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Abstract: The main challenge in deviated and horizontal well drilling is hole cleaning, which involves
the removal of drill cuttings and maintaining a clean borehole. Insufficient hole cleaning can lead to
issues such as stuck pipe incidents, lost circulation, slow rate of penetration (ROP), difficult tripping
operations, poor cementing, and formation damage. Insufficient advancements in real-time drilling
evaluation for complex wells can also lead to drilling troubles and an increase in drilling costs.
Therefore, this study aimed to develop a model for the hole-cleaning index (HCI) that could be
integrated into drilling operations to provide an automated and real-time evaluation of deviated-
and horizontal-drilling hole cleaning based on hydraulic and mechanical drilling parameters and
drilling fluid rheological properties. This HCI model was validated and tested in the field in 3 wells,
as it was applied when drilling 12.25′′ intermediate directional sections and an 8.5′′ liner directional
section. The integration of the HCI in Well-A and Well-B helped achieve much better well drilling
performance (50% ROP enhancement) and mitigate potential problems such as pipe sticking due to
hole cleaning and the slower rate of penetration. Moreover, the HCI model was also able to identify
hole-cleaning efficiency during a stuck pipe issue in Well-C, which highlights its potential usage as a
real-time model for optimizing drilling performance and demonstrates its versatility.

Keywords: real time evaluation; deviated wells; hole-cleaning index (HCI); case studies; drilling
performance improvement

1. Introduction

Drilling vertical and more directional wells for the oil and gas industry is necessary to
meet demand for global resources [1]. Drilling troubles are a constant, and most of these
drilling problems are stuck pipe incidents due to improper hole cleaning, lost circulation,
and well control incidents [2,3]. Optimization of downhole cleaning during drilling can be
achieved either by improving engineering aspects or by enhancing drilling fluid properties
using suitable chemical additives, and most of the time, both are applied appropriately [3].
In planning and designing the drilling of wells, drilling time and flat time must be suitably
optimized to obtain the best drilling efficiency and cost effectiveness [4,5]. Hole cleaning
during drilling plays a significant role in reducing drilling time by ensuring an enhanced
rate of penetration (ROP) and a flat time by minimizing tripping operations, pumping of
sweep pills, time of circulation, and time spent running casing, while improving cementa-
tion integrity and efficiency [6]. Improper hole cleaning causes drilling problems such as
high or erratic trends of equivalent circulating density, torque and drilling drag, wellbore
instability, high annulus pressure, lost circulation, tight hole sections encountered during
tripping, and stuck pipe and well control incidents [7]. Hole cleaning is an effective tool
used to overcome wellbore instability during drilling in case cutting accumulation and
shale sloughing and caving are encountered. Cutting accumulation and shale caving will
lead to difficult tripping operations resulting from pipe sticking [8]. In fact, approximately
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33% of stuck pipe incidents in deviated and horizontal directions are caused by inadequate
downhole cleaning while drilling, making it a significant contributor to these types of
events [4,9,10]. Moreover, effective hole cleaning is a crucial aspect of maximizing pro-
duction rates in a well, as it can significantly impact the success of subsequent techniques
such as acidizing and CO2 injection. By ensuring that the wellbore is adequately cleaned
during drilling, the efficiency of these methods can be improved, reducing the risk of
problems such as stuck pipe, borehole instability, and reduced production rates [11–14].
More importantly, the upwards flow velocity exceeding the speed of solids settling in the
drilling fluid is the main condition of cutting removal while drilling vertical wells [7]. In
the case of deviated and horizontal drilling, it is more difficult to fulfil this condition [8].
As the angle of the borehole increases, the direction of settling of fractured rock particles
from the borehole axis changes. As a result, cuttings begin to accumulate on the bottom
wall of the borehole. The efficiency of clearing the cutting particles from deviated and
horizontal drilling wells depends on the basic hydrodynamic indicators and technological
parameters of the drilling regime, as in the case of vertical wells, and on the geometry of
the annular space and borehole profile [2,3,15]. The borehole profile is determined by the
zenith angle, and the geometry of the annulus is determined by the eccentric position of
the drill string [16–18]. There are 3 zenith angle intervals that affect the degree of cleaning
of the drilled cuttings: 0–10◦, 10–30◦, and 30–60◦ [3,19]. At small zenith angles (0–10◦), the
particles settle in the direction of the bottom hole due to gravity acting on them. At medium
values of the zenith angle (10–30◦), the density and viscosity of the cuttings increase, which
leads to possible accumulation of sludge at the bottom-hole bottom. If the zenith angle
reaches 30–60◦, the friction forces increase, and the particle sliding speed slows down,
possibly even to a complete stop [20–22]. The efficiency of cutting removal also depends on
the flow velocity profile in the annulus. In the concentric annulus of a vertical well, the
drilling fluid velocity and energy are uniformly distributed relative to the drill string. As a
result, the drill string is arranged eccentrically in the borehole. Therefore, there is a shift in
the velocity profile. The consequence of this is that the flow velocity above the drill string is
maximum and the velocity on the left and right sides of the drill string space is minimum.
Sludge build-up occurs, and “stagnation zones or dead zones” are formed [3,19]. Another
factor affecting bottom-hole cleaning is the velocity of the drilling fluid in the annulus. In
laminar drilling-fluid mode, good cleaning of broken rock occurs when the rheological
properties of the drilling fluid are properly selected. In turbulent mode, most of the solids
are carried out of the borehole by the flow. The rheology of the drilling fluid has much
less influence. However, the turbulent flow mode can be used only at a given flow rate of
drilling pumps, low erosion of borehole walls, and high velocity of drilling fluid movement
in the borehole space [23]. Another factor that influences bottom-hole cleaning is the
rheological properties of the drilling fluid. It is possible to control the rheological properties
of drilling fluids by treatment with special chemical additives [24]. Thus, the regulation of
wellbore drilling performance is one of the main objectives of well drilling. All rheological
characteristics of drilling fluids and hydrodynamic characteristics should be taken into
account in a hydraulic well-drilling program [25–27]. Correctly selected formulation and
rheological properties of the solution along with optimal technological parameters of the
drilling process will allow high productivity and quality of drilling work to be achieved.
Moreover, effective hole cleaning is a crucial aspect of maximizing production rates in a
well, as it can significantly impact the success of subsequent techniques such as acidizing
and CO2 injection. By ensuring that the wellbore is adequately cleaned during drilling, the
efficiency of these methods can be improved, reducing the risk of problems such as stuck
pipe, borehole instability, and reduced production rates [11–14]. In addition, enhancing
the effect of these parameters can assist in maintaining the carrying capacity of drilling
fluids, which in turn can lead to an improvement in the design of wellbores [24]. Numer-
ous studies have been conducted to investigate the parameters that affect hole-cleaning
effectiveness. Raed et al. showed that drill pipe rotation is crucial for cutting removal in
laminar and transition flow [23]. Meanwhile, multiple researchers have investigated cutting
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transport over the past few decades and created a variety of mechanistic and semimech-
anistic models to explain flow features [25–27]. Mohammadsalehi et al. developed an
extensive approach that utilized Larsen’s model and Moore’s correlation for estimating and
identifying the minimum flow rate that is needed for cutting removal across all inclination
angles, which range from 0◦ to 90◦. This was done to determine and estimate the bare
minimum flow rate necessary for cutting removal at each and every inclination angle [28].
Recently, in a real-time evaluation, Al Rubaii et al. proved that optimizing the usage of
the carrying-capacity index (CCI) and the concentration of cuttings in the annulus (CA)
can considerably improve hole-cleaning effectiveness and boost ROP. These two variables
are collectively referred to as the “concentration of cuttings in the annulus.” The model
offers drilling engineers and drilling supervisors an efficient technique for determining
the appropriate mud characteristics for effective hole cleaning, as well as the maximum
ROP that can be achieved based on the volume of cuttings in the annulus [24]. Nonetheless,
with regard to the cleaning of boreholes during drilling procedures, there appears to be a
notable deficiency in some models regarding evaluating the drilling process in real time.
Furthermore, these models are based on a limited number of parameters affecting the
status of hole cleaning. Therefore, the main objective of this study is to introduce a newly
developed hole-cleaning index (HCI) based on Robinson’s model that was developed in
2004 [29] to achieve effective downhole cleaning by applying the required adjustment
to optimize the drilling process. This method implements automated carrying-capacity
indicator modifications. The developed HCI enables real-time monitoring and evaluation
of the status of hole cleaning during drilling. The study extensively explains the status of
hole-cleaning models, as demonstrated in Figure 1. The paper delineates diverse real-time
models that function as indicators for assessing hole cleaning. Furthermore, the mathe-
matical formulation of the novel HCI model is expounded, encompassing all pertinent
variables essential for the real-time assessment of hole-cleaning conditions. The significance
of the HCI model as a novel index model is underscored by its validation through field
applications.
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Figure 1. The flowchart outlining the various topics discussed and the systematic order in which
they are presented.

2. Status of Hole-Cleaning Models

Hole cleaning is a fundamental function of mud, and this function is also the most used
and misunderstood. Cleaning of deviated holes is most challenging because of changing
formation lithologies and the drill cuttings. In addition, when the cutting beds (cutting
accumulation height) are at a hole inclination of 35–50 degrees, the drill cuttings are more
likely to slide downwards, negatively affecting hole cleaning [30–32].

Even though increasing the mud flow rate can reduce the height of the bed of drill cut-
tings, it will not be very effective in directional wells [30,33,34]. Pigott (1935) recommended
that the concentration of the cuttings in the annulus must remain less than 5% to prevent
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stuck pipe problems [35,36]. Newitt et al. (1961) found a precise equation for drilling
cuttings volumetric concentration in the annulus for steady-state lifting of drill cuttings in
a vertical tube [37]. Mitchell (1992) developed an equation for quantifying average cutting
concentration in the annulus while drilling and after stopping circulation while making
a connection [38]. Moreover, experimental investigations performed by Hussaini and
Azar (1983) [39] and Azar (1990) [40] indicate that mud rheology also affects hole cleaning.
The results of these investigations confirmed that the carrying efficiency of drilling mud
increases when the percentage of the ratio between the mud yield point (YP) and the mud
plastic viscosity (PV) is maximized. Larsen (1997) introduced a novel design model that
facilitates the selection of appropriate hydraulic parameters by drilling engineers, thereby
ensuring seamless drilling operations in high-angle boreholes ranging from 55◦ to 90◦ from
the vertical. Empirical correlations were derived through a comprehensive experimental
investigation of cutting transport in a flowloop with a full-scale diameter of 5 inches [41].
Moreover, Thonhauser (1999) introduced a mechanical device that was built to measure the
amount of cuttings produced from the wellbore and analyze the hole-cleaning behavior. It
was designed to provide the basis for real-time interpretation to optimize the circulating
strategy and schedule, and to correlate the measured cutting flux with wellbore stability
problems and overall drilling performance [42].

Furthermore, determining the density and size of drill cuttings during drilling to
estimate the slipping velocity of drill cuttings is critical and vital. Additionally, when the
viscosity of drilling mud is high, the effectiveness of mud in cleaning the hole by removing
the drilled cuttings will also be high. Pipe rotation significantly improves the efficiency
of hole cleaning if the drill string has a high eccentricity for both vertical wells [43] and
inclined hole sections, according to Sanchez et al. [44].

Ogunrinde and Dosunmu (2012) developed a model to estimate the optimum ROP
and Q to be used during drilling to maintain proper hole cleaning [15]. Samuel (2013)
developed a modified model to predict drilling-string vibration during drilling to prevent
damage or twisting-off of the BHA and associated poor hole cleaning [45].

Al-Azani et al. (2019) predicted real-time cutting concentration in the annulus by
using ANNs, including back-propagation neural networks (BPNNs), radial basis functional
networks (RBFNs), and SVMs, which are classified as artificial intelligence tools. The
selected parameters were mud weight (MW), PV, YP temperature, mud pump flow rate (Q),
rpm, ROP, pipe eccentricity, and inclination of the hole section. The results were validated
with 116 experimental studies in the literature review domain. The accuracy was 0.9 R,
and average absolute error (AAE) was less than 5% [1]. Al-Rubaii et al. (2020) developed a
new real-time model for cutting concentrations in annuli based on the influence of Q and
ROP, and the model was applied to real-time data and validated with Newtis and API
models [46].

The model showed acceptable accuracy and results.
Al-Rubaii et al. (2018 and 2020) developed a new methodology for hole cleaning by

improving ROP through evaluation and adjustment of the carrying-capacity index and
accumulation of drill cuttings in the annulus of the drilled hole section simultaneously to
improve drilling performance by more than 20% [24,46].

In addition, they modified the cutting carrying index by including cutting rise velocity
with annular velocity and then applied the CCI to real-time data to monitor and evaluate
the hole-cleaning efficiency and thereby optimize well and rig performance. Alawami et al.
(2020) applied the hole-cleaning carrying-capacity index to real-time data to monitor and
evaluate the hole-cleaning performance of drilled wells by using offline real-time data [10].
Mahmoud et al. (2020) modified the CCI to make it applicable in cleaning deviated hole
sections. They modified the original carrying-capacity index by considering the effect of
inclination on the annular velocity and equivalent circulating density [47]. Saihati et al.
(2021) developed a predictive drilling torque model using machine learning techniques to
monitor downhole conditions, such as poor hole-cleaning conditions [48]. Huaizhong et al.
(2019) performed an experimental and numerical simulation study for cutting transport in
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a narrow annulus to maximize the rate of penetration of coiled tubing, which is partially
underbalanced to solve the problem of wellbore instability. The outcomes of measurements
were particle velocity, particle distribution, the phenomenon of collision of particles, and
sinking and rising of particles. The obtained results were that the particle velocity declines
with the increase in rotational speed and increases with the increase in flow rate [49].

Ytrehus et al. (2019 and 2021) used micronized barite to provide a lower-viscosity
drilling fluid and nonlaminar flow, which is advantageous for particle transport in near-
horizontal sections. They found that low-viscosity fluids are more efficient than viscous
fluids at higher flow rates and low drill-string rotation. Different fields have applied
oil-based drilling fluids with similar weights and varying viscosities, and positive results
have been shown for cutting transport performance, hole-cleaning abilities, and hydraulic
frictional pressure drop [50,51].

Pedrosa et al. (2022) investigated the influence of the rheological properties of three
different types of fluids on the erodibility of the cutting bed. Three outcomes were mea-
sured: erodibility of the cutting bed, shear rates of different types of fluids, and flow rate
dependency along the dune extent. The results showed that the cutting bed is eroded by
dune movement [52].

Shirangi et al. (2022) developed a new digital-twin methodology for predicting drilling
fluid properties to perform real-time calculations for hole cleaning by combining several
models, using the large amount of offset data integrated in the model [53].

Elmgerbi et al. (2022) used two interconnected models to optimize drilling hydraulics.
They used predictive and analytical models to predict, compute, and optimize surface
drilling parameters [54].

Rathgeber (2023) examined the impact of pipe eccentricity, drill pipe rotation rates,
pipe-to-hole area ratio, and wellbore flow area on cutting transport efficiency. The author
additionally examined the influence of the ratio between the area of the pipe and the hole,
as well as the area of flow within the wellbore, on the rotation of the drill pipe and the
occurrence of flow channeling [55]. Moreover, Tables 1 and 2 show a summary of major
findings for other studies related to hole-cleaning chemistry and engineering.

Table 1. Major findings in the field of hole-cleaning chemistry.

Year Author Technique Output Ref.

1906 Einstein Rheology Effective viscosity by including the influence of the concentration of
solid particles [56]

1992 Frenkel et al. Wellbore instability Kaolinite is the most dispersive, followed by illite, while smectite is
not highly dispersive [57]

1997 Zhou, Z. Clay-swelling
mechanisms

The expansion of clay is due to the increase in spacing between the
clay layers [58]

1998 McCollum Rheology Low mud rheology, reduction in the accumulation of cuttings and
controlling solids in mud [59]

2009 Stephens et al. Swelling tests High swelling percentage is a clear indicator of low efficiency of
drilling fluid inhibition against swelling [60]

2010 Zoback Wellbore instability Swelling of shale is due to the increase in vapor pressure within shale,
leading to weakening of adherence and development of washout [61]

2010 Abedian and
Kachanov Rheology Effective viscosity of a Newtonian fluid with rigid spherical particles [62]

2016 Aberoumand
et al. Rheology Nano-fluid OBM viscosity [63]

2018 Deng Rheology Higher bentonite concentration and a lower biopolymer concentration
normally showed better hole-cleaning capacity [64]

2019 Vanessa
Boyou et al. Rheology Nanosilica WBM improves the transport efficiency of cuttings [65]

2020 Ofei et al. Rheology By increasing mud density, hole-cleaning efficiency can be increased [66]
2020 Sargani et al. Rheology CCI showed a high value at a 60/40 oil–water ratio [7]

2020 Alsaba et al. Rheology MgO showed the highest improvement in hole cleaning, while TiO2
resulted in the lowest improvement [67]
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Table 1. Cont.

Year Author Technique Output Ref.

2021 Abbas Rheology Cellulose nanoparticles as a perfect substitute for oil-based muds,
improving the transport efficiency of cuttings [68]

2022 Mohamed
et al. Rheology Shape-memory polymer increases viscosity at low shear rates for

better hole cleaning [69]

2023 Xie et al. Rheology Novel nanocomposite-based thermo-associating polymer/silica
nanocomposite enhanced the overall hole cleaning [70]

Table 2. Major findings in the field of engineering.

Year Author Technique Output Ref.

1985 O’brien Factors A higher yield point value is required with larger cuttings [71]

1991 Becker And
Azar Factors Impact of inclinations on cutting bed and cutting concentration [32]

1992 Luo et al. Rheology and Factors The rheology factor and the corrected minimum required flow rate
with the used ROP and induced washout during drilling [72]

1994 Marco Rasi Indicators Cutting bed height and hole-cleaning ratio (HCR) [73]

1995 Beck Rheology
Qualitative relationships between the rate of penetration and the
rheological properties of the drilling fluid (PV, flow behavior index
(n), Reynold number)

[74]

2000 Adari et al. Factors Ranked the hole-cleaning factors in drilling and the time to effectively
clean the wellbore [75]

2006 Berg et al. Modelling Flowchart for ensuring effective displacements for wellbore cleanness
of open hole and cased hole prior to running completion [76]

2007 Shariff et al. Factors Eccentricity and cutting concentration [77]

2009 Saasen et al. Factors
Drill-string rotation in a deviated hole with an appropriate flow rate
can remove the bed of cuttings, and an optimal hole cleaning can be
achieved

[50]

2011 Malekzadeh
and Salehi Modelling The optimum flow rate ensuring both good hole cleaning and drilling

hydraulics in a directional well to achieve an optimized ROP [78]

2019 Alkinani &
Al-Hameedi. Rheology ECD increases with PV and solid content, while it decreases slightly

or is mostly stable with increasing values of YP [79]

2021 Ahmed, A
et al. Modelling The important parameter for hole cleaning with an engineering

methodology to consider is the hole enlargement [80]

2022 Jimmy et al. Modelling A new cutting lifting factor [81]

2023 Iqbal et al. Rheology Raising viscosity enhances cutting transport performance but
decreases performance in transition and laminar [82]

Several models and studies have been discussed in the preceding text. Notably, Ogun-
rinde and Dosunmu developed a model to estimate the optimal ROP and flow rate, which
demonstrated high accuracy in real-time drilling operations [45]. Similarly, Saihati et al.
proposed a predictive drilling torque model [48], while Elmgerbi et al. utilised two inter-
connected models to optimise drilling hydraulics. Specifically, they employed predictive
and analytical models to predict, compute, and optimise surface drilling parameters [54].
These models have shown promising results in enhancing drilling efficiency and accuracy.
Notwithstanding the plethora of models and studies available, the CCI model, as proposed
by Robinson [29], exclusively takes into account the adequacy of vertical transportation of
cuttings, without providing any insight into the actual quantity of cuttings present, and is
restricted to application within the drill pipe. Consequently, it is imperative to devise an
innovative model that takes into account all the significant variables that impact the state
of hole cleaning. Additionally, the proposed approach should be authenticated by utilising
real-time field data and historical data from previously drilled wells. The following two
sections delineate the mathematical development of the novel HCI and its implementation
and verifications in three wells.
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3. Development of a Novel Hole-Cleaning Index

The novel real-time automated model of the status of hole cleaning developed in
this study is based on the carrying-capacity index of cuttings developed by Robinson in
2004 [29]. Ideally, Robinson created a model that utilizes the power law constant, mud
weight, and annular velocity to estimate the changes in pressure differential at the bottom
of a hole based on the mud weight and cuttings in the annulus. The calculation procedure
assumes that annular pressure losses from drilling fluid flow remain constant, and the
accuracy of current calculations is not considered precise enough to include them in this
process. Therefore, the carrying capacity of the drilling fluid can be estimated using the
carrying-capacity index (CCI), shown in Equation (1) [29].

CCI =
k × AV × MW

400, 000
(1)

where k is the consistency index, which can be obtained from Equation (2) based on [83–85],
AV is the average annular velocity (ft/min), and MW is the drilling fluid density (pcf).

k = ((PV + YP))(510)1−n (2)

where n is the flow behavior index, PV is the plastic vicosity (cP), and YP is the yield point
(lb/100 ft2).

More importantly, based on the Robinson results, when the borehole is effectively
cleaned, the drilling rate initially decreases until the first drilled solids reach the surface.
However, as these solids are removed, the bottom-hole pressure still increases, albeit at a
slower rate. As more solids are eliminated due to good carrying capacity, the bottom-hole
pressure starts to decrease. The first solids typically reach the surface when the bit reaches
a depth of 11,100 ft. The ROP then decreases more gradually until the bit reaches a depth
of 11,200 ft. At this point, enough drilled solids are being removed that the drilling rate
actually increases, as illustrated in Figure 2a. In contrast, if the hole cleaning is poor, drilled
solids continue to accumulate in the annulus, and the drilling rate does not show significant
abrupt changes. This effect is demonstrated in terms of the pressure differential during
drilling, as shown in Figure 2b [29].
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Although the sharpness and tumbling movement of the cuttings in the annulus can
be used by the CCI to determine whether they are being carried properly in a vertical
well, it does not reveal how many cuttings are actually present and is only applicable
inside the drill pipe, in accordance with [29,86]. Moreover, additional parameters, such
as hydraulic velocities, must be taken into account to achieve a more accurate evaluation
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of hole-cleaning performance in deviated and horizontal drilling. The drilling fluid’s
rheological characteristics, which include the low-shear yield point (LSYP) parameter, are a
significant factor [2]. The calculated cutting slip and annular velocities must also be taken
into account. Cutting slip is the difference between the velocities of the drilling fluid and
the cuttings, whereas annular velocity is the velocity of the drilling fluid within the annulus
that exists between the drill string and the wellbore. These parameters can be used to
calculate the amount of cuttings that are transported to the surface and how well holes
are cleaned [53]. Therefore, the novel index indicator considers all the important factors
affecting the status of hole cleaning and is called the hole-cleaning index (HCI). It was
developed starting from the CCI calculated using Equation (1) [29]. Moreover, Appendix A
shows a flowchart for the development of the HCI starting from CCI.

More importantly, in Equation (2), PV represents the mechanical friction between the
drilling fluid solids and drilling fluid that causes resistance to flow [87]. YP is the minimum
value of stress that is required to move the fluid [48]. R3 is the viscometer reading at
3 rpm, and R6 is the viscometer reading at 6 rpm, which can be used to predict the yield
point at a low shear rate that can be defined as LSYP. Specifically, LSYP can contribute
significantly to hole-cleaning efficiency and the ability to transport drill cuttings in the
drilling of directional wells, and it is as critical and important as YP during well drilling.
In drilling operations practices, it is highly recommended to have increased YP and a
decreased LSYP [88]. In addition, Bern et al. defined LSYP as the minimum yield stress for
preventing solids settling (sagging) [89]. The value of LSYP can be dramatically decreased
by increasing the pH because the increase in pH readings can support the minimization of
the bentonite’s dispersion particles, and then, the particles of bentonite will not assist the
fluid viscosity being established. Hence, the lifting capacity of drilling mud to transport
the generated drill cuttings will be minimized [90]. The standard API of measuring the
low-shear yield point is defined as (LSYP = 2R3 − R6), which is used to estimate the proper
yield stress [91]. For a newly developed HCI, the LSYP was considered for better simulation
of hole conditions and rheological drilling fluid influences during drilling operations.
Therefore, PV and YP can be modified based on the LSYP, as shown in Equations (3) and
(4), based on [2].

PV = R600− R300 = PVm = (R600− LSYP)− (R300− LSYP) (3)

YP = 2R300− R600 = YPm = 2(R300− LSYP)− (R600− LSYP) (4)

Generally, k describes the thickness of the fluid and is thus somewhat analogous to
apparent viscosity [92]. As the consistency index increases, the mud becomes thicker, based
on [92]. n determines whether the fluid becomes less or more viscous as the shear rate
increases, in accordance with [92,93]. The original expressions for k and n do not contain
LSYP [83,84,92]. Here, the expressions for k and n of the developed real-time model take
LSYP into account, and the LSYP term is a function of the viscometer readings at 3 and
6 rpm [4,84]. Thus, the modified km and nm that contain the modified PVm and modified
YPm considering the LSYP can be obtained from Equations (5) and (6) [2,84].

km = ((PVm + YPm)− (LSYP))(510)−n = ((PVm + YPm)− (2R3− R6))(510)−nm (5)

n = 3.32log
(
(2PV + YP)
(PV + YP)

)
= nm = 3.32log

(
(2PVm + YPm)− (2R3− R6)
(PVm + YPm)− (2R3− R6)

)
(6)

In Equation (6), nm is expressed as a function of PVm, YPm, and LSYP as defined by
the equation. Substituting Equation (5) into Equation (1) and replacing CCI with the new
parameter HCI yields Equation (7).

HCI =
km × AV ×MW

5867
(7)
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Moreover, in Equation (7), the AV (as expressed in Equation (8)) is a drilling hydraulic
parameter [29,84] that can be modified to include the effect of the hole inclination and
the impact of the cutting rise velocity, cutting transport velocity, and cutting slip velocity
defined by Equation (9). The modified annulus velocity (AVm), which is equal to Vtransport,
is defined by Equation (9) as the summation of the velocity corrected for the wellbore
inclination effect (Vcorrected) and cutting slip velocity (Vslip) based on [45,84], where Vcorrected
and Vslip are in (ft/min). Vslip can be calculated by considering the axial and radial cutting
slip velocities with the influence of inclination and azimuth, as mentioned by Azar [32,39]
and Robello [86]; therefore, Vslip = Vsa cos(α) +Vsr sin(β), where Vsr is the redial cutting
slip velocity and Vsa is the axial cutting slip velocity. Moreover, in Vslip, the weight of

cuttings and cutting diameter (inch) can be considered and calculated as dC = 0.2
(

ROP
DSR

)
in accordance with [45,84,94]. Finally, Vcorrected, including annular, cutting, and transport
velocities, and Vslip can be defined by Equations (10) and (11), respectively [2,45,84].

AV = AVm = Vtransport (8)

Vtransport = Vcorrected −Vslip (9)

Vcorrected =
24.5(Q)

OH2 −OD2 cos(α) +

 60(
1−

(
OD
OH

)2
)(

0.64 + 18.2
ROP

) +
ROP

(
OH2)

60(OH2 −OD2)

sin(β) (10)

Vslip =

 175
(

0.2
(

ROP
DSR

))(
22− MW

7.481

)2nm

(MW/7.481)nm( 2.4Vann
OH−OD ( 2nm+1

3nm
)( 200Km(OH−OD)

Vann
))

nm

 (11)

where Q is the mud pump flow rate (gal/min), OH is the hole size (in), OD is the drill pipe
outside diameter (in) in the drilling-string design, α and β are the inclination and azimuthal
directions of the hole (degrees), respectively, ROP is the drilling rate of penetration (ft/h),
and DSR is the drill-string rotation (rpm). More importantly, the modified AVm is applicable
inside the drill pipe and in the annulus according to [83,86]. By combining Equation (8) to
Equation (11), the transport velocity or the modified annular velocity can be expressed as
indicated in Equation (12) [2,45,84].

AVm = Vtransport =
(

24.5(Q)
OH2−OD2 cos(α)

+

(
60(

1−(OD
OH )

2)
(0.64+ 18.2

ROP )
+

ROP(OH2)
60(OH2−OD2)

)
sin(β)

)
+

175(0.2( ROP
DSR ))(22− MW

7.481 )
2nm

(MW/7.481)nm ( 2.4Vann
OH−OD (

2nm+1
3nm )( 200Km(OH−OD)

Vann ))
nm

(12)

where Vann is expressed as a function of Q, OH, and OD by Equation (13), which is the
original annular mud velocity applied in the vertical hole section based only on [83]. The
modified annular velocity as defined in Equation (12) is a function of the flow rate and
weight of the drilling fluid with cuttings, size of the drilled hole, outer diameter of the drill
pipe, rate of penetration, drill-string rotation, modified plastic viscosity, modified yield
point, viscometer reading at 3 rpm, viscometer reading at 6 rpm, wellbore inclination, and
azimuthal directions [2,45,83,84]. Based on [2,9,86], the MW in Equation (7) is replaced by
the equivalent mud weight (EMW) (Equation (15)), which accounts for the weight of the
cuttings’ influence and is a function of ROP, OH, and Q ((Equation (14)).

Vann =
24.5(Q)

OH2 −OD2 (13)
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CA =
0.00136ROP(OH)2

Q
(14)

An equivalent mud weight (EMW) that incorporates the cutting accumulation (CA) is
presented by Equation (15), based on [2,55,86].

EMW = MW(CA) + MW (15)

Finally, the HCI is expressed as a function of PVm, YPm, LSYP, Km, nm, AVm, and EMW
calculated using Equations (3)–(6), (12), and (15) (see Figure 3).
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Equation (16) can be used to compute and finalize the modified HCI as a consequence:

HCI =
Km·AVm·EMW

5867
(16)

The application of HCI to determine the status of hole cleaning during drilling is based
on the classification of the HCI value. As the HCI parameter developed in this study is
based on CCI, the classification ranges for the HCI parameter are based on the ranges of
CCI, in accordance with [29]. CCI has two classification ranges of CCI > 1, which indicates
proper hole-cleaning performance during drilling, and CCI < 1, which indicates insufficient
hole cleaning [29]. Classification of CCI was also adopted for the HCI parameter [29]. An
HCI value greater than 1 indicates proper hole cleaning, while an HCI value less than
1 indicates ineffective hole cleaning, which may lead to induced problems during drilling.
More importantly, as illustrated in Figure 3, the HCI is a comprehensive metric and model
that considers various parameters when assessing the effectiveness of hole cleaning. These
parameters include rheological properties and density of the drilling fluid, as well as
mechanical factors associated with drilling, such as well trajectory survey, mud velocities,
rate of penetration, drill-string rotation, and cutting accumulation load. By considering
these factors together, the HCI provides a more complete picture of the hole-cleaning
conditions and can help identify potential issues that may arise during drilling. The use of
the HCI in drilling operations can help optimize the drilling process and improve wellbore
integrity. By monitoring the HCI and making adjustments to drilling parameters as needed,
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drilling teams can ensure that the wellbore is being cleaned effectively and that drilling
operations are proceeding smoothly.

4. Field Applications Using the Novel Hole-Cleaning Index

The following flowchart exemplifies the estimation of the novel HCI model in real
time (see Figure 4). Specifically, the flowchart demonstrates how the novel HCI model
can be estimated in real time, with input data collected from various sources, including
the monitoring operation, surface data, and operation report data. Three wells, namely
Well-A, Well-B, and Well-C, were selected for this purpose. Furthermore, the performance
of the HCI model was evaluated, and the importance, assumptions, and limitations of using
the model in real-time are discussed. Finally, recommendations are provided to further
improve the accuracy and efficiency of the model.
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4.1. Case Study and Data Description

Validation of the new HCI was demonstrated while directionally drilling 12.25′′ in-
termediate sections of two offshore wells (Well-A and Well-B) and an 8.5′′ liner section
of another offshore well, Well-C, which experienced a stuck pipe incident. The 3 sections
were highly deviated sections starting at 30 degrees and ending up nearing horizontal or
90 degrees inclination at the top of the reservoir. Figure 5 provides a clear schematic view
of the three wells, including their respective sections. In the case of Well-A, the novel HCI
model was utilized to evaluate the hole-cleaning conditions in the intermediate section
at depths ranging from X100 to X1000 ft. For Well-B, the model was utilized to evaluate
the hole-cleaning conditions at depths ranging from X100 to X520 ft. In the case of Well-C,
which experienced a stuck pipe incident, the novel HCI model was utilized to evaluate hole
cleaning in a stuck pipe incident due to the cutting accumulation at depths ranging from
X1200 to X2200 ft. In this study, the formation and drilling cutting properties were carefully
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considered to ensure the effectiveness of the drilling process while utilizing the novel HCI
model.
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Figure 5. A schematic view of the wells and the sections used: (a) Well-A; (b) Well-B; (c) Well-C.

For Well-A and Well-B, the formation was composed of sandstone, limestone, and
shale, with formation temperatures ranging from 140 to 155 ◦F. The formation porosity
ranged from 0.15 to 0.25. The washout, which is the enlargement of the wellbore diameter
due to the erosion of the formation, ranged from 10% to 30%. The properties of the
drilling cuttings were also critical to the success of the drilling process. The density of the
drill cuttings ranged from 20 to 24 ppg. The size of the drill cuttings ranged from 0.2 to
0.375 inches. Table 3 summarizes key characteristics of the drilled formations and cuttings
produced during drilling of these sections. The two sections were drilled using an oil-based
drilling fluid. For Well-C, the formation and drilling cutting properties were critical to
the success of the drilling process. The formation temperature had a range of 155–175 ◦F,
the porosity ranged from 0.10 to 0.15, and the washout had a range of 10–30%. The drill
cuttings had a density of 20–24 ppg and a size of 0.15–0.3 inches. The section was drilled
using an Innovert oil-based mud. Table 4 summarizes the drilling fluid properties used to
drill these sections.

In addition to the properties of the formation and drilling cuttings, several important
parameters were carefully monitored and recorded during the drilling operations to ensure
the accuracy and effectiveness of the HCI model. These parameters included the rheological
properties of the drilling fluid, mechanical drilling parameters, hole section directional sur-
vey, and hydraulic velocities. To facilitate the analysis and interpretation of the data, tables
were created to summarize the various parameters recorded during drilling operations.
The other rheological properties of the drilling fluid, mechanical drilling parameters, hole
section directional survey, and hydraulic velocities required for calculation of the HCI are
listed in Table 5, Table 6, and Table 7 for Well-A, Well-B, and Well-C, respectively. These
data were crucial for the calculation of the HCI, which required accurate and up-to-date
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information on the position and orientation of the drill bit. Calculating the HCI played a
critical role in maintaining effective hole cleaning and preventing stuck pipe incidents.

Table 3. Formation and drilling cutting properties for Well-A, Well-B, and Well-C.

Formation and Drilling Cutting Properties for Well-A and Well-B

Parameter Value

Formation lithology type Sandstone, limestone, and shale
Formation temperature (140–155) ◦F

Formation porosity 0.15–0.25
Washout 10–30%

Density of drill cuttings (20–24) pounds per gallon (ppg)
Size of drill cuttings (0.2–0.375) inches (in.)

Formation and drilling cutting properties for Well-C

Parameter Value
Formation lithology type Sandstone, limestone, and shale
Formation temperature (155–175) ◦F

Formation porosity 0.10–0.15
Washout 10–30%

Density of drill cuttings (20—24) pounds per gallon (ppg)
Size of drill cuttings (0.15—0.3) inches (in.)

Table 4. The drilling fluid characteristics for Well-A, Well-B, and Well-C.

The Drilling Fluid Characteristics for Well-A and Well-B

Parameter Characteristic Range

Oil-based drilling mud density 80 lb/ft3

Oil ratio (0.75–0.8)
Water ratio (0.2–0.25)

Electrical stability (400–600) Volts
Low-gravity solids (2.5–5) Percent (%)
High-gravity solids (10–15) Percent (%)

Marsh funnel viscosity (65–75) Seconds (s)
Solid content (15) Percent (%)

Mud solid control equipment efficiency 0.5

The drilling fluid characteristics for Well-C

Parameter Characteristic Range
Oil-based drilling mud density 88 lb/ft3

Oil ratio (60)
Water ratio (40)

Electrical stability (580–742) Volts
Low-gravity solids (2.5–5) Percent (%)
High-gravity solids (10–15) Percent (%)

Marsh funnel viscosity (55–65) Seconds (s)
Solid content (10) Percent (%)

Mud solid control equipment efficiency 0.5

Table 5. Well-A measured and calculated parameters.

Measured Parameters Minimum Maximum Average

α, degrees 30 90 60
B, degrees 69 110 90
MW, pcf 80 80 80
PV, cP 30 32 31
YP, cP 23 24 24
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Table 5. Cont.

Measured Parameters Minimum Maximum Average

R3, cP 12 13 13
R6, cP 13 14 14

WOB, KIb 10 39 24
DSR, rpm 40 177 153

Q, Gal/min 590 1033 958
SPP, psi 900 2730 2411

Calculated Parameters

LSYP, cP 11 12 12
Km, cP 0.32 0.36 0.34

nm 0.76 0.79 0.775
EMW, pcf 82 86 84

Vann, ft/min 120 211 167
Vtransport, ft/min 182 419 325

Vslip, ft/min 10 30 20
Vcorrected, ft/min 170 440 300

Table 6. Well-B measured and calculated parameters.

Measured Parameters Minimum Maximum Average

α, degrees 30 90 60
B, degrees 55 145 100
MW, pcf 80 80 80
PV, cP 30 30 30
YP, cP 23 23 23
R3, cP 11 11 11
R6, cP 8 8 8

WOB, KIb 22 39 30
DSR, rpm 50 190 171

Q, Gal/min 640 688 685
SPP, psi 1500 2730 3000

Calculated Parameters

LSYP, cP 14 14 14
Km, cP 0.23 0.23 0.23

nm 0.82 0.82 0.82
EMW, pcf 82 87 85

Vann, ft/min 130 140 140
Vtransport, ft/min 109 390 248

Vslip, ft/min 10 35 22.5
Vcorrected, ft/min 41.2 171 106

Table 7. Well-C measured and calculated parameters.

Measured Parameters Minimum Maximum Average

α, degrees 22.9 82.75 42.83
B, degrees 53 115 84
MW, pcf 88 88 88
PV, cP 19 24 23
YP, cP 20 24 22
R3, cP 7 9 8
R6, cP 9 11 10

WOB, KIb 4.2 32.9 22.3
DSR, rpm 46.9 101.9 79.2
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Table 7. Cont.

Measured Parameters Minimum Maximum Average

Q, Gal/min 429 627 565
SPP, psi 1800 4062 3807

Calculated Parameters

LSYP, cP 6 8 7.42
Km, cP 0.364 0.55 0.41

nm 0.655 0.736 0.713
EMW, pcf 88 91 89.7

Vann, ft/min 222 325 293
Vtransport, ft/min 44 208 124

Vslip, ft/min 19 147 60
Vcorrected, ft/min 103 261 200

Moreover, a polycrystalline-diamond-cutter (PDC) drilling bit with 6 nozzles of
16/32′′ size, hydraulic horsepower of 2.5–3.8, and total bit flow area of 1.17 square inches
was employed to drill the sections under study in both wells. The other components of the
bottom-hole assembly are listed in Table 8 for 12.25′′and 8.5′′deviated sections.

Table 8. Bottom-hole assembly (BHA) used to drill the 12.25′′and 8.5′′deviated sections.

Bottom Hole Assembly (BHA) for 12.25′′

Number of
Joints Component OD (in) ID (in) Weight

(lb/ft) Connection Length (ft)

1 12.25 PDC drilling bit 12.25 2.78 150 pin 6-5/8 REG 0.89
1 RSS + motor 8 5.25 135 Box 6-5/8 REG 35.4
1 Bottom sleeve stabilizer 12.125 - - Box 6-5/8 REG 35.4
1 Float sub 8 3 147 Box 6-5/8 REG 2.82
1 String stabilizer 8 3 147 Box 6-5/8 REG 7.24
1 Measurements while drilling (MWD) 8 3.25 143 Box 6-5/8 REG 31.0
1 Downhole screen 8 3.25 143 Box 6-5/8 REG 6.20
4 Drill spiral collar 8 3 147 Box 6-5/8 REG 120.2
1 Drilling jar 8.12 2.75 132 Box 6-5/8 REG 21.8
2 Drill spiral collar 8 3 147 Box 6-5/8 REG 89.7
1 Cross-over 8 3 147 Box 4-1/2 REG 2.89
4 Heavy-weight drill pipe (HWDP) 5.5 3 49.3 - 120.3

Total 473.73

Bottom Hole Assembly (BHA) for 8.5′′

Number of
joints Component OD (in) ID (in) Weight

(lb/ft) Connection Length (ft)

1 8.5 PDC drilling bit 8.5 2.256 135 pin 6-5/8 REG 1
1 RSS + motor 6.75 2 120 Box 6-5/8 REG 35.36
1 Stabilizer 8 2.75 7
1 Float sub 6.75 3.25 132 Box 6-5/8 REG 2.83
1 Measurement while drilling (MWD) 6.75 3.25 132 Box 6-5/8 REG 35.35
1 Downhole screen 6.75 3.25 132 Box 6-5/8 REG 6.258
1 PBL circulating sub 6.75 2.75 6.5
5 Drill spiral collar 6.75 3.25 132 Box 6-5/8 REG 150.265
1 Drilling jar 6.625 2.625 132 Box 6-5/8 REG 20.25
3 Drill spiral collar 6.75 3.25 132 Box 6-5/8 REG 90.865
1 Cross-over 6.75 3 132 Box 4-1/2 REG 2.895
5 Heavy-weight drill pipe (HWDP) 5 4.27 26 - 150.356

Total 508.929
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4.2. Results and Analysis
4.2.1. The Application of the Novel HCI Model in Well-A and Well-B

The results of applying the novel HCI model were tested in two wells. The HCI system
underwent testing and validation in the field. Implementing the new HCI model and its
automation proved to be a valuable addition to drilling best practices, minimizing potential
problems caused by insufficient hole cleaning. The results of the field application are
explained below for Well-A and Well-B.

Well-A

The first case study considered in this work involves a well identified as Well-A, where
the HCI was employed during drilling to optimize hole cleaning. The changes in HCI and
other drilling parameters of this case are shown in Figure 6. In Well-A, during drilling
at a depth of X500, the HCI value is more than 1.1, indicating that the wellbore is clean,
without accumulation of any cuttings. The crew also did not observe any other indication
of the accumulation of cuttings. At a depth of X760 ft, the HCI value begins to continuously
decrease from 1.17 to less than 1.1 at a depth of X840 ft, as shown in Figure 6. As indicated,
the decrease in HCI is not caused by an increase in ROP. Hence, the crew decided to clean
the hole by increasing the pumping rate of the drilling fluid from 750 to 915 gal/min, which
increased the HCI from less than 1.1 to more than 1.15.
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The crew also reported a decrease in erratic torque, which is an indication of removing
the solids that had accumulated earlier at the bottom of the well. The crew members
attempted to increase the drilling rate depending on the real-time estimation of the HCI.
The changes in the drilling parameters and the associated HCI for this case are shown
in Figure 7. The crew noted that the HCI indicates proper hole cleaning by evaluating
the hole-cleaning conditions at depths between X120 and X150 ft. Thus, they decided
to increase ROP by applying more weight on bit (WOB) to increase well drillability, as
shown in Figure 7. When ROP is increased, the HCI decreases due to an increase in the
concentration of cuttings in the wellbore, as indicated in Figure 7.
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According to the driller, this trend also correlates with an increase in the drilling torque.
As HCI values are still greater than 1.0 at a depth of ×300, which is the minimum limit for
proper hole cleaning, the driller decided to maintain the same ROP of 280 ft/h for drilling
deeper sections. The crew did not report any stuck pipe problems during drilling, and they
were able to increase the drilling rate of this section based on the application of the HCI.
More importantly, Figures 6 and 7 clearly illustrate the substantial discrepancy between the
accuracy of the CCI and the novel HCI model in evaluating hole-cleaning conditions. The
figures demonstrate that the CCI was not applicable and produced highly inaccurate results
when compared to the highly accurate and reliable novel HCI model. In Figure 5, the CCI
values ranged from 2.2 to 2.5 at depths from X400 to X430 ft, whereas the HCI values for the
same depths ranged from 1.01 to 1.2. This significant difference highlights the limitations of
the CCI and emphasizes the importance of utilizing the advanced HCI model for accurate
and reliable hole-cleaning evaluation, particularly in deviated and horizontal wells.

Well-B

The second well of this study is identified as offset Well-B, where HCI was used to
evaluate the deficiency of hole cleaning due to cutting accumulation and HCI was not
employed for hole-cleaning efficiency. The drilling parameters and HCI are shown in
Figure 8. The driller noted that the HCI is stable at approximately 1.13 for more than 100 ft,
from X320 to X420 ft. At X420 ft, ROP decreases considerably from 300 to 200 ft/h due to
drilling through a hard formation.

However, as the hole was appropriately cleaned, the driller decided to apply more
WOB to increase ROP again to approximately 300 ft/h. The crew noted that the HCI
gradually decreases when the ROP begins to increase, indicating the accumulation of
cuttings. Hence, the driller was forced to increase the pumping rate of the drilling fluid
from approximately 730 to almost 845 gal/min, as indicated in Figure 8, to maintain a clean
hole while drilling at a higher rate without encountering any stuck pipe problems.

As the driller was aware that the bit would penetrate a soft formation at a depth of
X160 ft, he decided to reduce WOB from 37 to 18 Klbf to prevent a significant increase in ROP.
As indicated in Figure 9, even though WOB was significantly decreased to approximately
1/3rd of its value, ROP in this soft formation increased only slightly from 200 to 240 ft/h.
Even the HCI increased with this change, which did not lead to cutting accumulation.
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The drilling rate increases again from 240 ft to approximately 285 ft, accompanied
by a decrease in HCI values from 1.14 to 1.06 without any change in WOB, owing to the
penetration of another softer formation. Despite this decrease in HCI, the driller decided
not to reduce WOB to decrease the drilling rate, as an HCI value of 1.06 is still in the safe
zone to obtain appropriately clean holes. In addition to the discrepancies observed in
Well-A, the CCI was also found to be unreliable in Well-B, producing inaccurate values
when compared to HCI. Furthermore, it is crucial to take into account additional parameters
such as hydraulic velocities to achieve a more comprehensive and accurate evaluation of
hole-cleaning performance, particularly in deviated and horizontal drilling. The accurate
measurement and tracking of hydraulic velocities are critical in ensuring the effective
removal of drilling cuttings from the wellbore and preventing incidents such as stuck
pipe incidents.

Table 9 summarizes the impact of the implementation of HCI on well performance
when enhanced hole cleaning was performed in Well-A. The HCI had an average value
greater than 1, and the CA was 0.024 in Well-A, whereas it was less than 0.04 in Well-B. The
ultimate results show average ROP improvement in Well-A due to proper hole-cleaning
achievement.
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Table 9. Impact of employing HCI on well performance.

Performance of Well-A employing HCI

Items Output Minimum Maximum Average Remark
1 HCI 0.8 1.9 1.5 Optimized hole-cleaning efficiency

2 CA 0.012 0.039 0.024
Smooth cutting accumulation in

annulus removal due to optimized
hole-cleaning efficiency

3 ROP 120 280 205 Optimized drilling performance due to
proper hole-cleaning efficiency

Performance of Well-B without employing HCI

Items Output Minimum Maximum Average Remark
1 HCI 0.3 1.3 0.81 Improper hole-cleaning efficiency

2 CA 0.03 0.08 0.04
Low removal of cutting accumulation

in annulus due to improper
hole-cleaning efficiency

3 ROP 100 260 135 Low drilling performance due to
insufficient hole-cleaning efficiency

4.2.2. The Application of the Novel HCI Model in Well-C in the Case of a Stuck Pipe

In deviated Well-C, the HCI model proved its effectiveness in evaluating stuck pipe
incidents due to cutting accumulation. The third well of the study, which was identified as
offset Well-C, was used to evaluate the performance of the HCI in these situations. The HCI
was not employed for hole-cleaning efficiency in this well, but it was utilized to evaluate the
stuck pipe incident caused by cutting accumulation. The drilling parameters and HCI values
for Well-C are shown in Figure 10. As seen in the Figure 10, the driller noted an increase
in cutting accumulation at depths ranging from X1200 to X1380 ft. Moreover, the driller
observed that the HCI remained stable at approximately 0.55 to 0.8 for more than 700 ft,
from X1520 to X2200 ft. Furthermore, at X1590 ft, the rate of penetration (ROP) decreased
significantly from 200 to 100 ft/h due to the cutting accumulation, ultimately resulting
in a stuck pipe incident. The driller was then forced to stabilize the pumping rate of the
drilling fluid at almost 600 gal/min, as indicated in Figure 10. The HCI model was crucial
to indicating and evaluating the hole conditions leading to the stuck pipe incident. By
utilizing the HCI model, drilling teams can quickly identify and mitigate issues, preventing
incidents such as stuck pipes and reducing nonproductive time, resulting in more efficient
and cost-effective drilling operations. The effectiveness of the HCI model in evaluating
stuck pipe incidents demonstrates its potential to significantly improve drilling operations.
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Table 10 summarizes the impact of the implementation of the HCI on well performance
when hole cleaning during a stuck pipe accident in Well-C was evaluated. The HCI had an
average value greater than 0.75, and the CA was 0.02 in Well-C.
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Table 10. Impact of employing HCI on Well-C performance in the case of a stuck pipe.

Performance of Well-C Employing HCI

Items Output Minimum Maximum Average Remark

1 HCI 0.34 1.7 0.79 Improper hole-cleaning efficiency

2 CA 0.02 0.2 0.064
Low removal of cutting accumulation

in annulus due to improper
hole-cleaning efficiency

3 ROP 0.665 256 110
Low drilling performance due to

insufficient hole-cleaning efficiency and
stuck pipe

5. The Importance, Assumptions, and Limitations of Utilizing the Novel HCI Model in
Real Time

The proposed HCI model sets itself apart from existing models that rely solely on labo-
ratory data and lack the ability to provide real-time predictions. HCI utilizes a combination
of real-time, surface, and operational data to produce instant predictions with high accuracy.
This allows for the early identification and mitigation of abnormalities, leading to reduced
drilling costs and operational time. In addition, the HCI model addresses the limitations of
existing drilling operation models by providing instant predictions based on a combination
of real-time, surface, and operational data. The automated flowchart shown in Figure 11
demonstrates the effectiveness of the HCI model in enhancing hole-cleaning performance
and overall drilling efficiency. This innovative approach has the potential to significantly
improve drilling operations, resulting in reduced costs and increased resource extraction.
By leveraging the HCI model, drilling abnormalities can be identified and mitigated at an
early stage, leading to reduced drilling costs and minimized operational time. As a result,
the HCI model significantly enhances drilling performance efficiency.
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The HCI model has become an increasingly important index for hole cleaning in the oil
and gas industry due to its ability to support consistent rig-site data capture and reporting
across all operations, implement consistent data-quality methods and procedures, and
support multiple units of measure. Additionally, the HCI enables operations engineers to
remotely oversee drilling, provides accurate historical operations and performance data to
well planners for statistical risk analysis, facilitates informed decision making, and enables
live monitoring of drilling operation processes.
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The HCI model also allows for the verification of best practices in drilling, drives
continuous improvement across teams and basins, enforces procedural compliance, and
elevates operational excellence. Furthermore, the HCI model ensures that data are always
decision-ready, benchmarks drilling team performance, recognizes areas of improvement,
and sets goals for footage per day, connections, and tripping. With analytics to mini-
mize slide percentage, optimize drilling parameters, and mine offset wells for the best-
performing BHAs, the HCI model contributes to safer, better, and faster drilling of wells.
Additionally, it enables automated alerts and on-screen index indicators to avoid costly
hazards, streamlines decision making, and accelerates ROP, while reducing drilling costs
by leveraging next-generation directional guidance and rotary automation.

Despite its advantages, the HCI model also has limitations that must be taken into
consideration. These include rig pump limitations. Q refers to the maximum flow rate
that can be provided by the rig pumps. The top drive is another critical component that
may place limitations on RPM. The design of the drill string and BHA can also impact the
effectiveness of the HCI model, as can the performance of mud solid control equipment and
mud system capacity. Finally, the quality and accuracy of sensor data acquisition can also
affect the effectiveness of the HCI model, as any errors or inaccuracies in the data can lead
to incorrect conclusions and decisions. Furthermore, the HCI model is based on certain
assumptions, which include no total lost circulation incidents, no well control incidents,
and no wellbore instability. These assumptions are critical to the accurate and effective use
of HCI in the oil and gas industry and must be considered when applying the model to
operational decision making.

6. Conclusions

In this study, a hole-cleaning index (HCI) was developed to optimize hole cleaning
and positively impact well drilling ability by considering various parameters, such as
drilling fluid properties, hydraulic velocities, and hole properties. Several points can be
summarized as follows: the developed HCI model was rigorously tested and validated in
the field in 3 wells, and the results demonstrated a remarkable improvement in well drilling
performance by up to 50%. This significant improvement highlights the advanced capabili-
ties of the HCI model and its ability to accurately evaluate hole-cleaning performance and
optimize drilling operations.

• The limitations of the CCI were observed in all three wells, namely Well-C, Well-B, and
Well-A, further emphasizing the unreliable nature of this model in evaluating hole-
cleaning performance. In contrast, the HCI model proved to be highly accurate and
reliable in all three wells. Moreover, accurate measurement and tracking of hydraulic
velocities and the drilling fluid’s rheological characteristics are crucial to achieving a
more comprehensive and accurate evaluation of hole-cleaning performance, particu-
larly in deviated and horizontal drilling. Furthermore, the HCI was applied in Well-C
and showed a highly accurate result from its evaluation of the hole-cleaning condition.

• The implementation of the new HCI model can also lead to cost savings by preventing
incidents such as stuck pipe and reducing non-productive time, resulting in more
efficient drilling operations. Therefore, the adoption of the new HCI model can have a
significant impact on drilling operations, promoting safer, more efficient, and more
cost-effective drilling practices.
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Nomenclature

R3 3 reading revolutions per minute, cP
R300 300 reading revolutions per minute, cP
R6 6 reading revolutions per minute, cP
R600 600 reading revolutions per minute, cP
AV average annular velocity, ft/min
CCI carrying-capacity index
CA concentration of cuttings in the annulus
K consistency factor, cP
OD drill pipe’s outer diameter, inches
DSR drill-string rotation, rpm
EMW effective mud weight, pcf
n flow behavior index
α hole angle, degrees
β hole azimuth, degrees
HCI hole-cleaning index
HWDP heavy-weight drill pipe
OH hole diameter, inches
LSYP low-shear yield point, cP
AVm modified annulus velocity, ft/min
km modified consistency factor, cP
nm modified flow behavior index
PVm modified plastic viscosity, cP
YPm modified yield point, cP
MW mud weight, pcf
MWD measurement while drilling
PV plastic viscosity, cP
Q pump flow rate, gal/min
ROP rate of penetration, ft/hr
rpm revolution per minute, rev/min
RSS rotary steerable system
dC the cutting diameter, inches
SPP stand pipe pressure, psi
Vtransport velocity of cutting transport, ft/min
Vcorrected velocity of wellbore inclination effect, ft/min
Vsr redial cutting slip velocity, ft/min
Vsa axial cutting slip velocity, ft/min
Vslip cutting slip velocity, ft/min
Vann annular velocity, ft/min
WOB weight on bit, KIb
W cutting weight, pcf
YP yield point, cP
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Appendix A. The Methodology of the Novel HCI Model

The following flowchart exemplifies how the novel HCI model surpasses the limita-
tions of the old CCI model by incorporating a multitude of factors, including hydraulic
velocities, rheological properties of drilling fluids, cutting properties, and effective mud
weight. The comprehensive approach of the new HCI model ensures a more accurate and
reliable analysis of hole cleaning, providing valuable insights that can enhance operational
efficiency and reduce the risk of costly errors.
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Appendix B. Comparisons between the Novel HCI Model and CCI

Table A1. Comparisons between the novel HCI model and CCI.

HCI CCI

Applied in vertical and directional wells Only vertical
Includes comprehensive mud rheological
properties such as PVm, YPm, LSYP, Km, nm,
and EMW (applicable inside drill pipe and in
annulus additionally)

Only PV, YP, K, n, and MW (only applicable
inside drill pipe)

Includes Vann, Vcorrected, Vslip, and Vtransport Only Vann
Includes mechanical drilling parameters
(ROP, rpm, and Q) Only Q

Considers well inclinations and azimuths Does not consider
Includes cuttings features such as cutting
weight and size Does not include

Applicable with more real-time sensors such as
ROP, RPM, Q, EMW, MWD survey, and caliper
logs for real-time hole size diameter.

Only applicable with real-time sensors such as
Q and caliper log

Includes cuttings concentration in annulus Does not includes
Field applications in real time Only experimental work
Able to identify hole-cleaning efficiency and
deficiency Not able to identify hole-cleaning deficiency.
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