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Abstract: Heating, ventilation, and air conditioning (HVAC) systems play a crucial role in either
increasing or decreasing the risk of airborne disease transmission. High ventilation, for instance, is a
common method used to control and reduce the infection risk of airborne diseases such as COVID-19.
On the other hand, high ventilation will increase energy consumption and cost. This paper proposes
an optimal HVAC controller to assess the trade-off between energy consumption and indoor infection
risk of COVID-19. To achieve this goal, a nonlinear model predictive controller (NMPC) is designed
to control the HVAC systems of a university building to minimize the risk of COVID-19 transmission
while reducing building energy consumption. The NMPC controller uses dynamic models to predict
future outputs while meeting system constraints. To this end, a set of dynamic physics-based models
are created to capture heat transfer and conservation of mass, which are used in the NMPC controller.
Then, the developed models are experimentally validated by conducting experiments in the ETLC
building at the University of Alberta, Canada. A classroom in the building is equipped with a number
of sensors to measure indoor and outdoor environmental parameters such as temperature, relative
humidity, and CO2 concentration. The validation results show that the model can predict room
temperature and CO2 concentration by 0.8%, and 2.4% mean absolute average errors, respectively.
Based on the validated models, the NMPC controller is designed to calculate the optimal airflow
and supply air temperature for every 15 min. The results for real case studies show that the NMPC
controller can reduce the infection risk of COVID-19 transmission below 1% while reducing energy
consumption by 55% when compared to the existing building controller.

Keywords: ventilation; COVID-19; airborne infection risk; nonlinear model predictive control;
optimization of energy consumption; building modeling

1. Introduction

Healthy indoor air quality (IAQ) is always critically important, especially when hu-
mans struggle with airborne diseases such as influenza (H1N1), severe acute respiratory
syndrome (SARS), Middle East respiratory syndrome (MERS), and now SARS-CoV-2
(COVID-19), which have caused considerable damage to the lives of millions of people
around the world [1]. For example, by 6 April 2023, there were 762,201,169 confirmed
COVID-19 cases, including 6,893,190 deaths, reported by the World Health Organiza-
tion (WHO) (https://www.who.int/, accessed on 6 April 2023). Micro-organisms can
become airborne when droplets are generated during coughing, breathing, talking, sneez-
ing, singing, etc., which can lead to infectious aerosols. These infectious aerosols can infect
many hosts in indoor environments, as people spend nearly 90 percent of their time in-
side buildings such as homes, schools, offices, shops, and other indoor environments [2–4].
Some initial steps such as wearing masks, washing and sanitizing hands, being quarantined,
and keeping social distance can help to reduce the infection risk of contact transmissions [5].
However, improving indoor air quality in enclosed areas is an efficient and fundamental
approach to ease or dilute the concentration of viral aerosols.
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Heating, ventilation, and air conditioning (HVAC) systems can significantly reduce
infection risk. These systems prepare comfortable zones by controlling the relative humidity,
temperature, and airflow, while removing pollutants from buildings’ indoor and outdoor
air. HVAC systems have a dual role in maintaining thermal comfort and acceptable indoor
air quality. Thus, improving and controlling the design and operation parameters of HVAC
systems by using high-efficiency filters or ultraviolet irradiation (UV) lights, advanced air
distribution, personal ventilation, controlling ventilation rate (dilution), relative humidity,
temperature, and air distribution (directional airflow) can be some of the best steps to
reduce and deactivate the aerosol particles in indoor environments.

Many articles have investigated the role of HVAC parameters in reducing airborne
diseases; some articles [6,7] reviewed the role of high-efficiency particulate air (HEPA)
filtration in removing or deactivating infectious particles. Several studies [8–10] have
shown that using UV lights in HVAC systems can reduce the airborne infection risk in
indoor environments. Qian et al. [11,12] compared three common ventilation systems:
downward, displacement, and mixing. They investigated three locations for the exhaust to
notice which one of them performs better to decrease the risk of infection.

On the other hand, HVAC systems consume about 40% of buildings’ energy [13–15].
As mentioned before, ventilation is critical in reducing the transmission of airborne disease
in indoor environments. Still, increasing ventilation to minimize the infection transmis-
sion probability causes high energy consumption and costs; thus, a suitable HVAC con-
troller is desired to provide required IAQ and desired thermal comfort while decreasing
energy consumption.

Different control approaches have been used in buildings to control HVAC systems.
These approaches include two-position on and off control, proportional–integral (PI)
control, proportional–integral–derivative (PID) control, model predictive control (MPC),
etc. [16–18]. Compared with other controllers, the MPC controller can reduce energy con-
sumption and maintain proper IAQ [18,19]. The MPC controller can predict states with
reasonable accuracy by using dynamic models of buildings while being tuned to system
constraints. The dynamic models of building and HVAC systems are often nonlinear.
However, in most studies, nonlinear dynamic models were simplified to linear ones using
linear MPC controllers. Another approach is using nonlinear model predictive controllers
(NMPC) that use the nonlinear models directly and provide better control results compared
to the linear MPC approach. Figure 1 outlines some of the prior HVAC control studies and
the types of controllers used.

Many studies support the role of HVAC systems in reducing airborne infectious
diseases; however, only a few studies have investigated the control of HVAC systems
to minimize both the infection transmission risk and energy consumption. For instance,
Wang et al. [20] used an intelligent ventilation control according to occupant densities.
They studied a new detection algorithm to recognize the distance of occupancy to decrease
the infection risk of COVID-19. On the other hand, many articles have studied the role
of controllers in preparing the proper IAQ (i.e., CO2 level, formaldehyde, ozone, etc.) or
thermal comfort with minimizing energy consumption. There is a lack of multi-objective
studies in HVAC optimal control literature to (i) minimize HVAC energy consumption,
(ii) control IAQ, and (iii) minimize risk of COVID virus transmission by maintaining
the risk level less than 1%. This work aims to address this important gap in the HVAC
control studies.

Walker et al. [21] compared the performance of two methods of MPC, centralized
and distributed methods, for indoor temperature and CO2 level with natural ventilation.
Maasoumy et al. [22] presented an MPC approach to reduce energy consumption in the
HVAC system of a university campus building by controlling the air mass flow rate.
Vasak et al. [23] developed an MPC algorithm using a resistor-capacitor (RC) thermal model
to control the HVAC system of a residential household. Pippia et al. [24] proposed that
combining a stochastic scenario-based MPC (SBMPC) controller with a nonlinear Modelica
model can provide more accurate results for buildings heating systems than the linear
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models. Ganesh et al. [25] used model predictive control to calculate the optimal ventilation
rate to decrease indoor pollutant concentrations, such as formaldehyde (HCHO), ozone,
and particulate matter (PM) while minimizing total energy consumption. Hou et al. [26]
proposed the nonlinear model predictive control to decrease heating costs in university
building heating systems while satisfying indoor temperatures. Toub et al. [27] proposed a
nonlinear model predictive controller to control MicroCSP and building HVAC systems
to optimize energy usage and reduce costs. Skrjanc et al. [28] designed an internal model
controller (IMC) with an internal loop to control the CO2 level in an indoor environment.
Cho et al. [29] developed an integrated model based on an artificial neural network to
predict the indoor concentrations of CO2, PM10, and PM2.5. They showed that the model
has high accuracy in predicting these values. Khalid et al. [30] used a fuzzy logic controller
for an HVAC system to reduce energy consumption, cost, and peak-to-average ratio (PAR).

Indoor Air Quality Control

Energy Consumption
Reduction

Cost Reduction

HVAC Control
Studies

Model Predictive Control 
"Walker et al. 2017",  "Ganesh et al. 2019" 

Nonlinear Model Predictive Control
"Hou et al. 2022",  " Toub et al. 2022"

SBMPC Controller 
"Pippia et al. 2021"

Occupant-density-detection Method
"Wang et al. 2021"

Occupant-density-detection
 "Wang et al. 2021"

IMC Controller 
"Skrjanc et al. 2014"

Neural Network Control 
"Cho et al. 2022"

Fuzzy Logic Controllers
" Khalid et al. 2019"

Model Predictive Control
 "Maasoumy et al.  2012"  , "Vasak et al.

2011" , "Ganesh et al. 2019" 

Fuzzy Logic Controllers 
" Khalid et al. 2019"

Figure 1. Classification of the control methods in HVAC systems including some of the prior
studies [20–30].

A critical review of the papers cited in Figure 1 and the papers discussed in this section
shows (i) most HVAC optimal control studies used linear or linearized models inside
model-based optimal controllers to reduce computational cost. This adversely affects the
performance of these controllers outside the calibrated region, and increases controller
calibration efforts, (ii) data-driven HVAC controllers (e.g., fuzzy logic controllers) suffer
from their capability for scalability and substantial efforts are required for tuning member-
ship functions by changing building types and building applications, (iii) there is lack of
multi-objective optimal control studies that takes into account “all” major factors includ-
ing energy consumption, temperature, and relative humidity comfort levels of occupants
in a building, IAQ, and airborne virus transmission risk, (iv) there are missing“control-
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oriented” HVAC models that include inter-relations among room air temperature, relative
humidity, risk of airborne virus transmission, and supply air velocity, (v) there is need for
model-based real-time HVAC controllers to adjust “flow velocity and flow direction” in a
building to reduce the virus transmission via airborne particles and droplets, and (vi) it is
challenging to estimate and control airborne virus transmission risk by only knowing the
number of occupants in a room. This paper aims to provide contributions in the identified
research gaps of (i) to (iii) by using “physics-based” scalable building models, design of a
multi-objective nonlinear model predictive control (NMPC) for a building HVAC system,
and use of statistical models to estimate COVID virus transmission risk by considering the
number of occupants in a room and adjusting air flow rate and supply air temperature.

To the best of the authors’ knowledge, this is the first study undertaken to design and
implement NMPC on HVAC systems to minimize the infection risk of airborne diseases
such as COVID-19, while reducing the energy consumption of HVAC systems and meeting
thermal comforts of occupants. The NMPC will enable a constrained optimal solution for
complex coupled HVAC and air quality control problems.

The primary objectives of this paper are to investigate the effect of optimal controllers
on reducing the transmission risk of airborne diseases and HVAC energy consumption.
The main new contributions of this work are (i) modeling of a large classroom in order to
predict room temperature, indoor air quality, and energy consumption, (ii) designing a
nonlinear model predictive HVAC controller to adjust airflow and supply air temperature
to reduce the concentrations of deadly airborne droplets under low risk level and provide
a thermal comfort zone while also minimizing the energy consumption of the HVAC
system, (iii) experimental data from the HVAC operation and classroom participation
during COVID-19 time, and (iv) simulation for the real case studies and comparison with
the actual building controller.

This paper is organized as follows. Mathematical models are built in Section 3.4 to
determine the concentrations of deadly airborne droplets, temperature, and CO2 concentra-
tion. Next, based on these dynamic models, a nonlinear model predictive control (NMPC)
will be designed in Section 3 to determine the optimal airflow and supply air temperature
in real-time. Finally, NMPC results are presented in Section 4, and then the potential of
NMPC controllers for building energy saving will be discussed in a real case study.

2. Test Setup

The test bed in this study is a lecture hall located on the ground floor of the north
side of the ETLC building at the University of Alberta, Edmonton, Canada. The ETLC
building, depicted in Figure 2a, is situated on the western edge of the University of Alberta
in Edmonton, Canada. This six-story building primarily serves as an educational facility,
housing offices and laboratories. Regarding the HVAC systems of the building, there is a
central mechanical ventilation system to provide the required conditioned air to ensure
a comfortable indoor environment in the building. Figure 2b provides a photo of the
classroom and its location in the ETLC building. The lecture hall area is about 300 m2 and it
can accommodate up to 120 people. This classroom has 15 supply air diffusers and 8 return
air grills and it is surrounded by two corridors, a neighboring lecture classroom, and a thick
concrete wall connected to the outdoor area (Figure 2b). The classroom has three entrances
but no window (Figure 2a).

An AHU is the heart of central air conditioning, responsible for blending outside
air with the recirculated air from the building within a mixing box. It employs various
types of air filters to effectively eliminate dust, mold, bacteria, and other harmful particles
from the combined air. Subsequently, the AHU utilizes a cooling coil, heating coil, and a
humidifier to regulate the air temperature and relative humidity to desired levels. Finally,
the AHU distributes the comfortable and clean air to individual rooms through ductwork.
The AHU under study consists of several components, including a mixing box, pleated
filters (primary filters), a water heating coil, a water cooling coil, a humidifier, supply and
return fans, and access doors for each section. Each class in the ETLC building is equipped
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with variable air volume (VAV) boxes. The fresh air is propelled by the supply fans to go
through the VAV boxes for air conditioning before entering the ETLC building classrooms.

The air volume flow rate and the supply air temperature can be controlled by adjusting
the dampers and reheating coils of the VAV boxes. The air volume that flows through the
VAV boxes relates to the damper’s position inside the VAV. The VAV reheating coils in the
ETLC building receive hot water from central steam boilers on the main campus of the
University of Alberta.

(a)

Selected 

Classroom

Neighbor 

Classroom

Corridor 1

Corridor 

2

ETLC Building Guide Schematic

(b)

Figure 2. Testbed in this study: (a) ETLC building, (b) the classroom on the ground floor of the ETLC
building at the University of Alberta.

The selected lecture classroom is equipped with three VAV boxes, as shown in Figure 3.
The existing building HVAC controller regulates the VAV damper’s position and the

reheating coil’s valve based on feedback from the thermostat installed in each classroom.
The control logic of the HVAC controller is shown in Figure 4. This controller tracks
the given set point, and it does not have any ability to improve energy consumption
by predicting the temperature trajectory. However, during the COVID-19 pandemic, in
order to decrease the transmission of infection risk, the position of VAV dampers was kept
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constant to provide the maximum ventilation, and the classroom’s temperature was only
controlled by the valves of heating coil in the VAV boxes.

Thermostat

Variable Air Volume Boxes

Figure 3. Air supply layout in the classroom, showing the location of supply-air diffusers (i.e., black
circles in the image) and the duct line in the classroom.

No

Start Troom < TlowBound Yes Mode 1 Troom > TupBound Mode 0Yes

Figure 4. Control logic of the rule-based HVAC controller in the building. Mode 1 corresponds to the
initiation of a reheat cycle, whereas Mode 0 identifies the heating coil idle state. During the COVID
time in winter 2022, a constant high air volume flow rate of 4400 CFM was applied during week days
to minimize COVID transmission risk.

During the test, the lecture classroom is equipped with nine sensors shown in Figure 5.
These sensors can measure indoor and outdoor environmental parameters including tem-
perature, relative humidity, and CO2 levels. These sensors were responsible for measuring
the temperatures of the neighbor classroom, corridors, outdoor air, and supplied air. In
addition, two of the sensors can monitor both CO2 concentration and air temperature.

The measurement devices included three Omega wireless sensors OM-EL-WIFI-TH,
four Elitech RC-4HC, one Airthings carbon dioxide meter, and one DOEATOOW indoor
CO2 monitor. The sensors constantly measured and reported the temperature in ◦C, relative
humidity in RH %, and carbon dioxide levels in parts per million (ppm).

Three wireless sensors were placed inside supply ducts to measure the supply air
temperature from each VAV box. Additionally, two sensors, labeled as S2 and S6, were
positioned in different height level of the classroom to measure the temperature and CO2
concentration of the classroom.
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Figure 5. Location of installed sensors (S) in the testbed.

3. Plant Models for Use in Controller

To design of HVAC model-based controller in this study, access to dynamic models is
required to predict changes in the classroom temperature, CO2 concentration (ventilation
requirement), and the risk of COVID virus transmission. Specifically, in Section 4, a nonlin-
ear model predictive controller (NMPC) will be designed, which necessitates simulating
the classroom temperature, CO2 concentration, and risk of COVID virus transmission
over specific prediction horizons. There are demands for developing models that are
computationally efficient for embedding inside the ” real-time” NMPC that has limited
computational power, which it requires to simulate these nonlinear models for the required
prediction horizon (e.g., the next 60 min or 24 h). These models will be included as equality
constraints in the NMPC framework to consider the classroom thermal dynamics and air
ventilation dynamics. In this section, well-recognized computationally efficient accurate
models for HVAC and COVID transmission risk calculation are selected and parameterized
for the ETLC classroom.

In this work, physical models are used wherever possible to allow easier understand-
ing of HVAC control actions along with their link to the system states, and also providing
better scalability for different building types and HVAC applications. To this end, the
building thermal behavior and variations in CO2 concentrations of the room are simulated
by using physical models; however, statistical models are used for estimating airborne
virus transmission. For control purpose in this work, the models are selected such that they
can be represented in the form of ordinary differential equations (ODEs) that are preferred
for the controller design.

In this section, first, a dynamic model is developed to gain insight into the infection
risk on the classroom based on the number of people in the classroom and the supply
airflow. Then, another model is developed to estimate the concentration of CO2, which is
based on the ventilation rate and the number of people. Furthermore, a thermal model of
the classroom is developed to predict how the classroom temperature changes through
adjusting the supply air temperature and air flow rate. Subsequently, all these models
are integrated together inside the NMPC controller to find the optimal control actions for
maintaining indoor air quality, mitigating infection risks, and minimizing HVAC system
energy consumption.

All equations in the paper are shown in continuous time domain, except for equations
shown with index (k) that refers to discrete time domain.
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3.1. Dynamic Model of Airborne COVID-19 Transmission Risk

One of the well-known models for estimating the infection risk assessment in indoor
environments is the Wells–Riley equation [31]. This model is based on the “quantum of
infection,” defined as the number of infectious airborne particles required to cause infection
in 63% of susceptible persons [32]. Regarding the Wells–Riley equation, the probability (P)
of infection can be defined by the following equation [33]:

P =
C
S
= 1− e−n (1)

where, C is the number of new infection cases, and S is the number of susceptible people. n
is the number of quanta inhaled, which depends on the time-average quanta concentration
(Cavg, quanta

m3 ), the volumetric breathing rate of an occupant (Qb, m3

h ) and the duration of
the event (D, h) [33]:

n = CaveQbD (2)

Volumetric breathing rate (Qb) depends on the type of activities and age; in this study, by
considering a light activity in the classroom, the value of Qb is defined as 0.3 m3/h [34].
In order to calculate the average quanta concentration, a mathematical model is used to
estimate the airborne disease transmission rate in the zone. This model will also be utilized
in the model predictive controller.

One of the assumptions of the Wells–Riley equation is that the air is well mixed, causing
a uniform concentration of particles inside the space. By considering this assumption as
well as the conservation of mass principle, the infection risk model is defined as [33]:

dC
dt

= (
ER
Vm

)I− λC (3)

where C is the quanta concentration (quanta per m3), ER is the quanta emission rate (quanta
per hour), I is the number of infected people, λ presents the ventilation rate (per hour),
which is calculated by dividing the air volume flow rate by the volume of the room, Vm is
the volume of the zone (m3), and t is time (h). The quanta emission rate (ER) relies on factors
such as viral load, inhalation rate, and droplet volume concentration, which depends on
occupant activities; the ER can vary over an extensive range of 3–300 quanta/h [35]. In this
paper, by considering light activity in the classroom such as speaking, the quanta emission
rate is considered equal to 58 quanta/h [34]. Regarding the Wells–Riley Equation (1),
infection probability is related to the number of quanta inhaled by susceptible people.
Thus, decreasing the concentration of quanta in an enclosed area reduces the infection risk.
In most studies, the number of infected people is considered one, whereas in reality, the
number of infected people in a zone may be more than one person. To determine how
many infected people may be inside, the prevalence rate of the disease, α, can be estimated
by the following equation [36]:

α =
NnewDu

PP(1− Fun)
(4)

I = αN (5)

where Nnew presents daily new COVID cases, Fun is the fraction of unreported COVID
cases, PP is the population, and Du is the length of the time infectious to COVID-19, and
N is the number of people in the classroom. For example, by considering the Edmonton
population of about 1.519 million, the value of Fun is 75% [37], the length of time for the
infectious period (D) is 10 days [38], and the new cases of COVID-19 during March 2022,
the population prevalence rate α is calculated to be 0.97%. Therefore, I equals 1% of people
is considered for March 2022 when this study was conducted.
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3.2. CO2 Concentration Model

By using the mass balance equation for CO2 concentrations and assuming a well-mixed
single zone model, the equation to capture CO2 changes will be [39]:

Vm
dCO2

dt
= E + Q CO2out −Q CO2 (6a)

CO2(mg/m3) = 1.8×CO2(ppm) (6b)

where Vm is the room volume (m3), CO2 is the indoor CO2 concentration (mg/m3), CO2out
represents the outdoor CO2 concentration (mg/m3), and Q is the volume flow rate of air
(m3/s). By assuming that the density of air ρa remains constant, it can be defined Q = ρaṁr
where ṁr is the mass flow rate. E is the CO2 emission rate of indoor sources; generally, E
is calculated by nsGp, where ns is the number of individuals in the classroom and Gp is
CO2 generation rate per person (mg/s). The CO2 generation rate by a person is considered
about 7.83 mg/s [39].

3.3. Building Thermal Model

Here, the concept of equivalent thermal resistance-capacitance (RC) modeling [13] is
used to predict room temperature variations. The temperature of the classroom depends
not only on the supply air temperature and air mass flow rate but also on the temperatures
of neighboring classrooms, outside air temperature, and the thermal properties of the walls
and windows surrounding the classroom. The heat transfer and heat storage equations
will be used to define the classroom’s temperature changes by using the RC model for
the classroom:

Cwij

∂Twij

∂t
= ∑

j∈Nij

(
Trj − Twij

Rij
) + rijαij Awij Qradij

(7)

Cr
i
∂Tri

∂t
= ∑

j∈Nri

(
Twij − Tri

Rij
) + ṁrcρ(Ts − Tri) + Q̇int (8)

where Trj is the temperature of the classroom neighbors, Tri is the temperature of the
classroom, Twij is the temperature of the walls, Ts is the supply air temperature, ṁr is
the mass flow rate of the supply air (kg/s), αij is radiation heat transfer coefficient, Qrad
represents the total radiation heat flow that reaches the wall, Trj are the neighboring room
temperatures, Rij is thermal resistance, which includes Row and Riw (thermal resistances for
indoor and outdoor walls), and Ci and Cw are the heat storage capacity of the classroom
and walls, respectively. In the dynamic thermal model of the classroom, Cr

i , which has the
lower thermal capacitance, represents the fast-dynamic mass (e.g., supply air), and Cwij ,
which has the higher thermal capacitance, represents the slow dynamic mass (e.g., solid
parts including walls). Q̇int is the internal heat generation in the classroom, like metabolic
heat gain from students’ bodies; which is calculated by 80.3 ns; where ns is the number
of students, and 80.3 W is the metabolic heat generation per occupant for conditions of
clothing insulation of 1.0 clo, and metabolic activity at 1.2 met, at 22 ◦C, in classrooms [40].
Rij is the thermal resistance between the classroom and other zones. Rij is calculated by
the sum of the thermal resistance for conduction (Rcond) for each side of the wall and the
thermal resistance for convection (Rconv) according to the internal or external side of the
walls. Thus, it can be written as follows [41]:

Rij = Rconv +
1
2

Rcond (9a)

Rijin =
1

hinAij
+

2Lij

κAij
(9b)
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Rijout
=

1
houtAij

+
2Lij

κAij
(9c)

where κ, h, Aij, and Lij are the thermal conductivity, the convection heat transfer coefficient,
area and thickness of the wall, respectively.

The thermal resistance-capacitance (RC) model for the classroom is illustrated in
Figure 6. The building network has two types of nodes, walls, and classrooms. There are
total l nodes, m of which represent walls, and the rest represent classrooms.

Outdoor Temp.

T5

Corridor 1 Temp. 

T2

Corridor 2 Temp.

T3

Adjacent Classroom Temp.

T4

Main Room Temp.

T1

R51

TW15

R15

TW14
TW12

TW13

R14R12

R13

Qint

Q HVAC Q rad

C1
r C 14

wall
 

C15

wall
 

C12

wall
 

C13

wall
 

R41

R31

R21

Figure 6. Equivalent resistance capacitance model for the classroom.

Here are the simplifying assumptions made in deriving the Equations (7) and (8):

• Air in the classroom is thoroughly mixed. Thus, the classroom’s temperature and air
density are constant across the classroom;

• As the classroom does not have any windows, the effect of solar radiation is negligible;
• Specific heat capacity of air, cp is equal to 1.007 KJ

Kg.K at 300 K;

• All internal walls have the same properties such as κ, L, and h.

3.4. State Space Models

For control purposes, the dynamic models (Equations (3) and (6)–(8)) are converted
into state space equations:

dx
dt

= f(x, u) (10a)

y = Cx (10b)

where x = [T1, Tw12 , Tw13 , Tw14 , Tw15 , C, CO2]
T is the state vector, u = [Ts, ṁr]T is the control

input vectors including supply air temperature and mass flow rate, y is the output vectors,
and d = [T2, T3, . . . , T5, ns, I]T represents the disturbance vector including the temperature
of the neighboring zones, ns is the number of individuals in the classroom, and I is the
number of infected people. The state equations for the states in the nonlinear dynamic
model (Equation (10)) are:
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ẋ1 =
1

Cr
((

1
R12
− 1

R13
− 1

R14
− 1

R15
)x1

+
x2

R12
+

x3

R13
+

x4

R14
+

x5

R15
+ ṁrCρ(Ts − x1) + Q̇int) (11a)

ẋ2 =
1

Cw
12
(

x1

R12
− (

1
R12

+
1

R21
)x2 +

T2

R21
) (11b)

ẋ3 =
1

Cw
13
(

x1

R13
− (

1
R13

+
1

R13
)x3 +

T3

R31
) (11c)

ẋ4 =
1

Cw
14
(

x1

R14
− (

1
R14

+
1

R14
)x4 +

T4

R41
) (11d)

ẋ5 =
1

Cw
15
(

x1

R15
− (

1
R15

+
1

R15
)x5 +

T5

R51
) (11e)

ẋ6 =
ER.I
Vm
− λx6 (11f)

ẋ7 =
1

Vm
(E + ρaṁrCO2out − ρaṁrx7) (11g)

where ẋ1 represents the rate of changes in the classroom air temperature, ẋ2, ẋ3, ẋ4, ẋ5
represent the rate of changes in the temperature of the wall, ẋ6 the rate of concentration of
quanta, and ẋ7 the rate of CO2 concentration.

3.5. HVAC Energy Consumption

The energy consumption of the HVAC system includes energy consumption by the
fans and energy consumption by the air-conditioning systems, including the air handling
unit and VAV boxes. The power consumption of fans, Pf, is estimated by [20]:

Pf = βQ3 (12)

where β is the power coefficient of the fan and it is set to 0.8 based on the fan specifications.
The models to calculate power consumption from the fan and AHU will be used in the
designed controller to penalize the control actions that lead to large energy consumption.

The power consumption of air-conditioning systems, which includes the heating
coil of the AHU (Q̇AHU) and the heating coil of VAV boxes (Q̇VAV), is calculated by the
following equations:

Ph =
Q̇AHU

η1
+

Q̇VAV
η2

(13a)

Q̇AHU = ρaṁrcp∆TAHU (13b)

Q̇VAV = ρaṁrcp∆TVAV (13c)

where Ph is the total power consumption of the heating coils, η1 and η2 present the effi-
ciencies of the steam-water/glycol heating system and boilers, respectively, and they are
assumed 0.85 based on typical data of similar boilers. ṁr is mass flow rate and ∆T is the
temperature difference through the heating coils.
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The total HVAC energy consumption (Ie), including the energy consumption by the
fan wall and the heating coils, during the 24 h is calculated by:

Ie =
∫ 24

0
(Pf + Ph)dt (14)

4. Controller Design

In this section, a nonlinear model predictive controller (NMPC) is designed for the
HVAC system control. Here, the concept of NMPC [42] is exploited to create real-time opti-
mal solutions for the nonlinear, constrained, multi-objective HVAC optimization problem.
The nonlinear MPC controller in this work is a discrete-time controller. The NMPC con-
troller automatically discretizes the continuous time models (Section 3), using the implicit
trapezoidal rule.

Important factors in the NMPC design include prediction models to simulate system
dynamics, optimizer to obtain feasible optimal solutions, optimization constraints, cost
function, and selection of prediction horizon and control horizon. Prediction models were
discussed in Section 3. Here, the remaining important items in the NMPC design are
briefly explained.

• Cost Function: The cost (objective) function in the designed NMPC in this work
should be represented by formulations that lead to minimum HVAC energy con-
sumption and minimize the COVID transmission risk. There are different forms of
cost functions such as terminal control, minimum control effort, trajectory tracking,
minimizing energy consumption, or a combination of them [18]. The cost function in
this paper is presented by Equation (15) that includes a combination of minimizing
HVAC energy use, minimum control efforts, and trajectory tracking.

• Constraints: Constraints can be defined as rate or range limits, such as upper and
lower bounds of zone temperature or maximum and minimum limits of supply airflow
rate [18]. In this paper, inequality constraints are included to enforce (i) low risk of
COVID transmission, (ii) meeting ASHRAE comfort level for occupants in terms of
room temperature, (iii) minimum ventilation requirement set by CO2 level in the
room, and iv) control actuators operational constraints (i.e., AHU flow rate, supply
air temperature).

• Prediction Horizon, Control Horizon, and Control Time Step: The control horizon
is often selected to be less than the prediction horizon to minimize computation
cost [18]. In this paper, the sample time, Ts, is chosen as 15 min by considering slow
room temperature dynamics; the prediction horizon, Np, is 96, which provides the
prediction time of 1440 min or 24 h; the control horizon, Nc, is chosen as 19.

• Optimizer: Selection of an appropriate optimizer for an NMPC is critical to ensure
that a feasible optimal solution can be found in real-time within each control time
step. The HVAC control problem in this work includes nonlinear programming
(NLP) consisting of a quadratic cost function. Some of the methods to solve NLP
problems include active set (AS) methods, first order methods (FOM), interior point
(IP) methods, and sequential quadratic programming (SQP) methods [43]. In this
work, the SQP algorithm is implemented in Matlab to find feasible solution at each
control time step.

Figure 7 shows the structure of the designed NMPC for the classroom. Supply air
mass flow rate (ṁr), and supply air temperature (Ts) are the manipulated variables (MVs)
that define control actions. The nonlinear dynamic building models are run inside the
NMPC optimizer to help find the optimal MVs based on the NMPC cost function.
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Figure 7. Structure of the designed nonlinear MPC in this study.

In this paper, the cost function is composed of three terms (Equation (15a)): (i) output
reference tracking including tracking desired temperature, CO2 level, and concentration of
quanta (i.e., term α), (ii) minimizing energy consumption by minimizing control actions
including values for supply air temperature and air flow rate to the classroom (i.e., term
β), and (iii) manipulated variable move suppression to minimize control efforts including
changes in the supply air temperature and AHU flow rate (i.e., term γ). By considering
these three terms, the cost function in the NMPC is defined by the following equation.

J = minṁr,Ts(

α︷ ︸︸ ︷
Ny

∑
j=1

Np

∑
t=1

wy
j [yref(k + t|k)− y(k + t)|k]2

+
Nu

∑
j=1

Np

∑
t=0

wu
j [uj(k + t|k)]2︸ ︷︷ ︸

β

+
Nu

∑
j=1

Np

∑
t=0

w4u
j [uj(k + t|k)− uj(k + t− 1|k)]2︸ ︷︷ ︸

γ

) (15a)

Subject to Ct+k|t ≤ Ct+k|t ≤ Ct+k|t (15b)

Ts ≤ Ts(t+k|t) ≤ Ts (15c)

ṁr ≤ ṁr(t+k|t) ≤ ṁr (15d)

∂Ts ≤ Ts(t+k+1|t) − Ts(t+k|t) ≤ ∂Ts (15e)

∂ṁr ≤ ṁr(t+k+1|t) − ṁr(t+k|t) ≤ ∂ṁr (15f)

Tt+k|t − Et+k|t ≤ Tt+k|t ≤ Tt+k|t + Et+k|t (15g)

CO2t+k|t − Et+k|t ≤ CO2t+k|t ≤ CO2t+k|t + Et+k|t (15h)

Et+k|t, Et+k|t ≥ 0 (15i)

where Ny and Nu are the number of plant (i.e., classroom model) outputs and input
variables, respectively; y and u are outputs and inputs from the plant; yref is the desired



Energies 2023, 16, 4960 14 of 28

value for outputs; εt+k|t and εt+k|t are the lower and upper slack variables for outputs;
ρaṁr and ρaṁr are the lower and upper constraints on the volumetric airflow rate; Ts and
Ts are the lower and upper constraints on the supply air temperature; ρaδṁr, ρaδṁr and
δTs, and δTs are limits on the rate of change of the volume air flow rate and the supply air
temperature, respectively. wj is the tuning weights corresponding to inputs and outputs.
These weights emphasize the preference for the input and output variables over others. In
this work, a larger weight is used for the second output (i.e., the concentration of quanta),
as reducing the quanta concentrations has more priority than the other outputs.

The following numerical values for parameters are used for the constraints, including
[T T] = [20 22] ◦C during occupied hours and [T T] = [18 24] ◦C during unoccupied hours,
[CO2 CO2] = [400 800] ppm and [C C] = [0 0.025] quanta per m3, [Ts Ts] = [19 25] ◦C.
Based on the ASHRAE requirements for air change per hour (ACH) of the classroom, there
has to be a minimum non-zero airflow during occupied/unoccupied hours for ventilation
purposes; the maximum volumetric airflow is u = 4400 CFM.

The α term in Equation (15a) represents feedback control by considering the plant
feedback “y”, including measured/calculated outputs from the classroom. The “y” values
include the measured classroom temperature, CO2 concentration, and calculated risk of
COVID virus transmission based on the ventilation rate and number of people in the class-
room. The value of “y” at step k + 1 is based on actual measurements, whereas the remain-
ing k + 2 to k + NP steps will be based on simulated plant (i.e., classroom model) outputs.

5. Results and Discussions
5.1. Experimental Data

The data collection was conducted in March 2022 since lecture classrooms resumed
regular in-person courses during COVID-19 time. The number of occupants in the room
was visually counted and recorded every 5 min. The actual number of occupants in the
classroom, which varied from 1 to 59, is shown in Figure 8.

Figure 8. Number of occupants during the week of experiments, 14–18 March 2022.

The outdoor CO2 concentration was considered to be a constant value of about
400 ppm [44]. The sampling period for collecting temperature and relative humidity data
was fixed at 60 s.

Figure 9a depicts the measured temperatures for the supply air and the classroom.
Because three VAV boxes provide the supply air to the classroom, three sensors were used
to measure the supply air temperature of each VAV box. As can be seen, the temperature
of the supply air from the two VAV boxes is almost the same. Figure 9b illustrates the
measured temperature of the neighboring zones and the outside temperature. During the
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tests, the temperature of the corridors was almost constant, whereas the temperature of the
neighbor classroom (T4) showed some fluctuation.
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Figure 9. Measured data for the temperature of (a) the classroom and supply air from three VAVs in
Figure 4, (b) neighboring zones between 14 March 2022, and 21 March 2022. T1, T2, T3, T4, T5 refer to
sensors S2, S1, S7, S8, S9 respectively in Figure 4.

5.2. Model Validation

The system dynamics are modeled in MATLAB/ Simulink using Equation (11a–f).
These represent computationally-efficient, also denoted as control-oriented models, that
provide a compromise between accuracy and computation cost. The required level of
accuracy in model prediction depends on control objectives. Considering the prior HVAC
control studies [41,45], the HVAC models with prediction error less than 10% have the
capability to control room air temperature and CO2 level accurately. Here, the accuracy
of the developed models are assessed against experimental measurements. Next step on
verification for the suitability of the developed models for the NMPC can be done by testing
the NMPC in a simulation environment (Section 5.3) and then on the actual testbed by
assessing the performance of the designed model-based controller for reducing HVAC
energy consumption while maintaining a safe condition in the classroom to avoid high risk
of COVID virus transmission.

Figure 10 shows the simulation result compared with the recorded CO2 concentration
data in the classroom. By comparing the results, it can be seen that the validation result
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shows that the model can predict the CO2 concentration by 2.4% average absolute error,
confirming a good agreement with the experimental data.

Figure 10. Simulated CO2 concentration versus measured CO2 concentration of the classroom
(16 March 2022).

The classroom thermal model in this work considers occupants, neighboring zones’
temperatures, and the outside temperature as disturbances. The thermal model from
this work is assessed against experimental measurements. The experimental validations
of the model for predicting classroom temperature are shown for (i) constant HVAC set
point temperature conditions in Figure 11 and (ii) variable HVAC set point temperature
conditions in Figure 12. The results show the average prediction errors are less than 1%,
confirming the capability of the model to predict classroom air temperature accurately.

5.3. Control Results

Here, the control results for the classroom, including the quanta concentration, room
temperature, CO2 concentration, and infection risk are explained. The NMPC controller
was designed and simulated in Matlab/Simulink (R2022a). In particular, Matlab Model
Predictive Control Toolbox™ was exploited as part of the controller design and implemen-
tation. The controller was tested in a model-in-the-loop (MIL) environment on a desktop
computer with an Intel Core i7, 32 GB RAM, 3.2 GHz CPU processor. The computation
time for the designed NMPC controller was less than 4 min for simulating 24 h. Figure 13
shows the control results over 24 h. As can be seen, the quanta concentrations and infection
risk are below the desired bound (i.e., 1% infection probability). In addition, the room
temperature and CO2 concentration meet the ASHRAE comfort and ventilation constraints,
even at the lower limit of their bounds. By comparing Figure 14b,c, it is clear that by
increasing the number of students, the ventilation rate is increased immediately to prevent
the transmission of infection. The probability of infection in the classroom always stays
under one percent. Subplot (d) of Figure 14 illustrates the HVAC system’s power and
energy consumption variation depending on the controller inputs during the day. By
increasing the volumetric airflow, energy consumption increased.
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Figure 11. (a) Simulated temperature versus measured temperature of the classroom with a
constant set point temperature, (b) Supply air temperature with QSupplyAir = 4400 CFM. The data
represent 14 to 21 March 2022. The measured classroom temperature in the plot (a) is from the sensor
(S1) previously shown in Figure 6.

Figure 15 shows the power and energy consumption of the existing building controller.
The comparison between the designed NMPC and the building’s existing controller is
shown in Table 1. The results show that the NMPC controller could reduce the total energy
consumption by 55% compared to the existing building controller and keep the infection
risk below one percent. By considering the electricity cost of $0.1/kWh, the daily cost of
HVAC operation is shown in Table 1. Using the designed NMPC results in $56.4 savings
per day of HVAC operation for the studied classroom. Considering the winter season in
Edmonton spanning 6 months and the estimated daily cost savings of $56.4 as calculated
in Table 1, it becomes evident that implementing these savings in just one classroom of a
university building could result in a total savings of $10,152.
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Figure 12. (a) Simulated temperature versus measured temperature of the classroom under variable
set point temperature conditions, (b) Supply air temperature, (c) Constant supply air flow rate,
QSupplyAir = 4400 CFM. The data represent the HVAC operation from 23 to 28 March 2022.

The results of the existing building controller for a whole week of operation are shown
in Figure 16. As can be seen, the supply air volume flow rate remained consistently at its
maximum value throughout the week, leading to use high power consumption. The results
of using NMPC for a whole week of operation are shown in Figures 17 and 18. As seen
in the Figure 17, the designed NMPC can keep the infection probability always below 1%,
while meeting the required temperature comfort bound and maximum allowed CO2 level.
Figure 18 demonstrates the simulation results for manipulated variables and energy con-
sumption. As can be seen, by adjusting the air flow rate and supply air temperature, the
power consumption show the significant variations during the week.

Table 1. Energy and cost savings of the NMPC compared to the existing building controller

Controller Total Energy
Consumption (kWh) Daily Cost ($) Energy Saving (%) Daily Saving

Cost ($)
Existing Building

Controller 1030.3 103.0 - -

NMPC Controller 465.6 46.6 54.8 56.4

Figures 14c and 16d show the weekly HVAC power and energy consumption results
for the NMPC and the existing building controllers, respectively. The results showed that
the NMPC controller could provide 61.97% savings for the classroom of building weekly
energy consumption compared to the existing building controller.
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Figure 13. Designed NMPC controller results for the control of indoor air quality (IAQ) and
minimizing energy consumption): (a) the probability of the infection, (b) quanta concentration,
(c) room air temperature, and (d) CO2 concentration in the classroom.
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(d) HVAC Power and Energy Consumption
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Figure 14. Designed NMPC controller actions, number of occupants, and energy consumption for
the results in Figure 13. (a) Control input #1, supply air temperature, (b) control input #2, supply
air volume flow rate, (c) number of occupants in the classroom, (d) the HVAC power and energy
consumption. This simulation represents the real test conditions (i.e., number of students, and outside
temperature) for 16 March 2022.
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Figure 15. Existing building controller results: (a) control input #1, Supply air temperature (average
of temperature of three VAVs), (b) control input #2, Supply air volume flow rate, (c) number of
occupants in the classroom, (d) the daily HVAC power and energy consumption.
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Figure 16. Existing building controller results: (a) Control input #1, supply air temperature, (b) control
input #2, supply air volume flow rate, (c) the weekly HVAC power and energy consumption.
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Figure 17. NMPC results for the IAQ and temperature control for 14 to 21 March 2022: (a) Quanta
concentration, (b) the infection probability, (c) room air temperature, (d) CO2 concentration.
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Figure 18. NMPC results: (a) Control input #1, supply air temperature, (b) control input #2, supply
air volume flow rate, (c) number of occupants in the classroom, (d) the weekly HVAC power and
energy consumption.

6. Summary and Conclusions

This paper investigated the importance of optimal controllers’ critical role in decreas-
ing the energy consumption of the HVAC system while reducing the infection risk of
airborne diseases. First, a lecture hall located on the ground floor of the ETLC building
at the University of Alberta was selected as a testbed in this study. Then, physics-based
dynamic models, including thermal and IAQ models, were developed to be embedded
into the NMPC controller to predict the system’s outputs by considering the disturbances
like occupants and the outside temperature. The validation results showed that the model
could predict the temperatures and CO2 concentration by 0.84% and 2.4% average error,
respectively, offering a good match with the experimental data. The NMPC controller was
designed on nonlinear models, including the infection risk and thermal models. The results
showed that the NMPC controller could remarkably mitigate the infection risk and energy
consumption while satisfying all the constraints and the cost function. By comparing the
energy consumption results from two controllers, NMPC and existing building controllers,
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it was clear that the NMPC controller has an integral role in saving energy and preparing
better indoor air quality, i.e., the NMPC controller can save energy and cost at least about
55% and 57$ per day, respectively.
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Abbreviations and Nomenclature

ACH Air Change Per Hour
AHU Air Handling Unit
ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers
COVID-19 Coronavirus
ETLC Engineering Teaching and Learning Complex
H1N1 Influenza
HVAC Heating, Ventilation, and Air Conditioning
IAQ Indoor Air Quality
IMC Internal Model Controller
MD Measurement Disturbance
MERS Middle East Respiratory Syndrome
MPC Model Predictive Control
MV Manipulated Variable
NLP Nonlinear Programming Problem
NMPC Nonlinear Model Predictive Control
PAR Peak to Average Ratio
PI Proportional-Integral
PID Proportional–Integral–Derivative
PM Particulate Matter
PPM Parts Per Million
RBC Rule-based Control
RC Resistance-Capacitance
SARS Severe Acute Respiratory Syndrome
SBMPC Stochastic Scenario-Based MPC
SQP Sequential Quadratic Programming
VAV Variable Air Volume
WHO World Health Organization
Symbols
α Prevalence rate of disease (-)
αij Absorption coefficient of the wall between room i, j (-)
β Fan power coefficient (-)
ε Slack variable
η Efficiency of the boilers (-)
κ Thermal conductivity ( W

m.K )
λ Air change per hour ( 1

h )
ṁr Air mass flow rate ( kg

s )
Q̇ Heat transfer rate (W)
dT
dx Temperature gradient ( K

m )
cp Constant pressure specific heat ( kJ

kg.K )

Cth Heat storage capacity ( J
kg.K )

https://sites.ualberta.ca/mahdi/Docs/N_Samadi_MScThesis.pdf
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c Stefan-Boltzmann constant (
W

m2k4 )

D Duration of event (h)
ER Quanta emission rate (quanta/h)
E CO2 emission rate of indoor source (mg/s)
Fun Fraction of unreported COVID-19 cases
G CO2 Generation rate by occupants (L/min)
Ie Energy consumption (kWh)
K Conductivity of walls (W/m.K)
Nc Control horizon
Np Prediction horizon
Nnew Daily new COVID-19 cases
Pf Power consumption by fans (kW)

Ph Power consumption by heating coils (kW)

P Probability of being infected (%)
Qb Volumetric breathing rate of an occupant (m3/h)
Ri Internal thermal resistance of walls (K/W)

Ro Thermal resistance of outside wall (K/W)

Ts Time step (min)
T Temperature (K)
V Velocity (m/s)
ρ′ Constraint violation penalty weight
ρa Density of air (kg/m3)
Q Air volume flow rate (m3/s)
ρw Wall density (kg/m3)
A Area of walls (m2)
Cr Heat storage capacity of the room (J/kg.K)
Cw Heat storage capacity of walls (J/kg.K)
h Convection heat-transfer coefficient ( W

m2.K )
I Number of infected people (-)
L Thickness of wall (m)
m Mass (kg)
ns Number of students (-)
Vm Volume of the classroom (m3)
Vw Wall volume (m3)
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