-stage igni-
tion), and thereafter, natural luminosity appears due to soot formation [27,43,63]. More-
over, the start of the combustion pressure rise was in good agreement with the timing
of the high-temperature ignition [42,44]. Thus, it can be reasonably concluded that the
broadband chemiluminescence imaging method employed in this investigation provides
more trustworthy ignition measurements for obtaining a high-quality ignition dataset for
different altitudes.
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3.3.2. Flame Lift-Off Length and Air Entrainment Upstream of Lifted Flame

The flame lift-off lengths under the altitude conditions of 0, 3000, and 4500 m are
shown in Figure 15. The lift-off length gradually increased from 23.1 to 34.5 mm as
the altitude was increased from 0 to 4500 m. This was mainly related to the variation
in the ignition delay [34]. The ignition was retarded under higher altitude conditions
(Figure 11), and the lift-off length increased correspondingly. Moreover, based on previous
knowledge [29,32,34,37], the lift-off length allowed the fuel and air to premix upstream
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of the lifted flame, and then, the entrained oxygen is believed to have reacted with the
fuel in a rich reaction zone in the central region of the flame located downstream of the
lift-off length. Thus, the amount of air entrainment upstream of the lifted flame strongly
affected the combustion and soot formation processes downstream. It is interesting to
identify the air entrainment upstream of the lifted flame under different altitude conditions
to comprehensively consider the lower ambient density and, consequently, longer lift-off
length caused by the higher altitude.
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In view of this, starting from the expression for the axial variation in the cross-sectional
average equivalence ratio in the spray (φ) proposed by Naber and Siebers [31], when
the axial location is designated as the lift-off length, multiplying the reciprocal of the
equivalence ratio relationship by 100 gives an expression for the air entrained up to the
lift-off location as a percentage of the total air required to completely burn the injected
fuel. This percentage has been redefined by Siebers and Higgins [32] as the percent of
stoichiometric air ζ(%):

ζ(%) = 100/φ(H) = 100
[(√

1 + 16(H/x+)2 − 1
)

/2 fs

]
(2)

where φ(H) is the equivalence ratio of the lift-off length; H is the flame of the lift-off length;
x+ is the characteristic length scale for the spray, and fs is the stoichiometric air–fuel ratio.
The details about the parameters required to calculate ζ(%) have been described in the
authors’ previous work [57].

As shown in Figure 15, the percent of stoichiometric air increased from 12.0% to 14.0%
as the altitude increased from 0 to 4500 m. Under higher altitude conditions, the lower
ambient density resulted in globally poorer fuel–air mixing [11,57], while the larger lift-off
length broadened the spatial extent of the air entrainment upstream of the lifted flame and
promoted local fuel–air mixing. However, the change in the percent of stoichiometric air
clearly demonstrated that the net effect of the altitude was an increase in the amount of
air entrained at the lift-off length, meaning that the well-accepted global deterioration of
fuel–air mixing under higher altitude conditions could be locally compensated for by the
longer lift-off length. As a direct consequence of the fuel–air mixing, soot formation will be
discussed in Section 3.5.

3.3.3. Flame Area

The flame area reflects the spatial distribution of the flame and, thus, reveals the soot
formation. Figure 16 presents the variations in the flame area with altitude. As the altitude
was increased from 0 to 4500 m, the peak value of the flame area decreased, which was
mainly due to the increased lift-off length. As can be seen from the flame morphology
shown in Figure 13, the upstream of the lifted flame was further away from the injector;
i.e., the lift length was longer, resulting in a narrower spatial distribution of the flame and,
consequently, a lower peak flame area. However, in the later stage of the combustion, the
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lower ambient density reduced the burnout rate of the reactants under higher altitude
conditions, so the curves declined more slowly.
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3.4. Relationship between Diesel Vaporization and Combustion Processes

In addition to the fuel–air mixing upstream of the lift-off length discussed in the
previous section, the concern that needs to be addressed in conjunction with the free spray-
combustion characteristics of diesel engines operating under different altitude conditions
is the relationship between the diesel vaporization and combustion processes. The com-
parison of the liquid length and the lift-off length could provide some insights into this
relationship to some extent. The liquid spray image and flame’s natural luminosity images
taken at 1.5 ms after the start of injection (ASOI) during the quasi-steady period under each
altitude condition were synthesized to obtain the spatial distribution of the liquid region
and flame region under different altitude conditions. In Figure 17, the white solid lines
denote the liquid spray region; the liquid length is annotated in white; the solid red lines
denote the flame region, and the lift-off length is annotated in red.
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At first glance, the liquid length was always greater than the lift-off length for each
altitude, and thus, there was overlap between the liquid fuel and combustion flame,
resulting in the appearance of a so-called cold core [53] inside the diffusion flame sheath.
The cold core length, which is the distance from the most upstream of the flame to the end of
the liquid region (annotated in black in Figure 17), was calculated as the difference between
the liquid length and the lift-off length. The calculated cold core lengths were 20.4, 21.8, and
22.9 mm under the altitude conditions of 0, 3000, and 4500 m, respectively. This moderately
increasing trend can be explained by means of a scaling law. The scaling of the liquid
length with the ambient density is approximately ρ−0.7

a , according to Siebers [64], while the
lift-off length is scaled by ρ−0.85

a , according to Pickett and Siebers [34]. This means that the
liquid length has a slightly stronger dependence on the ambient density than the lift-off
length. Thus, when the ambient density decreases with increasing altitude, the increase in
the liquid length will be slightly greater than the increase in the lift-off length, resulting in
a longer cold core length. The overlap would have a negative effect on the combustion and
emission, such as limiting the air entrainment, reducing the combustion rate, and causing
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more soot formation [32,38,53,65], which can contribute to the deteriorated combustion
under higher altitude conditions reported in the literature to some extent.

3.5. Soot Formation
3.5.1. SINL

Figure 18 presents the SINLs under the altitude conditions of 0, 3000, and 4500 m.
Overall, the variations in the SINL were analogous to the variations in the flame area
(Figure 16), indicating that the flame distribution had a direct impact on the SINL. After
the start of combustion, the SINL increased quickly and reached the peak as time elapsed,
reflecting the soot formation process. The peak SINL value decreased with increasing
altitude, indicating that less soot formed during the early stage of combustion. This
phenomenon can be explained by the fact that, as discussed in Section 3.3.2, there was
more air entrainment upstream of the lifted flame, producing a less rich central flame
reaction zone downstream of the lift-off length [30,66], which inhibited the formation
of soot precursors. After reaching the peak, the SINL decreased continuously to zero,
reflecting the soot oxidation process. When the altitude was increased to higher than
3000 m, the end of the SINL curves lagged behind drastically, which was because the
lower ambient density under higher altitude conditions reduced the oxygen concentration,
resulting in a lower soot oxidation rate.
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The TINL decreased with increasing altitude, indicating a lower soot formation level
throughout the entire combustion duration. This can also be mainly attributed to the
improved fuel–air mixing quality upstream of the lifted flame as a result of the longer
lift-off length and higher percent of stoichiometric air under higher altitude conditions.
Generally, based on the analysis of the SINL and TINL under different altitude conditions,
it was concluded that the amount of air entrainment upstream of the lifted flame controlled
the sooting tendency of the free spray combustion, which was consistent with the results of
the previous studies [29,30,32,38,53,62].
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Next, we seek to elucidate a noteworthy contradictory finding to improve our under-
standing of free spray-combustion processes under different altitude conditions. In this
work, based on the natural luminosity of the free flame in the CVCC, both the SINL and
TINL decreased with increasing altitude, implying a decrease in the soot formation level.
In contrast, virtually all the emissions measurements for realistic diesel engines conducted
in both bench tests [12,22] and on-vehicle tests [13,67] under different altitude conditions
agreed that the exhaust soot concentration increases with increasing altitude. Our best
explanation for these contradictory conclusions is as follows. As the diesel fuel injected
was completely combusted in the closed cubic combustion chamber of the CVCC, pockets
of soot were oxidized, even though the rate of soot oxidation during the late combustion
period decreased with increasing altitude. However, when extrapolated to experiments
conducted using real diesel engines operating in plateau regions, the soot particles formed
in the combustion chamber did not have sufficient time to be oxidized before the exhaust
valve opened [30], and hence, more soot survived in the final soot emissions from the
engine tailpipe, which was the most visible sign of incomplete combustion under higher
altitude conditions [14,19]. That is, the engine-out soot measurements essentially correlated
with the luminosity intensity of the flame images during the late combustion period, which
has been confirmed in previous studies [30,68]. According to this explanation, accelerating
the soot oxidation process could effectively reduce engine soot emissions in plateau regions.

4. Role of Altitude in Spray-Combustion Process of Free Diesel Jet

As discussed in the preceding sections, several general features related to the free spray
combustion of a diesel jet, including the liquid length, flame lift-off length, air entrainment
upstream of the lifted flame, and natural flame luminosity, including the SINL and TINL,
are all significantly affected by altitude, demonstrating the necessity to include the altitude
as a key parameter in the practical design of diesel engines. For the heavy-duty diesel
engine prototypes targeted in this investigation, in order to fully exploit their potential and
improve the combustion and emissions when operating under different altitude conditions,
a thorough understanding of the in-cylinder phenomena is critical. However, one impor-
tant prerequisite for this understanding is a clear picture of how the spray combustion
proceeds [28]. To this end, because the combined results of the visualizations presented
in the preceding sections have provided a detailed understanding of the spatiotemporal
evolution of the free spray combustion for a reacting diesel jet under different altitude
conditions, in this section, we add complementary information about the altitude to the
schematic diagram proposed by Siebers and Higgins [32]. Figure 20 schematically depicts
the spray flame structure of a free jet under different altitude conditions for quasi-steady
diesel combustion. The bottom-most schematic with summarized results for an altitude of
0 m is representative of the plain conditions, while the top-most schematic based on the
summarized results for a 4500-m altitude represents the plateau conditions, illustrating
the evolution of the free spray flame with increasing altitude. It is important to point out
that the schematic presented in Figure 20 only applies to the injection parameters and
boundary conditions based on the technological level of the prototype engine targeted in
this investigation, and the evolution may be different from that described herein for other
technological levels.

Based on the schematic diagram, the detrimental effects of higher altitudes on the
combustion and emissions can be partially explained, thereby providing a phenomeno-
logical description of the role of altitude in the spray-combustion process for a free diesel
jet. As shown in Figure 20, as the altitude increases, the liquid length increases, and the
vaporization and mixing become correspondingly weaker. Although both the lift-off length
and the percent of stoichiometric air increase, the amount of entrained air upstream of
the lifted flame is not sufficient to substantially reduce the formation of soot precursors,
thus making it difficult for the low ambient density under higher altitude conditions to
rapidly and completely oxidize the soot particles. The cold core length, that is, the overlap
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between the liquid fuel and combustion flame, increases, which is a potential cause of the
deterioration of the combustion and emissions [32,65].
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The schematic is also helpful in explaining and validating approaches suggested to
improve the performances of high-altitude diesel engines in numerous previous [11,16,69]
and future studies. For example, in the optimization of injection systems, increasing
the injection pressure and decreasing the nozzle orifice diameter have always been the
mainstream measures. Theoretically, the lift-off length is very sensitive to the injection
pressure, and the reduction in the amount of soot with increasing injection pressure is
mainly due to the enhancement of the spray atomization. Downsizing the nozzle diameter
significantly reduces the liquid length and improves the air entrainment to reduce the
amount of soot. Nishida et al. [38] further revealed that the combination of these two
measures avoids the interference of the lift-off length and liquid length, leading to a
reduction in the soot formation. However, when it comes to the practice of improving the
performances of diesel engines in plateau regions, the situation becomes complex. For
instance, downsizing the nozzle orifice diameter causes some unexpected issues. The
spray penetration, a critical factor in the emissions from heavy-duty diesel engines [70],
decreases as the size of the nozzle hole decreases, narrowing the spatial distribution of
the diesel spray, which is unfavorable for utilizing in-cylinder air under higher altitude
conditions. However, the injector flow area also decreases, and thus, some compensation
measures, such as increasing the number of orifices and/or the injection pressure, have to
be implemented to ensure the critical peak load capability for heavy-duty diesel engines.
Unfortunately, these changes increase the risk of jet interactions with adjacent jets and/or
cylinder walls, and these phenomena are not involved in the description of a free jet in
Figure 20, so practical injection system solutions for high-altitude diesel engines may be
much more complicated than those deduced theoretically. In this sense, the advancement
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of diesel combustion technology based on the knowledge of the role of altitude determined
in this work is far from complete.

5. Conclusions and Remarks

In this work, the free spray-combustion evolution of heavy-duty diesel engines oper-
ating under different altitude conditions was elaborately investigated in a constant volume
combustion chamber. The conclusions from the results are summarized as follows:

1. As the altitude was increased from 0 to 4500 m, as expected, the specific parameters
characterizing the free spray combustion, including the liquid length, ignition delay,
ignition distance, and flame lift-off length, all monotonically increased, which was
mainly due to the lower ambient density;

2. By superimposing the liquid spray and ignition images, the spatial distributions of the
ignition kernels under different altitude conditions verified the inherently stochastic
behavior of the ignition, especially under higher altitude conditions. Moreover, the
statistical analysis of the number and area of ignition kernels provided direct evidence
of greater peak pressure rise rates in high-altitude diesel engines;

3. By superimposing the liquid spray and flame images, the relationship between the
diesel vaporization and combustion process under different altitude conditions was
clearly identified. Because the liquid length had a slightly stronger dependence on the
ambient density than the lift-off length, the length of the cold core inside the diffusion
flame sheath increased slightly from 20.4 to 22.9 mm as the altitude was increased
from 0 to 4500 m, which potentially contributed to the deteriorated combustion under
higher altitude conditions;

4. Because a higher altitude resulted in both a lower ambient density and a longer lift-off
length, the percent of stoichiometric air was calculated to increase from 12.0% to 14.0%
when the altitude was increased from 0 to 4500 m, confirming that the net effect of
the increasing altitude was an increase in the amount of air entrained upstream of the
lifted flame;

5. Due to the improved fuel–air mixing quality upstream of the lifted flame, the peak
SINL and TINL decreased, indicating a lower soot formation level with increasing
altitude. However, this trend was inconsistent with the increase in the exhaust soot
emissions from realistic diesel engines with increasing altitude. This is presumably
due to the insufficient time for soot oxidization to occur before the exhaust valve
opens, emphasizing the importance of enhancing the soot oxidation to decrease the
engine soot emissions in the plateau regions;

6. A novel schematic diagram depicting the spray flame structure of a free jet under
different altitude conditions was proposed to provide a phenomenological description
of the role of altitude in the free spray-combustion process and to explain and validate
approaches for improving the performances of high-altitude diesel engines.

It should be noted that because of the focus on and interest in the basic physics of
the complex spray-combustion process, the simple assumption that the diesel jet was
fully developed in an unlimited domain was made in this work, without jet interactions
with adjacent jets and/or the cylinder walls. This reproduced the basic features of the
free spray-combustion process well under relatively quiescent thermodynamic conditions
representative of those in the prototype diesel engine operating under different altitude
conditions, providing a foundation for understanding how in-cylinder spray combustion
proceeds in high-altitude engines. However, there are some obstacles when extrapolating
these conclusions to actual diesel engine scenarios. The most fundamental obstacle is
that the actual combustion chamber is a limited domain, resulting in wall impingement.
More importantly, high-altitude conditions could increase the extent of wall interactions.
This issue is beyond the scope of this paper and will be discussed in the second part of
this investigation.
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CVCC Constant Volume Combustion Chamber
ICE Internal Combustion Engine
CFD Computational Fluid Dynamics
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