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Abstract: The torque ripples in a switched reluctance motor (SRM) are minimized via an optimal
adaptive dynamic regulator that is presented in this research. A novel reinforcement neural network
learning approach based on machine learning is adopted to find the best solution for the tracking prob-
lem of the SRM drive in real time. The reference signal model which minimizes the torque pulsations
is combined with tracking error to construct the augmented structure of the SRM drive. A discounted
cost function for the augmented SRM model is described to assess the tracking performance of the
signal. In order to track the optimal trajectory, a neural network (NN)-based RL approach has been
developed. This method achieves the optimal tracking response to the Hamilton–Jacobi–Bellman
(HJB) equation for a nonlinear tracking system. To do so, two neural networks (NNs) have been
trained online individually to acquire the best control policy to allow tracking performance for the
motor. Simulation findings have been undertaken for SRM to confirm the viability of the suggested
control strategy.

Keywords: variable reluctance motor; optimization problems; reinforcement learning (RL);
adaptive dynamic programming (ADP); neural network (NN); machine learning method

1. Introduction

Recently, the deployment of Switched Reluctance Motors (SRMs) in a vast scope of
car electrification and variable speed systems has garnered significant recognition. The
SRM is a flexible contender that might outperform other types of machines due to its
inherent durability, fault-tolerant capability, affordable pricing, and natural simplicity due
to its lack of magnets, brushes, and winding of a rotor [1,2]. Advancements in power
electronic devices and computer programming have increased their efficiency. SRMs are
now being considered for a number of applications requiring high-speed performance
and dependability, including those involving electric vehicles and aviation [3–7]. SRMs
have numerous benefits, but they also have certain drawbacks, such as huge torque ripples
that might result in loud noise and vibration when the motor is operating. The system’s
nonlinear electromechanical characteristic, which depends on current and rotor angle, as
well as severe magnetic saturation, to achieve great torque density, is the cause of the torque
ripples. As a result, extending the percentage of SRM in high-performance models requires
reducing the torque’s oscillations.

To limit torque ripples, there are two common approaches that have been employed.
The first entails improving the machine’s magnetic configuration [8–11]. In one instance,
the rotor and stator structures were changed by the SRM’s manufacturer to reduce torque
ripples; however, this might have degraded efficiency [12]. The second alternative is
designing a torque regulator to minimize ripples and address the model’s nonlinearity.
The SRM’s stator current ought to be precisely supplied and adjusted by the controller
at the right rotor angle, as well as achieving the current pulses’ quick rise and fall times.
This can be accomplished be inserting a considerable level of voltage from the DC supply
to handle the back electromotive force which occurs during the operating of the machine
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and simultaneously minify the inductance per phase. That is, as the rotor speed rises, the
induced voltage of the motor reaches a point at which the DC voltage pulses currently
produced are inadequate to control the torque. In order to reach the highest possible voltage
for high performance, the control mechanism would necessarily assume an optimum phase-
pulse mode which requires a high switching frequency. As a result, having a controller
with reduced torque fluctuations is a technical challenge for the SRM drive.

To relieve torque ripples, many strategies have been proposed. Bang–bang control,
sliding mode techniques, and enhanced Proportional-Integral-Derivative (PID) control are
several that are often used and simple to apply [13–19]. Bang–bang and delta-modulation
regulators have typically been applied to regulate SRMs. For these mechanisms, a number
of limitations, including significant torque pulsations, restricted switching frequency due to
semiconductor properties, and variable switching frequency, which results in less effective
regulation of Electro-Magnetic Interference (EMI) make them impracticable for many
applications. In such a model, the current pulse cannot be adjusted speedily enough by
the classical PID regulator. Indeed, even more advanced transitioning PID controllers are
unable to provide the best response. Additionally, researchers have studied direct torque
optimal control approaches. The direct instantaneous torque control (DITC) system can be
used to cope with the difficulty to represent the phase current as a function of torque and
rotor angles. Although DITC has a straightforward and easy structure, its implementation
necessitates complicated switching rules, unrestrained switching frequency, and a very
large sample rate [18–26]. Therefore, implementing a controller that can minimize the
torque ripples requires a very high dynamic scheme which allows high switching frequency.

In this article, a machine learning algorithm using RL techniques is employed to
track the reference signal and reduce pulsations on torque pulses of the SRM drive. This
unique approach is able to handle the model variances and produce excellent results even
though the SRM experiences nonlinearities dependent on current and rotor angles. In
this approach, the SRM tracking problem needs to be solved by optimizing the tracking
function and tracing reference trajectory. Dual-stream neural network strategies should
be employed and trained to provide optimized duty cycles based on the predetermined
utility function [27,28]. The nonlinear tracking Hamilton–Jacobi–Bellman (HJB) equation
of SRM is determined by modulating the NNs until convergence, providing the tracking
performance for the system model. The fundamental contributions of this research are as
follows:

I. Augmenting the SRM drive model to generate the tracking function;
II. Adopting a policy iteration method based on a reinforcement learning algorithm to

minimize the torque ripples of the SRM;
III. Deployment of two NNs to optimize the HJB equation and conduct tracking opera-

tions for the system.

2. Materials and Methods

The main framework of the proposed model is shown in Figure 1, where the dual neu-
ral network architecture using the policy iteration method has been executed to minimize
the torque ripples of the variable switched reluctance motor. The internal architecture of
the proposed model is further described in the following subsection.
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tracking performance simultaneously into a single task. Therefore, to benefit from this 
advantage while managing the non-linearity of the system, reinforcement dual-NN learn-
ing architecture is proposed for minimizing the torque ripples of the machine. By apply-
ing the neural network under the concept of value function approximator (VFA), this can 
approximate the cost function using the least-squares method. In optimal control, there 
are two techniques to solve the optimal tracking problem online in real time without re-
quiring full knowledge of the system. One approach to RL is based on iterating the Q-

Figure 1. The proposed framework for minimizing torque ripples.

2.1. Modelling the Tracking Function for Srm Drive

In machine learning theory, tracking control is a method used to guide the state of a
system to follow a reference path, while the optimal regulation method aims to bring the
system’s state dynamics to a halt [29]. The tracking control for an SRM drive is designed
to align the machine’s output torque with the reference torque trajectory. Designing an
optimum control system depends on being able to solve the partial differential equation
known as the HJB equation, which represents the ideal control strategy for a nonlinear
system. Optimal tracking control involves both feedforward and feedback control to
accurately guide the system’s state towards a reference path while maintaining stability.
Using the inverse dynamic technique, one may solve the feedforward portion that achieves
tracking performance. By computing the HJB model, it is possible to conduct a feedback
function that maintains the system’s stability. The authors of [30] discuss the typical
responses for both concepts. The disadvantages of utilizing the usual approach are that it
needs the inversion of the drive’s characteristics in order to derive the control policy and
that it uses the full system’s parameters. Due to the complex nature of the controller, the
typical solutions are consequently not applicable to SRM. To remedy this, the optimum
tracking control of the SRM drive is intended to minimize a specified quadratic cost
function based on the augmented system model that comprises the machine parameter
and reference source model. This enhanced system requires that the reference signal is
supplied and generated by a distinct source model. Reinforcement learning consists of a
collection of techniques that enable the use of an expanded model in the construction of
adaptive tracking control for a nonlinear system. These methods are intended to tackle
the tracking issue online and in real time by monitoring data streams [27]. Enabling the
controller to calculate the system dynamics and tracking the inaccuracies after each iteration
is another method for estimating the inductance surface. All mathematical techniques
need an estimator to update the model, which may then be applied to a controller such
as model predictive control. Neural networks based on RL methods integrate adaptation
and tracking performance simultaneously into a single task. Therefore, to benefit from this
advantage while managing the non-linearity of the system, reinforcement dual-NN learning
architecture is proposed for minimizing the torque ripples of the machine. By applying
the neural network under the concept of value function approximator (VFA), this can
approximate the cost function using the least-squares method. In optimal control, there are
two techniques to solve the optimal tracking problem online in real time without requiring
full knowledge of the system. One approach to RL is based on iterating the Q-function,
which is called the Q-learning algorithm. However, this method is only applicable for the
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linear system. For nonlinear applications, another algorithm should be incorporated with
Q-learning to cope with the nonlinearity of the system. The other approach of RL is the dual-
neural-network architecture, which can solve the nonlinear system and be implemented for
applications such as SRM. Therefore, the dual-neural-network architecture is a fundamental
technique of reinforcement learning methods. This method includes two phases. The first
NN is responsible for determining the optimum phase voltage of control input in the first
stage of the process, which may be executed during the policy improvement phase. The
second NN must assess the control input according to the policy evaluation step in the
second stage.

Following is a discussion of the tracking issue for the dynamic model of the SRM drive
and the derivation of the HJB equation.

2.1.1. Updated Model of SRM Drive

SRM consists of a variable number of salient poles on both the stator and the rotor
of the motor. In order to generate the machine’s phases, the coils are wound around the
stator pole and then installed in pairs that are mirror-opposite to one another. After the
phase has been excited, the change in reluctances will cause the torque that is responsible
for aligning the rotor pole with the stator poles. Because of its minimal impact on torque
generation and dynamics, the mutual inductance between surrounding phases in an SRM
is often quite low and has been omitted in the modeling process. In general, the mutual
inductance between adjacent winding in an SRM is relatively tiny. As a consequence of
this, the voltage and torque equation for one phase of an SRM may be expressed as

V = Rsi +
dλ(θ, i)

dt
(1)

T =
1
2

i2
dL(θ, i)

dθ
(2)

where Rs is the phase resistance and λ is the flux linkage per phase computed by λ = L(θ, i)i.
L is the inductance profile as a function of the rotor position ( θ) and the phase current ( i).
As seen in (2), the electromagnetic torque of a single phase is proportional to the square
of the current in this type of machine. For this reason, the fundamental motivation for
using the infinite-horizon tracking technique is to find the most suitable scheme for the
system of SRM (1) that allows the output torque or the state x(k) to follow the reference
trajectory d(k). Subsequently, we can write out the error equation that leads to optimal
tracking performance as

ek = xk − dk (3)

To develop the enhanced model, it is necessary to make a claim. That is, the reference
signal of the machine for the tracking issue is generated by the combination of the reference
model and the dynamic model of the motor [31]. The generator model can be formulated as

dk+1 = βdk (4)

where β ∈ Rn. This reference generator does not account for the fact that it is stable and
may offer a broad variety of useful reference signals, including the periodic pulses of the
square wave, which is the SRM reference current and torque. The forward method is
used to estimate the discrete time domain of the SRM model during discrete execution.
Consequently, based on the discrete dynamic model of SRM and the reference generator
formulation, the tracking error (3) based on the input voltage signal may be calculated as
follows:

ek+1 = xk+1 − dk+1 = f (xk) + g(xk)uk − βrk = f (ek + dk)− βrk + g(ek + dk)uk (5)

where f (xk) = xk − (tRs / Lk)xk and g(xk) = t/Lk. xk ∈ Rn is the phase current (ik), uk is
the DC voltage generated from the DC power supply, t is the discrete sampling time, and
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Lk is the phase inductance fluctuation determined by rotor angle and phase current. The
reference signal model and the tracking error may be included in the simulation model as
an array by incorporating (4) and (5) to create the updated dynamic model:

Xk+1 =

[
ek+1
dk+1

]
=

[
f (ek + dk)− βrk

βrk

]
+

[
g(ek + dk)

0

]
uk ≡ Λ(Xk) + ∀(Xk)uk (6)

where Xk =
[
ek dk]

T ∈ R2n is the updated state. Minimizing a quadratic performance
index function yields the optimal input signal that minimizes the tracking error. SRM’s
performance index function is established by weighing the cost of the voltage signal against
the tracking inaccuracy and taking the proportion of the two into account as follows:

V(Xk) =
∞

∑
i=k

γi−1
[
(xi − di)

TQ(xi − di) + uT
i Rui

]
(7)

where Q is a predefined weight matrix for the tracking error and R is a predefined weight
matrix for the control policy, and 0 < γ ≤ 1 is a discount rate that considerably lowers
the long-term cost. The value of γ should be smaller than 1 for SRM situations since γ = 1
only applies when it is known ahead of time, such as when obtaining the reference signal
from an asymptotically stable reference generator model [32]. The value function may be
expressed using the updated model (5) as follows:

V(Xk) =
∞

∑
i=k

γi−1
[

Xi
TQqXi + uT

i Rui

]
(8)

where

Qq =

[
Q 0
0 0

]
, Q > 0 (9)

The tracking issue is changed and transformed into a regulating issue by using the
updated system and discounted value function (6) [32]. With this improvement, it is feasible
to create a reinforcement learning regulator to address the SRM drive’s optimum tracking
issue without possessing complete information of the machine’s specifications.

2.1.2. Formulating the System Using Bellman and Hamilton–Jacobian Equation

One type of RL approach is based on dual neural networks, where the first NN
provides the control policy or the action to the machine, and the second NN evaluates the
value of that control policy. Different strategies, such as the gradient descent method and
least-squares method, may then be utilized to update the control input in the sense that
the new input is better than the old input. To allow the use of a RL method for tracking
applications such as torque ripple minimization, one can derive the Bellman equation for
the SRM drive. One of the adequate RL algorithms used to solve the Bellman equation
online in real time and achieve tracking performance is the policy iteration method; that is,
updating the policy until convergence leads to the optimal solution of the tracking problem.
Following the presentation of the augmented model of the SRM and the performance index
in the prior section, the Bellman and HJB equations of the SRM drive will be discussed.
This will make it possible for the tracking control to apply the RL online technique in order
to solve the issue. (8) may be recast as follows if one makes use of an applicable policy

V(Xk) = Xi
TQqXi + uT

i Rui +
∞

∑
i=k+1

γi−(k+1)[Xi
TQqXi + uT

i Rui] (10)

This can be derived, based on the Bellman equation, as

V(Xk) = Xi
TQqXi + uT

i Rui + γV(Xk+1) (11)
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The optimum cost function V*(Xk), based on Bellman’s optimality concept for infinite-
time conditions, is a time-invariant and satisfies the discretized HJB equation as follows:

V*(Xk) = min
uk
{Xi

TQqXi + uT
i Rui + γV*(Xk+1)} (12)

To obtain the optimal control policy which can minimize the torque ripples, the
Hamiltonian function of the Bellman equation can be expressed as

H(Xk, uk) = xT
k Qqxk + uT

k Ruk + γV*(Xk+1)−V*(Xk) (13)

At this point, it is crucial to execute the stationary condition dH(Xk, uk)/duk = 0.
This condition is necessary to achieve optimality [33]. Hence, the control policy that can
minimize the torque ripples for SRM drive is generated as

u*
k = −

γ

2
R−1G(Xk)

T ∂V*(Xk+1)

∂Xk+1
(14)

2.2. Dual-Neural-Network Architecture for Learning the Tracking Problems of SRM Drive

Since the tracking HJB equation is unable to be solved accurately online using a
normal approach without incorporating a complete knowledge of the parameter model,
the reinforcement dual-neural-network learning methodology was used. Rotor angle and
current both have nonlinear effects on phase inductances. This inductance is at its highest
value when the stator and rotor poles are lined up, and at its lowest value when the poles
are not lined up. Figure 2 displays the inductance surface of the SRM used later in the
simulation. This figure is generated by quantizing the inductance profile derived using
finite element analysis of the SRM. A table holding the data of the inductance surface may
be produced. A 2D grid made up of a selection of several currents and rotor positions is
used to quantize this surface. A quantized inductance profile is obtained by recording the
inductance in a table at every point of this grid [34,35]. The bearings’ age, differences in
the airgap, chemical deterioration, and temperature changes may all lead to additional,
unidentified alterations in this characteristic. Other changes in the inductance curve
might result from inconsistencies between the real and predicted models caused by typical
manufacturing defects, such as variances in the permeability, the size of the airgap, or
even the quantity of turns in the coil. Adaptive approximation methods to improve the
machine’s dynamic characteristics may be carried out by utilizing the dual-neural-network
procedure. To solve the Bellman problem, the neural network is employed to optimize
the cost function values. The second neural network (NN) used in this technique, which
accounts for the approximate dynamic programming tracking control, is modified online
and in real time using information recorded while the machine is running, such as the
torque state, the future augmented state, and the model parameters. The first and second
neural networks are developed sequentially in this study, meaning that the first neural
network’s parameters will stay constant while the parameters of the second network are
trained until convergence. These procedures are repeated until the first and second neural
networks settle on the ideal trajectory. Using the neural network along with the value
function approximation (VFA) concept, an evaluation NN may be created to tune the
performance index function using the least-squares technique until convergence [27]. The
formulation of the first and second NNs to minimize the torque pulsating is demonstrated
in this section.
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2.2.1. Modelling of First Neural Network

This is conducted to develop an observer for the purpose of evaluating the performance
index, and as a result, this observer is used in order to generate the feedback control. It
is standard practice to use neural networks when attempting to estimate a smooth cost
function on a preset data set. The expression that may be used to describe how the weights
of the NN, which offer the optimum approximation solution of minimization problem for
the SRM drive, work is:

Vi(X) =
N

∑
j=1

sj
viBj(Xk) = ST

viB(Xk) (15)

where Svi are the approximated quantities of the first NN weights that can be produced in
linear system for the machine, shown as

Svi =
[
s11 s12 s22] (16)

where B(Xk) = Xk
⊗

Xk ∈ RN is the vector of the convolution operation, and it represents
the number of neurons within the hidden layer. The Bellman equation can be reproduced by
incorporating the Kronecker concept, which converts the weights matrix (16) into columns
of bundling sequences [32].[

(Xk)
⊗

(Xk)− γ(Xk+1)
⊗

(Xk+1)
]
× vec

(
ST

vi+1

)
= Xk

TQqXk + ûT
i (Xk)Rûi(Xk) (17)

where
⊗

is the Kronecker product, and vec
(
ST

vi+1
)

is the weights matrix derived by aggre-
gating the entries of matrix Wvi. The left side of (17) can be defined as

ρ(Xk, ûi(Xk)) = Xk
TQqXk + ûT

i (Xk)Rûi(Xk) (18)

By exploring and gathering sufficient data packets throughout each cycle of the normal
running of the motor, including information on the modified state of the motor and the
input voltage, the solution of this equation can be can be obtained. The least-squares (LS)
approach can be used to improve the weights of the network. This technique is a potent
optimizer that does not need any additional model identification unless an observer is
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required to watch the appropriate data item sets. Thus, the first NN weight’s inaccuracy
error may be expressed as

ErrvN =
(
ρ(Xk, ûi(Xk))− ST

viB(Xk)
)

(19)

Prior to applying LS strategies and to address the policy evaluation method, the total
count of individual entities in the data vector should be greater than 3 samples per iteration
(17). The sequential least-squares response for the NN weights is then shown as

vec
(

ST
)
=

{Tσ

{T{
(20)

where { = [∆
−

XT
k ∆

−
XT

k+1 . . . ∆
−

XT
k+N−1], ∆

−
XT

k = BT(Xk)
⊗

BT(Xk)− γBT(Xk+1)
⊗

BT(Xk+1),

and σ = [ρ(
−
X1, ûi)ρ(

−
X2, ûi) . . . ρ(

−
XN, ûi)]

T. The dynamical parameters of the machine do not
need to be inserted in order to tune the weight matrix values, and as { has a complete rank,
B(Xk) is necessary to satisfy the persistence excitation condition. This can be achieved by
adding a modest amount of white noise to the input signal. It will thus be sufficient to attain
the persistence excitation condition [31].

2.2.2. Modeling of Second Neural Network

This section aims to create a phase voltage signal that minimizes the approximate
amount function of the first NN by approximating the ideal return voltage signal of the
machine. The ideal policy to minimize the torque ripples can be expressed as follows:

ûi(Xk) = argmin
u(0)

(
Xk

TQqXk + uT
i (Xk)Rûi(Xk)+γST

viB(Xk+1)) (21)

Once the first value matrix has been trained until the parameters settle to their ideal
values, the second online NN approximations are applied in order to achieve a result of
(14) to fulfill the tracking performance and mitigate the torque ripples. The second NN
formulation is described by the equation below.

ûi(X) =
P

∑
j=1

Sj
uiJj(Xk) = ST

uiJ(Xk) (22)

where J(Xk) ∈ RH is the parameters of the activation function, where P is the quantity of
neurons in the hidden layer. As a result, the actor error may be calculated as the difference
between the machine’s phase voltage per phase and the control signal that minimizes the
predicted performance index in the second NN, which is expressed as

erru(Xk)
= ST

uiJ(Xk) +
γ

2
R−1G

(
Xk)

T ∂B(Xk+1)

∂Xk+1
Svi (23)

The gradient descent strategy may be used to tune the variables of the second NN in
real screen time. Because the network only runs a single adjusting sample, this approach is
simple to encode in memory. As a result, the second NN value update may be carried out
as follows:

Sui|z+1 = Sui|z −Φ ∂
∂Sui

[Xk
TQqXk + ûT

i (Xk)Rûi(Xk) + γST
viB(Xk+1)]

∣∣∣
Sui |z

= Sui|z −Φ×Π(Xk)
(

2Rûi + γJ
(

Xk)
T ∂B(Xk+1)

∂Xk+1
Svi

)T (24)

where Φ > 0 is a training parameter which represents the scaling factor, and z is the
repetition number. As demonstrated in (18), only J(Xk) values of the dynamical model are
needed to improve the weight of the NN. The policy iteration (PI) methodology has been
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utilized extensively for constructing feedback controllers among the RL techniques now in
use. Specifically, the linear quadratic tracker (LQT) problem is resolved using PI algorithms.
It is common knowledge that resolving an LQT is necessary to solve the Algebraic Riccati
equation (ARE). The PI technique starts with an acceptable control policy and iteratively
alternates between policy assessment and policy improvement phases until there is no
modification to the value or the policy. In contrast to the value iteration (VI) method, In
contrast to the value iteration (VI) method, PI is often faster than VI as the control input
converges to their optimal solution which achieve torque ripples minimization for the
system model. The following Algorithm 1 shows the process which will be executed for
the proposed control strategy.

Algorithm 1: Using policy iteration approach, compute the tracking HJB problem of the model
online.

Initialization: Launch the computation process with an allowable control policy. Perform and
modify the two processes below until convergence is reached.
1st NN:
ST

viB(Xk) =
(
XT

k
)
Qq(Xk) +

(
ui

k)
T R
(

uk)
i + γST

viB(Xk + 1)
2nd NN:

Sui|z+1 = Sui|z −Φ×Π(Xk)
(

2Rûi + γJ
(

Xk)
T ∂B(Xk+1)

∂Xk+1
Svi

)T

3. Simulation Results

To assess the tracking effectiveness of the suggested system, a dual-stream neural
network algorithm based on reinforcement learning techniques was created and simulated
for the SRM drive. The block diagram of the scheme is described in Figure 1. There are two
fundamental processing stages in the control system. The first NN approximates the utility
function by training the weights of NN using the least-squares (LS) method. To minimize
the estimated cost function, the input signal is updated in the second NN processing block.
Several data sets must be selected and estimated to train the cost function in the first NN.

To implement the proposed technique, three phases of 12/8 SRM were invested in and
modeled. The nominal current of the motor was 6 A, and the resistance per phase was 2 Ω.
The inductance curve fluctuated between 16 mH for maximum aligned inductance and 6
mH for minimum unaligned inductance. The rated wattage was 530 W, with a DC voltage
of 100 V.

The cutoff frequency of the controller was set at 12 kHz. The developed control
system’s procedure should initiate with the stabilizing control policy, according to the
policy iteration approach. To show the controller’s functionality, the augmented state
was set to X0 = [−10 10]T . In the utility function, Q and R are predefined matrices of
appropriate size, with values of 100 and 0.001, respectively. The discount factor used
to decrease future costs was set at γ = 0.8. A train of rectangular shape signals with an
ultimate peak value of 4A is generated by the reference signal generator. The second NN
examines 10 data objects every cycle to train its value and optimize the utility function
using the least-squares technique.

The parameters of the second NN approach to their ideal values after 10 epochs to
minimize the torque ripples and achieve excellent performance for the motor.

The optimal first NN values reached the ideal number values which could reduce the
torque ripples at

ST
ui =

[
100−100

]
(25)

To test the suggested controller in this research, the speed of the SRM was kept constant
and set at 60 RPM. The voltage provided to the motor was capped at 100 V because most of
the real DC hardware’s sources are rated to this limit.

Figure 3 shows the comparison between delta modulation and the proposed method.
It can be seen that RL architecture using dual NNs could efficiently minimize the torque
ripples. The total torque waveform per phase is demonstrated in Figure 4. In this figure,
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after the weights of NNs settle to their optimal number, the controller successfully minimize
the torque ripples. Figure 5 clarifies how the NN parameters settle to their ideal numbers
after the NNs are fully trained.
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In this article, the proposed dual NN architecture parameters are only the discount
factor and the learning rate. These parameters are determined based on the trial-and-error
technique. For weighting the Q and R matrices, the Q/R ratio is crucial for training NNs.
The linear quadratic tracker will fail to follow the reference if the weight R has a high
value due to the large cost in the control input. Additionally, if R = 0 or if the Q/R ratio
is extremely high, the controller will follow the reference in the first step because of the
extremely high applied control input. Hence, we chose the weights to be Q = 100 and
R = 0.001 as they were the best selection based on the design technique.

4. Conclusions

This paper has presented a new strategy to minimize the torque ripples using the
architecture of dual-stream NNs using Reinforcement Learning for the switched reluctance
motor. A new enhanced architecture for SRM has been created, which will aid in the
construction of the model’s optimum tracking control. To assess the machine’s control
performance, a quadratic value function for tracking and reducing the torque pulsations
on the motor was constructed. To do so, dual-stream NN estimation algorithms were
adopted to estimate the value function and to generate the optimal control policy. The
parameters of the first NN were trained online in real time using the least-squares method
until convergence. Additionally, the gradient descent logic was applied to tune the second
NN. The simulation results indicated that the suggested strategy was successful at adjusting
the motor’s torque and reducing its oscillations without adding additional procedures to
cope with the nonlinearity of the model.
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