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Abstract: This paper proposes a practical solution to address the energy management issue in fuel cell
hybrid electric vehicles (FCHEVs). This solution revolves around a powertrain system that contains
a fuel cell (FC) as the main supply, a photovoltaic cell (PC) as the secondary energy source, and a
battery bank (Batt) as backup storage to compensate for the FC’s low response rate. The energy in
this hybrid powertrain system alternated between the designated elements and the load via a DC
bus, and to maintain a stable output voltage, the DC link was adjusted using a nonlinear approach
that is based on the flatness theory and the nonlinear autoregressive moving average (NARMA-L2)
neuro-controller. As for the current regulation loops, the sliding mode technique was employed to
attain the high dynamic of the reference signals produced by the energy manager loop. To validate
the accuracy of the proposed energy management approach (EMA), a test bench was equipped with
digital, electronic circuits and a dSPACE DS-1104 unit. This experimental bench contained a fuel
cell emulator FC of 1200 W and 46 A, lithium-ion batteries of 24 V, and a solar source capable of
400 W. The obtained results, indeed, attested to the validity of the approach used, yielding a notable
performance during multiple charge variations. This ultimately demonstrated that the management
approach enhanced the efficiency of the hybrid powertrain.

Keywords: practical implementation; fuel cell hybrid electric vehicle; energy management approach;
flatness theory; NARMA-L2 neuro-controller

1. Introduction

The use of renewable energy sources, such as fuel cells and solar cells, to operate
electric motors has increased in recent years [1–6], which has paved the way for the
development of modern electric vehicles (EV). Nowadays, researchers specializing in
vehicle technologies have the sole aim of piloting their plans independent from fossil
energies. To accomplish this, a recommended procedure is the use of a hybrid renewable
source in combination with different storage systems, i.e., super capacitors or batteries,
which do not run on gasoline or diesel fuel and which do not release carbon dioxide (CO2).
On the one hand, the FC supply source has largely been used in the electrical transport
sector [7–10] owing to its energy-efficient and non-polluting features; on the other hand,
certain characteristic issues can hinder its performance, such as the slow dynamicity of
the energetic process. This is why such systems can be equipped with solar cells and
storage devices to support the main energy source in order to meet the necessary load
power, especially in the case of electric vehicles and particularly during times of the day
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with intense sunlight. Moreover, this proposal comes in parallel with distinct progress
in the efficiency of solar cells [11–13], the usage of which to run electric vehicles can be
considered a motivating factor that helps to advertise such a modern mode of transportation
in the global markets, highlighting several economic and technical advantages of such
applications [14,15].

Furthermore, the utilization of solar cells may reduce the aesthetics of plug-in electric
vehicles; however, it permits electric car owners to receive lower bills concerning the
recharging of batteries or hydrogen and to avoid an excessive load demand in modern
smart grids, especially in areas with intense sunlight.

As long as the amount of power produced through solar energy fluctuates over a
certain well-defined period, it cannot be considered as a progressive power generator. This
is why devices depending on solar energy are coupled with chemical accumulators, such
as batteries, to ensure the instantaneousness of energy storage. Furthermore, the existence
of several sources of different natures reinforces the reliability and the efficiency of such
systems [16–18]. In order to properly manage these hybrid systems in an EV, it is vital
that robust and efficient control approaches are implemented whilst maintaining the high
performance of the powertrain.

Recently, a noteworthy level of attention has been directed towards EMAs in several
renewable applications [19–21]. Numerous publications have documented energy man-
agement strategies. For instance, PID controllers and fuzzy logic are discussed in [22].
Bourbon et al. [23] provided a comparative study between the linear programming and
the heuristic methods. An EV application using an optimized management strategy was
described in [24], a predictive controller was used in [25], Xie et al. [26] studied an artificial
neural network, and lastly, adaptive and optimal control methodologies were studied
in [27,28].

An exhaustive and interesting strategy to address the energy management issue was
established based on the nonlinear differential flatness model. This is a relatively recent
concept in EMAs studies [29–31]; however, it has been studied and actively improved
since 1992, formulated by Fliess et al. [32]. The major advantage of this approach is the
parameterization of the dynamic behavior in physical systems. Thus, it is founded on
the description of a set of fundamental variables representing the flat outputs. The first
phases of flatness control implementation involve the utilization of the desired trajectory
that is suitable for the system’s model; then, the strategy involves the usage of a control
conception through a regulation loop that ensures the trajectory tracking. Additionally,
using this approach without including any differential equations, the trajectories of the
model are completely predictable based on the state of its flat outputs and its derivative,
which fulfils the main purpose of this strategy.

Nevertheless, there still exist a few impediments to the flatness theory that should be
addressed, particularly in EV applications, such as cases when fast variations in the power
demand of the motor (acceleration or braking) occur, causing a significant perturbation
error in the output voltage of the DC link [30,31]. To resolve this issue and to preserve a
stable DC voltage, such a system must follow an efficient control scheme. Therefore, this
paper proposes a strategy that employs a hybrid control scheme consisting of flatness and
a neuro-controller based on the nonlinear autoregressive moving average to enhance the
DC bus output voltage and improve the performance of the energy manager.

To date, the artificial neural networks in the control domain of dynamic nonlinear
systems have witnessed significant success [33–35]. The NARMA-L2 is one of the most
prominent among the ANN approaches due to its implementation simplicity and offline
training, referring to its ability to approximate the nonlinear functions. Theoretically, this
type of neuro-controller does not necessitate a precise mathematical description of the
model to be controlled [36,37].
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Contributions of the Study

In this paper, the NARMA-L2 controller is applied to pursue the trajectory of the DC
bus energy and to improve the performance of the energy manager based on the flatness
theory. The flat controller uses two regulation loops; the first is intended for DC bus
regulation (which is improved with a NARMA-L2 artificial intelligence system), and the
second loop is intended for energy management between the different generated powers.
The results presented below show that the hybridization between the differential flatness
and the ANN (NARMA-L2) successfully reduces the load perturbation error in the DC link
response signals and increases the efficiency of the EMA, giving it a high power dynamicity
and precise voltage. The employment of solar cells can improve energy efficiency and
decrease reliance on fuel cells and batteries in a novel design that will undoubtedly shorten
charging times and decrease the size of the hydrogen storage tank. The addition of (PC) to
electric vehicles can potentially increase their driving distance.

2. System under Study and Mathematical Modelling
2.1. Hybrid System and Power Converter Description

A fuel cell, solar cells, and Li-ion batteries are used in the proposed hybrid power
system to supply the EV motor. Correspondingly, the system must contain boost and
buck-boost converters along with a control unit. A basic design of this proposed hybrid
system is presented in Figure 1, and the equations demonstrating the boost converters with
the small signals model are determined.
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Figure 1. Conception of the fuel cell hybrid electric vehicle.

To establish the mathematical model of the power converters, some hypotheses are
formulated, supposing that the components are ideal and lossless and that the converters
operate in a continuous conduction mode (CCM). With the ideal hypothesis Vdc = Vout, it
is deduced that one variable can replace the other, taking into consideration that Vout is the
output voltage in the boost converters. The state equations for the switching cycle in the
boost converters are demonstrated in Equations (1) and (2):

Ln
diL_n

dt
= Vin_n − (1− dn)Vdc (1)
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Cdc
dVdc

dt
= (1− dn)iL_n − Iload (2)

To explain the equation further, n = [fc, s], that is, in accordance with the fuel cell and
solar cell boost converters. Vdc is the measured DC bus voltage. Vin_n is the fuel cell or
solar cell voltage. dn is the duty cycle of the switches in each converter. iL_n is the inductor
current of the boost phases. iLoad is the load current. Cdc is the capacitance value of the
DC bus. To display the disturbance in the state variables, Equations (3)–(5) are used:

iL_n = IL_n + îL_n Vin_n = Vin_n + v̂in_n dn = Dn + d̂n (3)

Cdc
d(Vdc + v̂dc)

dt
= (1−Dn − d̂n)(IL_n + îL_n)− (Iload + îload) (4)

Ln
d(IL_n + îL_n)

dt
= (Vin_n + v̂in_n)− (1−Dn − d̂n)(Vdc + v̂dc) (5)

îL_n, v̂in_n, d̂n, v̂dc, îload are the disturbance variables of the small signals model.
Through the transition to the Laplace transformation and then towards the matrix

mode, the state variables of the used boost converters are presented in Equation (6):

[
îL_n(s)

v̂dc_n(s)

]
=

[
sLn 1−Dn

1−Dn −(sCdc +
îload(s)
v̂in(s)

)

]−1

.
[

Vdc
IL_n

]
.d̂n(s) +

[
sLn 1−Dn

1−Dn −(sCdc +
îload(s)
v̂in(s)

)

]−1

.
[

1
0

]
.v̂in_n(s) (6)

This shows that the transfer function, which is used for the control signals at the
output voltage, can be described in Equation (7):

Gv(s) =
v̂dc(s)
îL_n(s)

=
(1−Dn).Vdc − (LnIL_n)s
(CdcVdc)s + 2(1−Dn)IL_n

(7)

In addition, the transfer function for the control signals at the input current is deter-
mined as:

Hi(s) =
îL_n(s)
d̂n(s)

=
(CdcVdc)s + 2(1−Dn).IL_n

(LnCdc)s2 + Ln
îload(s)
v̂dc(s)

s + (1−Dn)
2

(8)

The equations representing the associated buck-boost converter are determined using
the small signals model, where the switches open and close successively and continuously
with a well-defined switching frequency rate.

In other words, when the transistor is “on”, the diode is off, and vice versa. Thus, the
input voltage is applied directly to the inductance L, which determines an ascending linear
current. The capacitor is discharged in the charging circuit. This is to say that when the
transistor is off, the LC filter supplies the load.

The state equations for the switching cycle in the battery buck-boost converter can be
expressed as:  Lb

dîL_b
dt = Db.v̂b − (1−Db).v̂dc + Vdc.d̂b

Cdc
dv̂dc

dt = −(1−Db)îL_b + IL_b.d̂b −
îload(s)
v̂dc(s)

v̂dc
(9)

îL_b, v̂b, d̂b represent the inductance current, the generated voltage, and the control
signal in small disturbances around their operating points.
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Moving towards the matrix mode and the Laplace transformation, the transfer func-
tion, from the output voltage to the control signal, is expressed as:

v̂dc(s)
îL_n(s)

=
v̂dc(s)
îload(s)

(1−Dn)

(1 + Dn)
.

1− Dn.Ln
v̂dc(s)

îload(s)
(1−Dn)

2
s

1 +
v̂dc(s)

îload(s)
Cdc

(1+Dn)
s

(10)

The fuel cell/solar cell system instantaneously supplies the electric motor with power
after each requested power value.

The main energy source is designed to adapt to the operation regime of the EV motor
power when the generated power value is superior to the load request due to the slow
processing of the FC. As a quick counter, the EMA adjusts the energy to charge the storage
system in order to compensate for the slow dynamicity of the FC, especially with respect
to acceleration. While the energy created by the FC source is less than the load demand
amount, the energy manager forces the solar cells to support the main source in order to
counterbalance the load demand. As for the batteries used in the power train system, they
are implemented to provide additional power or absorb it in cases of abrupt acceleration
or deceleration.

2.2. Fuel Cell Modelling

The characteristics of a proton exchange membrane fuel cell (PEMFC) are often de-
fined by the theoretical no-load voltage ‘E’, the ohmic overvoltage Vohm, the activation
overvoltage Vact, and the concentration overvoltage Vconc. A single-cell voltage ‘Vf’ can be
represented as:

Vf = E−Vact −Vohm −Vconc (11)

The FC thermodynamic potential is given by the term ‘E’, while ‘Vact’ is the voltage
drop caused by activation losses. Several models have been developed to validate and
analyze the performance, behavior, and design according to the desired objectives. There
exist some static models that describe the polarization curve of a static model PEMFC. For
instance, the static model of Larminie and Dicks [38] is chosen because of its simplicity of
implementation. This FC model is described as:

Vf c = E0 − A log
(

iFC − in

i0

)
− Rm(iFC − in) + B log(1− iFC − in

iLim
) (12)

i0 is the exchange current that defines the electrode–electrolyte exchanges in an open
circuit. in is the internal current that allows us to take into account a possible gas and/or
electron intersectionality through the electrolyte.

A is the Tafel’s constant. Rm is the total resistance of the fuel cell. B is the mass transfer
constant. iFC is the density of the permanent operating current (A/cm2), and iLim is the
limit current density.

2.3. Battery Modelling

In this study, a Li-ion battery model is used. The pseudo-dynamic model proposed
in [39] is also employed. The following equations demonstrate the charge/discharge
voltage as a function of the battery current:{

Vb(ib) = E0 − R.ib − k Q
Q−it .(it + i∗) + Aexp(−B.it)

Vb(ib) = E0 − R.ib − k Q
it−0.1Q .i∗ − k Q

Q−it .it + Aexp(−B.it)
(13)
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2.4. Drivetrain Modelling

The mechanical characteristics required for driving a rolling electrical vehicle can be
modelled using the total resistance effort (Fr), which displays the advancement force that
the motorization system should overcome.

The Fr function can be written with the following formula:
Fr = Froul + Faero + M.g.p% + m.γ
Where : Faero =

1
2 × ρ× v2 × Cx × S f

Froul = CRt.M.g
(14)

The strength of the air resistance depends on the aero-coefficient Cx, the frontal area of
the EV Sf, the square speed v2, the density of the air ρ, the total mass M in kg (the EV along
with the rest of the components), the gravity acceleration g = 9.81 m·s–2, the incline of the
percentage p%, and finally, the dynamic term of acceleration (m·γ) (γ > 0 for accelerations
and γ < 0 for decelerations). Froul is the rolling resistance force, which is linked to the
rolling coefficient of the tires CRt.

In addition, the resistance torque required to obtain the necessary force of the EV can
be given as:

Cr = Fr.Rr =

[
1
2
× ρ× v2 × Cx × S f + CRt.M.g + M.g.p% + m.γ

]
.Rr (15)

Rr is the wheel radius.
The resistant torque is augmented by 20% to take into account the different losses in

the transmission system. The final transmission is handled by a reducer belt ration d = 6.
The EV motor torque Ce is expressed as:

Ce =
Cr
d.η

(16)

η is the efficiency of the mechanical transmission system.
The EV motor is selected in accordance with the specifications of the technical condi-

tions chart, where the rated power is calculated using the following formula:{
Pload = Pe = Ce.Ωe

Ωe = d.Ωr
(17)

Ωr is the maximum vehicle speed in rad/s or in rpm.

2.5. Solar Cell Modelling

The solar cells are mathematically described using three basic equations [40].
The diode current is defined as:

ID = I0(e
VD
VT − 1)− ID + ISC −

VD
RP
− IPV = 0 (18)

The solar cell voltage can be calculated as: VPVcell = VD − Rs IPV .
ISC, Rs, and Rp represent the solar cell current, series resistance, and parallel resistance.
Lastly, the solar cells’ voltage VP can be determined with:

VPV = NSVPVcell (19)

Ns represents the number of cells connected in series.

3. Control Strategy

To define a control strategy that is suitable for the proposed hybrid system, the
following main control aims must be determined:
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• The DC bus voltage must be adjusted and regulated instantaneously to allow for
continuous variations in the EV motor.

• The power requested by the motor must be satisfied instantly.
• Stability and dynamic performance must be ensured when the system operates in a

closed loop to prevent the occurrence of any disturbances or failures in the system.
• The power produced by the hybrid system must be generated in an ordinal plan,

starting with the main source (the fuel cell), followed by the secondary source (the
solar cells), and finally, the storage batteries.

In this paper, the employed EMA is based on flatness theory characteristics. Flat
systems are appropriate in situations such as those discussed above, where a trajectory
design is required. The nature of such systems reveals itself when employing its exit
variables. Subsequently, it is possible to define the control system and design the desired
trajectory of the state variables. In order to achieve an efficient energy manager that is
based on the flatness theory, the energetic behavior of the hybrid system must be described.
According to [41], the energy status of the DC bus ‘fdc’ and storage batteries energy ‘fb’ is
written as follows: {

fdc =
1
2 CdcV2

dc
fb = 1

2 CbV2
b

(20)

In the same vein, the total energy ‘ffull’ transferred in the system is presented as:

f f ull =
1
2

CdcV2
dc +

1
2

CbV2
b (21)

Correspondingly, the transmitted power in the DC link ‘Pdc’ may be definite as a
function of Pf_l, Pp_l, Pb_l, and Pload, as follows:

Pdc =
.
f dc = Pf _l + Pp_l + Pb_l − Pload (22)

Pf_l, Pp_l, Pb_l represent the power produced by the system, bearing in mind the losses
caused by the converters used.

To identify the flatness theorem’s compatibility with the studied hybrid system, it is
necessary to ensure that the conditions which are cited in [32] are satisfied. The flatness of a
nonlinear physical system can be demonstrated provided that the vector of its output vari-
ables ‘f ’ is described mathematically taking into account the state variables ‘x’, command
variables ‘α’, and a finite number of its derivatives, as follows:

{ .
x = h(x, α)

f = φ(x, α,
.
α, ..., α(n))

and f ∈ Rm : f =


f1
f2
.
.

fm

 (23)

The vectors ‘x’ and ‘α’ must be expressed as:

{
x = ϕ( f ,

.
f , ..., f (j))

α = ψ( f ,
.
f , ..., f (j+1))

and α ∈ Rm : α =


α1
α2
.
.

αm

 , x ∈ Rk : x =


x1
x2
.
.

xk

 (24)

Moreover, in this study, the control loops of the associated converters are adjusted
through a set of reference currents. The reference signals are then calculated as a function
of the reference powers generated by the EMA, so that:

Pf c_re f = Pf = I f .Vf = I f _re f .Vf (25)
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Pp_re f = Pp = Ip.Vp = Ip_re f .Vp (26)

Pb_re f = Pb = Ib.Vb = Ib_re f .Vb (27)

The power generated by the fuel cell, the solar cells, and the batteries are represented
by the values Pfc, Pp, and Pb, respectively. In addition, the power consumed by the EV
motor is written as a function of the energy transported through the DC bus, DC link
capacitance, and the load current, as described below:

Pe = Pload = Vdc.Iload =

√
2 fdc
Cdc

.Iload (28)

Moreover, the power created from the batteries is identified with a function that
considers the effects of the storage system capacitance and batteries’ current, as follows:

Pb =

√
2 fb
Cb

.Ib (29)

In order to establish the hybrid system’s regulation loops and the state, control, and
flat output variables (x, α, and f ), the following equation is implemented:

x =
[
Vdc Vb

]T

α =
[

Pbre f
Pf cre f

]T

f =
[

fdc f f ull
]T

(30)

The power of the storage system ‘Pb_ref’ and the power of the fuel cell ‘Pfc_ref’ are the
selected control variables. In this study, a dual-loop regulation is used for the voltage
adjustment of the DC and for energy management, which, in turn, requires two control
variables. The power generated by the batteries is considered as the reference of the first
loop. Similarly, the power of the primary source is considered as a reference signal for the
second regulation loop.

The DC bus voltage in the first command loop must be instantaneously adjusted to
maintain the regulation. Hence, the energy produced by the various sources implemented
in the experiment is completely transferred to the load via the DC link, so that the energy
accumulated in the DC bus capacitor has a constant value.

This is further illustrated below:

Pdc =
.
f dc = (PP_l + Pf c_l + Pb_l)− (Pload) = 0 (31)

On the other hand, to guarantee the high performance of the energy manager in the
second control loop, the sum of all the generated power must be equal in value to the
power consumed either by the load or by the associated converter losses:

.
f f ull =

d( f f ull)

dt
= 0 = Pf c_l + Pp_l − Pe (32)

By the same token, the state variables of this hybrid system can be described in terms
of the stored DC bus energy, as well as the total energy produced, as follows:

Vdc =
√

2 fdc
Cdc

= ϕ( fdc)

Vb =

√
2( f f ull− fbus)

CBatt
= ϕ( fdc, f f ull)

(33)
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The mathematical equations of the control variables can be displayed using the fol-
lowing formulas: 

Pb =
.
f dc − Pp_l − Pf c_l + rb ×

(
Pb
Vb

)2
+
√

2 fdc
Cdc

.Iload

α1 = Pb_re f

Pb_Lim =
V2

b
4rb

(34)

‘rb’ is the static loss of resistance and ‘Pb_Lim’ is the maximum limited value of the
transmitted power in the buck-boost converter. Therefore, the control variable ‘Pb_ref’ is
written as:

α1 = Pb_re f = 2Pb_Lim

1−
(

1−
( .

fdc+iload ·Vdc−Pf cl
−Ppl

PbLim

)) 1
2

 = ψ
(

fdc,
.

fdc

)
(35)

Additionally, the second regulation loop is defined using the following control signal:
α2 = Pf c_re f = 2Pf ull_Lim

1−
(

1−
( .

f f ull+iload .Vdc
Pf ull_Lim

)) 1
2

 = ψ
( .

f f ull , fdc

)
Pf ull_Lim = Pp_Lim + Pf c_Lim

(36)

‘Pfull_Lim’ constitutes the maximum limited value of the total transmitted power in the
associated boost converters.

In culmination, we conclude that based on Equations (30), (33), (35) and (36), the
flatness of the EV hybrid system is proven.

3.1. Dynamic Inverse

In this section, the control law for each command loop is discussed. For the DC
bus loop adjustment, the NARMA-L2 is used in the form of steps, the first of which is
identified with a dynamic controlled model for the NARMA-L2. The employed model is
the nonlinear autoregressive moving average model, which can be described through the
instant of interest ‘t’ and a definite relative degree ‘d’, as suggested in [42]:

Pdc(t + d) = N[Pdc(t), Pdc(t− 1), . . . , Pdc(t− n + 1), f (t− 1), . . . , f (t− n + 1)] (37)

‘N’ is the ANN multilayer of the NARMA-L2 model.
Moreover, the identification step is realized via the use of an arbitrary input ‘ f (t)′ for

the plant model, as follows:

( f (t) with | f (t)|ε[ fmin fmax]) (38)

The second step is to design a control model for the reference signal ‘Pdc’. As for the
estimation error between the output of the used dynamic model and the output produced
by the NARMAL-L2 of the neuro-controller, they are demonstrated in Figure 2. Moreover,
the output of the control plan is modelled to seamlessly converge with its reference ‘Pdc_ref’,
as follows:

Pdc(t + d) = Pdc_re f (t + d) (39)

Therefore, in order to predict the energetic behavior of the DC link according to the
NARMA-L2 approximation, the following equation is used:

Pdc(t + d) = H[Pdc(t), Pdc(t− 1), . . . . Pdc(t− n + 1), f (t), f (t− 1), . . . , f (t− n + 1)]
+G[y(t), Pdc(t− 1), . . . , Pdc(t− n + 1), f (t), f (t− 1), . . . , f (t− n + 1)]. f (t + 1)

(40)
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To reduce the mean square error of the control signal, the function ‘G’ is added and
described as follows:

f (k) = G
[

Pdc(t), Pdc(t− 1), . . . , Pdc(t− n + 1), Pdc_re f (t + d), f (t− 1), . . . , f (t−m + 1)
]

(41)

Hence, the designed controlled model using the NARMA-L2 is then defined as follows:

f (t + 1) =
Pdc_re f (t + d)− H[Pdc(t), . . . , Pdc(t− n + 1), f (t), . . . , f (t− n + 1)]

G[ f (t), . . . , Pdc(t− n + 1), f (t), . . . , f (t− n + 1)]
(42)

To measure the flat exit ‘ffull’ in relation to its reference ‘ffull_ref’ in the second loop, the
energy management loop, the following dynamic control law is employed [43,44]:

.
f f ull =

.
f f ull_re f + k21

(
f f ull_re f − f f ull

)
(43)

To allow for suitable dynamic control, the correction factor k21 is tuned to both its
frequency and its damping pulse. Additionally, the command scheme of the energy
management loop is presented in Figure 3, where the total generated energy is controlled
through Equation (36) to create a main source reference power ‘Pfc_ref’. After that, the solar
cells are controlled via a reference signal to regulate the generated power ‘Pp_ref’.

The value of the power produced by the solar cells depends mainly on the primary
source slow dynamics, where the PC can cover the transient state of the load variation.
It also depends on the limitation imposed by the driver of the vehicle; this is the case for
the economic mode that is designed to minimize the consumption of hydrogen (especially
in areas with intense sunlight). The parameters of the fuel cell/solar cells/batteries are
illustrated in Tables 1–3.

Table 1. Characteristics of the FC source.

Type Nominal Voltage (V) Nominal Current (A) Nominal Power (W)

PEM 48 27 1000
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Figure 3. DC bus adjustment using the NARMA-L2 neuro-controller and energy management
control loops.

Table 2. Characteristics of the solar cell source.

Cell Type Efficiency Nominal
Power

Nominal
Voltage

Nominal
Current The Cell Surface Number

of Cells
Rated Total
Power

Monocrystalline
CIGS 21.4% 5.23 (W) 0.57 (V) 9.16 (A) 156.75 mm × 156.75 mm 180 940 (W)

Table 3. Characteristics of the batteries.

Type Rated Voltage (V) Capacity (Ah) Voltage’s Range (V)

Li-ion 48 120 56–44

3.2. Current Regulators Using the Sliding Mode

The sliding regulators controls the inductive current of each converter. The sliding
mode control is an approach well-suited to static converters, wherein its stability is inde-
pendent of the variations around the operating point, which helps to improve the overall
controller performance. Referring to Equations (7) and (8), a scheme of the current regulator
applying the sliding mode is given in Figure 4.
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‘Pi_ref’ and ‘Vi’ are the power reference and voltage of each source, where i = [fc, p, b].
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‘Ii_ref’ and ‘Ii’ are the reference currents and the measured currents of each source. ‘Di’
represents the control signals of each converter. Furthermore, the sliding surface is defined
for the regulation of the associated boost and buck-boost converters, as follows:

Si = (Ii − Iiref) + kI

t∫
0

(Ii − Iiref)dt (44)

‘kI’ describes the proper dynamics that eliminate the probability of static errors. In
order to adjust the surface convergence dynamics of the sliding regulator, the following
control law is used:

.
Si = −λiSi (45)

‘λi’ signifies the convergence factors described as positive real numbers. The sliding
mode control signals are described in Equation (46).

Di = 1−
Vi − ri Ii − Li(−λiSi −

.
Iire f + ki(Ii − Iire f ))

Vbus
(46)

4. Simulation and Practical Results
4.1. Simulation Results

The simulation results are divided into two parts. The first one is devoted to the DC
bus control loop, wherein the following C carried between:

• The command law that employs the NARMA-L2 neuro-controller;
• The command law that depends on the PID mathematical form.

The second part of the simulation results, however, is reserved for the curves of the
current and the power, which is generated by the energy manager.

The parameters of each simulated source are indicated in Tables 1–3.
Figure 5a highlights the DC bus voltage that is set to 270 (V) via the NARMA-L2

neuro-controller.
The curve indicates a remarkable output regulation, where the error due to load

variation does not exceed (0.02 V).
The energy of the DC bus tracks well with its reference (Figure 6); the curve verifies

that the command used provides a respectable dynamic performance during the load
variation, with zero static error. Analyses of Figures 5 and 6 confirm the suitable assignment
for the generated control signals through the flat command and the nonlinear sliding
mode regulator, yielding near-zero variation in the electrostatic energy, which offers high
stabilization of the hybrid system.

The power generated by the PC source essentially depends on the irradiance profile
and the control signals of the boost.

The PC power requested by the flat command is examined and compared with the
power calculated and generated by the MPPT block, so that if the PC signal designed by the
flat control is greater than the value calculated by the MPPT block, the control algorithm
will then consider the power created by the MPPT block as the reference signal. Otherwise,
the boost converter will be controlled via the flat control signal.

In addition, the FC’s energy also depends on the control signal ‘Pfull’. The FC’s source,
however, initiates the energy generation process, starting from t = 0.1 s, that is, as soon as
the dynamicity of the chemical process reaches the desired energy value.

Figure 7 demonstrates the process of reproducing power via the battery system during
the different load stages. The first positive variation in the load ranged from 300 to 600 (W)
and then from 600 to 900 (W). The second was a negative variation that fluctuated between
900 and 300 (W). The third and final positive variation covered values between 300 and
700 (W). This figure also demonstrates the high efficiency of the neuro-controller tracking
with respect to transient responses during three significant load variations, both positive
and negative.



Energies 2023, 16, 5023 13 of 23

Energies 2023, 16, x FOR PEER REVIEW 13 of 23 
 

 

The second part of the simulation results, however, is reserved for the curves of the 
current and the power, which is generated by the energy manager. 

The parameters of each simulated source are indicated in Tables 1–3. 
Figure 5a highlights the DC bus voltage that is set to 270 (V) via the NARMA-L2 neuro-

controller. 

 
Figure 5. Voltage of the DC link applying: (a) the NARMA-L2; (b) the PID. 

The curve indicates a remarkable output regulation, where the error due to load var-
iation does not exceed (0.02 V). 

The energy of the DC bus tracks well with its reference (Figure 6); the curve verifies 
that the command used provides a respectable dynamic performance during the load var-
iation, with zero static error. Analyses of Figures 5 and 6 confirm the suitable assignment 
for the generated control signals through the flat command and the nonlinear sliding 
mode regulator, yielding near-zero variation in the electrostatic energy, which offers high 
stabilization of the hybrid system. 

The power generated by the PC source essentially depends on the irradiance profile 
and the control signals of the boost. 

The PC power requested by the flat command is examined and compared with the 
power calculated and generated by the MPPT block, so that if the PC signal designed by 
the flat control is greater than the value calculated by the MPPT block, the control algo-
rithm will then consider the power created by the MPPT block as the reference signal. 
Otherwise, the boost converter will be controlled via the flat control signal. 

Figure 5. Voltage of the DC link applying: (a) the NARMA-L2; (b) the PID.

Energies 2023, 16, x FOR PEER REVIEW 14 of 23 
 

 

In addition, the FC’s energy also depends on the control signal ‘Pfull’. The FC’s source, 
however, initiates the energy generation process, starting from t = 0.1 s, that is, as soon as 
the dynamicity of the chemical process reaches the desired energy value. 

 
Figure 6. Variation in the DC link energy (applying the NARMA-L2). 

Figure 7 demonstrates the process of reproducing power via the battery system dur-
ing the different load stages. The first positive variation in the load ranged from 300 to 600 
(W) and then from 600 to 900 (W). The second was a negative variation that fluctuated 
between 900 and 300 (W). The third and final positive variation covered values between 
300 and 700 (W). This figure also demonstrates the high efficiency of the neuro-controller 
tracking with respect to transient responses during three significant load variations, both 
positive and negative. 

 
Figure 7. Power balance of the different sources. 

The batteries are assigned two main roles: the first one is to function as storage, and 
the second one is to set and adjust the output voltage of the DC bus. 

The voltage adjustment made by the batteries is realized through: 
• A power supply during the requested load peaks (the acceleration phase). 
• A power absorbance during the excessive generations (the deceleration phase). 

0 1 2 3 4 5 6 7 8
-400

-200

0

200

400

600

800

1000

Time (s)

Pr
od

uc
ed

 p
ow

er
 (W

)

Zone A

Load demand

FC power

PC power

Batteries power

Figure 6. Variation in the DC link energy (applying the NARMA-L2).



Energies 2023, 16, 5023 14 of 23

Energies 2023, 16, x FOR PEER REVIEW 14 of 23 
 

 

In addition, the FC’s energy also depends on the control signal ‘Pfull’. The FC’s source, 
however, initiates the energy generation process, starting from t = 0.1 s, that is, as soon as 
the dynamicity of the chemical process reaches the desired energy value. 

 
Figure 6. Variation in the DC link energy (applying the NARMA-L2). 

Figure 7 demonstrates the process of reproducing power via the battery system dur-
ing the different load stages. The first positive variation in the load ranged from 300 to 600 
(W) and then from 600 to 900 (W). The second was a negative variation that fluctuated 
between 900 and 300 (W). The third and final positive variation covered values between 
300 and 700 (W). This figure also demonstrates the high efficiency of the neuro-controller 
tracking with respect to transient responses during three significant load variations, both 
positive and negative. 

 
Figure 7. Power balance of the different sources. 

The batteries are assigned two main roles: the first one is to function as storage, and 
the second one is to set and adjust the output voltage of the DC bus. 

The voltage adjustment made by the batteries is realized through: 
• A power supply during the requested load peaks (the acceleration phase). 
• A power absorbance during the excessive generations (the deceleration phase). 

In order to ensure the proper operation of the vehicle’s economic mode, the primary 
source is limited during ‘zone A’ to a value of 600 (W). The behavior of the PC source reveals 

0 1 2 3 4 5 6 7 8
54.65

54.66

54.67

54.68

54.69

54.7

Time (s)

D
C

 li
nk

 e
ne

rg
y 

(J
)

 

 

DC link Energy (J)
Reference (J)

0 1 2 3 4 5 6 7 8
-400

-200

0

200

400

600

800

1000

Time (s)

Pr
od

uc
ed

 p
ow

er
 (W

)

Zone A

Load demand

FC power

PC power

Batteries power

Figure 7. Power balance of the different sources.

The batteries are assigned two main roles: the first one is to function as storage, and
the second one is to set and adjust the output voltage of the DC bus.

The voltage adjustment made by the batteries is realized through:

• A power supply during the requested load peaks (the acceleration phase).
• A power absorbance during the excessive generations (the deceleration phase).

In order to ensure the proper operation of the vehicle’s economic mode, the primary
source is limited during ‘zone A’ to a value of 600 (W). The behavior of the PC source
reveals a high response from the energy manager, so that the PC source and the batteries
cover the lack of power.

Figure 8 depicts the current evolution of the PC and battery, while Figure 9 illustrates
the state of charge variation of the battery storage system over time. The NARMA-L2
neuro-controller testing and validation results are presented in Figure 10.
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Figure 10. Testing data of the NARMA-L2 neuro-controller.

The dynamic model inputs of the NARMA-L2, defined in Equation (37), are repre-
sented in the DC bus energy profile. The test and validation results shown in Figure 10
indicate that the control signal managed by the neuro-controller offers high precision con-
cerning the DC bus adjustment. Therefore, an excellent regulation of the output voltage in
the first control loop was obtained.

The training performance of the neuro-controller is given in Figure 11.

4.2. Practical Results

To validate the simulation results of the usage of the NARMA-L2 neuro-controller, an
experimental bench was utilized in the LMSE laboratory (Figure 12). This bench included a
fuel cell emulator, two photovoltaic modules of 200 (W), and Li-ion batteries of 24 (V). In
addition, four educational Semikron converters, which contained three IGBT arms and a
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mutual DC link, were employed. As for the command loops, they were executed through
the dSPACE card 1104.
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Figure 11. Training performance of the NARMA-L2 neuro-controller.
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Figure 12. Hybrid system practical bench.

In order to verify the desired behavior of the current regulators in the sliding mode,
various tests were carried out, in which the reference current was varied and the response
of the currents in each associated converter was observed.

Figure 13a shows the evolution of the current of the batteries from 0 A to 4.5 A and
from 4.5 to 2 A through several steps, respectively. The current of the batteries ideally
tracks its reference without any hiccups in relation to its considerable rapid dynamicity,
which ultimately shows the utility and the effectiveness of the sliding regulator.

Figure 13b displays the progress of the fuel cell emulator current in relation to several
variations in its reference, from 0 to 2A, from 2 to 4A, from 4 to 3A, and from 3 to 2A,
respectively, so that the current of the FC emulator ideally follows its reference.

To ensure the proper functioning of the control loops, two scenarios, “A and B”, of the
practical tests are presented in this section. These scenarios illustrate severe load variations
on different power levels.

Figure 14 reveals the energy management between the three sources comprising the
tested hybrid system. The first source begins with an initial load state that is supplied via
the FC emulator, which causes the power of the PC and the batteries tend toward zero.
During the second load variation, the power supplied by the FC emulator is limited to
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180 W to simulate the economic mode. To do so, both the PC and the batteries are used to
produce energy that backs up the primary source in order to meet the charge demand.
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Figure 13. Battery, FC, and PC currents’ controller test and evolution after the variation in their
references in (a–c) respectively.
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Figures 15 and 16 exhibit the behavior of energy and DC bus voltage for scenario “A”.
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Energies 2023, 16, x FOR PEER REVIEW 18 of 23 
 

 

Figure 13b displays the progress of the fuel cell emulator current in relation to several 
variations in its reference, from 0 to 2A, from 2 to 4A, from 4 to 3A, and from 3 to 2A, 
respectively, so that the current of the FC emulator ideally follows its reference. 

To ensure the proper functioning of the control loops, two scenarios, “A and B”, of 
the practical tests are presented in this section. These scenarios illustrate severe load var-
iations on different power levels. 

Figure 14 reveals the energy management between the three sources comprising the 
tested hybrid system. The first source begins with an initial load state that is supplied via 
the FC emulator, which causes the power of the PC and the batteries tend toward zero. 
During the second load variation, the power supplied by the FC emulator is limited to 180 
W to simulate the economic mode. To do so, both the PC and the batteries are used to 
produce energy that backs up the primary source in order to meet the charge demand. 

Figures 15 and 16 exhibit the behavior of energy and DC bus voltage for scenario 
“A”. 

 
Figure 14. Practical results, A—power balance of the different sources. 

 
Figure 15. Practical results, A—DC bus energy. 

 
0 2 4 6 8 10 12

47.8

48

48.2

Time (s)

V
ol

ta
ge

 o
f t

he
 D

C
 li

nk
 (V

)

Figure 16. Practical results, A—DC bus voltage.

Figure 17 presents the current profiles of the hybrid sources. It can be observed that
these currents closely follow their reference values and the performance of the battery’s
output current is evident in the system, demonstrating a highly dynamic response.
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Figures 18 and 19, showing scenario “B”, reveal the effectiveness of the neuro-controller
when applied to bus voltage adjustment with a severe load variation (Figure 20), which is
then reflected in the appropriate tracking of the reference energy of the DC bus. However,
the desired compatibility of the DC bus voltage with its reference is obtained.
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Figure 18. Practical results, B—variation in the DC link energy.

Energies 2023, 16, x FOR PEER REVIEW 20 of 23 
 

 

 
Figure 19. Practical results, B—Voltage of the DC link. 

 
Figure 20. Practical results, B—power balance of the different sources. 

Figure 21 illustrates the currents produced by the hybrid sources. Through them, it 
is observed that these currents substantially track their references with acceptable error 
recurrences. As for the output current of the batteries, its performance is reflected in the 
system, in which a high dynamic response covering the transient times during the load 
variations is obtained. 

  

0 2 4 6 8 10 12
47.6

47.7

47.8

47.9

48

48.1

48.2

Time (s)

V
ol

ta
ge

 o
f t

he
 D

C
 li

nk
 (V

)

0 2 4 6 8 10 12
-100

-50

0

50

100

150

200

250

300

350

400

Time (s)

Po
w

er
 (W

)

Batteries power (W) 

PC power (W) 

FC power (W) 

Load profile (W) 

0 2 4 6 8 10 12
-10

-5

0

5

10

Time (s)

B
at

te
rie

s 
C

ur
re

nt
 (A

)

 reference of the batteries current (A)

batteries current (A)

Figure 19. Practical results, B—Voltage of the DC link.

Energies 2023, 16, x FOR PEER REVIEW 20 of 23 
 

 

 
Figure 19. Practical results, B—Voltage of the DC link. 

 
Figure 20. Practical results, B—power balance of the different sources. 

Figure 21 illustrates the currents produced by the hybrid sources. Through them, it 
is observed that these currents substantially track their references with acceptable error 
recurrences. As for the output current of the batteries, its performance is reflected in the 
system, in which a high dynamic response covering the transient times during the load 
variations is obtained. 

  

0 2 4 6 8 10 12
47.6

47.7

47.8

47.9

48

48.1

48.2

Time (s)

V
ol

ta
ge

 o
f t

he
 D

C
 li

nk
 (V

)

0 2 4 6 8 10 12
-100

-50

0

50

100

150

200

250

300

350

400

Time (s)

Po
w

er
 (W

)

Batteries power (W) 

PC power (W) 

FC power (W) 

Load profile (W) 

0 2 4 6 8 10 12
-10

-5

0

5

10

Time (s)

B
at

te
rie

s 
C

ur
re

nt
 (A

)

 reference of the batteries current (A)

batteries current (A)

Figure 20. Practical results, B—power balance of the different sources.

Figure 19 displays the DC bus voltage set to 48 V. The result reveals a high performance
of the NARMA-L2 neuro-controller, with a value of the load perturbation impact that does
not exceed 0.33%.

Figure 21 illustrates the currents produced by the hybrid sources. Through them, it
is observed that these currents substantially track their references with acceptable error
recurrences. As for the output current of the batteries, its performance is reflected in the
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system, in which a high dynamic response covering the transient times during the load
variations is obtained.
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5. Conclusions

In this work, a flatness/NARMA-L2-based control applied to an electrical hybrid
vehicle was presented. A supplying system composed of a fuel cell, photovoltaic cells,
and Li-ion batteries was used to provide the necessary energy. A dual-loop command
system was designed to adjust the desired voltage output and to manage the produced
power appropriately. In addition, this study attempted to compare the voltage output
regulation using both the PID mathematical form as a control law and the NARMA-L2
(nonlinear autoregressive moving average). The findings of this research demonstrate that
the NARMA-L2 guarantees zero static error in the DC bus voltage output under multiple
extreme variations in the load, rendering it is suitable for electrical vehicle applications.
The reduction in the load perturbation error allows for more stability and robustness in the
energy management plan. Moreover, this paper presents an experimental validation for
the proposed control law, where the results confirmed significant current regulation when
utilizing the sliding mode, DC bus voltage adjustment, and energy management. Moreover,
the FC was used as the main energy source, while the PC was exploited as an auxiliary
source to enhance the effectiveness of the production system and to compensate for the
slow dynamics of the FC. The Li-ion batteries, however, cover the deficiency in power
during the transient periods of load variations, the acceleration or deceleration phases.
Lastly, an economic mode was proposed to reinforce the role of the PC, especially in areas
with intense sunlight.
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Proposed Strategy’s Limitation in Real Conditions

The irradiance profile can be viewed as a relative limitation of this work. However,
the results show that this limitation does not affect the operation of the EV because the
system is designed to function with PC = 0 [W], which is the most favorable case.
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