Perspectives of Biogas Plants as BECCS Facilities: A Comparative Analysis of Biomethane vs. Biohydrogen Production with Carbon Capture and Storage or Use (CCS/CCU)
Abstract
:1. Introduction
2. Basics
2.1. Biomethane Production through Biogas Purification
2.2. Biohydrogen Production through Biogas Steam Reforming
2.3. Carbon Dioxide Removal
2.4. The HyBECCS Concept
3. Process Descriptions and Main Assumptions
4. Technology Comparison
4.1. Considerations on Product Application
4.2. Energy Efficiency
4.3. Negative Emission Potential
4.4. Economic Comparison
5. Limitations
6. Summary and Conclusions
7. Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5 °C above Pre-industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK, 2022; pp. 1–24. [Google Scholar] [CrossRef]
- IPCC. IPCC Special Report on Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2005; ISBN 13 9780521866439. [Google Scholar]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef]
- Awe, O.W.; Zhao, Y.; Nzihou, A.; Minh, D.P.; Lyczko, N. A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste Biomass Valor. 2017, 8, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Ryckebosch, E.; Drouillon, M.; Vervaeren, H. Techniques for transformation of biogas to biomethane. Biomass Bioenergy 2011, 35, 1633–1645. [Google Scholar] [CrossRef]
- Hajjaji, N.; Martinez, S.; Trably, E.; Steyer, J.-P.; Helias, A. Life cycle assessment of hydrogen production from biogas reforming. Int. J. Hydrogen Energy 2016, 41, 6064–6075. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, A.; Pal, A. Overview of hydrogen production from biogas reforming: Technological advancement. Int. J. Hydrogen Energy 2022, 47, 34831–34855. [Google Scholar] [CrossRef]
- Shabani, B.; Andrews, J. Hydrogen and Fuel Cells. In Energy Sustainability through Green Energy; Springer: New Delhi, India, 2015; pp. 453–491. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar Kar, S. Energy Sustainability through Green Energy, 1st ed.; Springer: New Delhi, India, 2015; ISBN 9788132223375. [Google Scholar]
- Full, J.; Merseburg, S.; Miehe, R.; Sauer, A. A New Perspective for Climate Change Mitigation—Introducing Carbon-Negative Hydrogen Production from Biomass with Carbon Capture and Storage (HyBECCS). Sustainability 2021, 13, 4026. [Google Scholar] [CrossRef]
- Nahar, G.; Mote, D.; Dupont, V. Hydrogen production from reforming of biogas: Review of technological advances and an Indian perspective. Renew. Sustain. Energy Rev. 2017, 76, 1032–1052. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, J.; Meng, Y.; Yan, F.; Aihemaiti, A. A review of recent developments in hydrogen production via biogas dry reforming. Energy Convers. Manag. 2018, 171, 133–155. [Google Scholar] [CrossRef]
- Rosha, P.; Rosha, A.K.; Ibrahim, H.; Kumar, S. Recent advances in biogas upgrading to value added products: A review. Int. J. Hydrogen Energy 2021, 46, 21318–21337. [Google Scholar] [CrossRef]
- Ivys Adsorption Inc. Xebec. Available online: https://xebecinc.com/ (accessed on 19 June 2023).
- Air Liquide. A World Leader in Gases, Technologies and Services for Industry and Health. Available online: https://www.airliquide.com/ (accessed on 19 June 2023).
- WS Reformer GmbH. X-to-Hydrogen. Available online: https://wsreformer.de (accessed on 19 June 2023).
- European Commission. Advanced Direct Biogas Fuel Processor for Robust and Cost-Effective Decentralised Hydrogen Production: Using Renewable Biogas to Produce Green Hydrogen. 2021. Available online: https://cordis.europa.eu/article/id/435357-using-renewable-biogas-to-produce-green-hydrogen (accessed on 19 June 2023).
- European Commission. BIOgas Membrane Reformer for Decentralized Hydrogen Production. Available online: https://doi.org/10.3030/671459 (accessed on 19 June 2023).
- Deutsches Biomasseforschungszentrum. BioH2Ref—Dezentrale Wasserstoffaufbereitung von Biogas durch Dampfreformierung. 2023. Available online: https://www.energetische-biomassenutzung.de/projekte-partner/details/project/show/Project/BioH2Ref-706 (accessed on 19 June 2023).
- Mirza, N.; Kearns, D. State of the Art: CCS Technologies 2022. 2022. Available online: https://www.globalccsinstitute.com/wp-content/uploads/2022/05/State-of-the-Art-CCS-Technologies-2022.pdf (accessed on 21 April 2023).
- Aresta, M. Carbon Dioxide as Chemical Feedstock; Wiley-VCH: Weinheim, Germany, 2010; ISBN 9783527324750. [Google Scholar]
- Kemper, J. Biomass and carbon dioxide capture and storage: A review. Int. J. Greenh. Gas Control 2015, 40, 401–430. [Google Scholar] [CrossRef]
- Full, J.; Trauner, M.; Miehe, R.; Sauer, A. Carbon-Negative Hydrogen Production (HyBECCS) from Organic Waste Materials in Germany: How to Estimate Bioenergy and Greenhouse Gas Mitigation Potential. Energies 2021, 14, 7741. [Google Scholar] [CrossRef]
- Strevett, K.A.; Vieth, R.F.; Grasso, D. Chemo-autotrophic biogas purification for methane enrichment: Mechanism and kinetics. Chem. Eng. J. 1995, 58, 71–79. [Google Scholar] [CrossRef]
- Abd, A.A.; Othman, M.R.; Majdi, H.S.; Helwani, Z. Green route for biomethane and hydrogen production via integration of biogas upgrading using pressure swing adsorption and steam-methane reforming process. Renew. Energy 2023, 210, 64–78. [Google Scholar] [CrossRef]
- Chaemchuen, S.; Zhou, K.; Verpoort, F. From Biogas to Biofuel: Materials Used for Biogas Cleaning to Biomethane. ChemBioEng Rev. 2016, 3, 250–265. [Google Scholar] [CrossRef]
- Ardolino, F.; Cardamone, G.F.; Parrillo, F.; Arena, U. Biogas-to-biomethane upgrading: A comparative review and assessment in a life cycle perspective. Renew. Sustain. Energy Rev. 2021, 139, 110588. [Google Scholar] [CrossRef]
- Rostrup-Nielsen, J.; Christiansen, L.J. Concepts in Syngas Manufacture, 10th ed.; Catalytic Science Series; Imperial College Press: London, UK, 2011; ISBN 9781908978004. [Google Scholar]
- LeValley, T.L.; Richard, A.R.; Fan, M. The progress in water gas shift and steam reforming hydrogen production technologies—A review. Int. J. Hydrogen Energy 2014, 39, 16983–17000. [Google Scholar] [CrossRef]
- Full, J.; Ziehn, S.; Geller, M.; Miehe, R.; Sauer, A. Carbon-negative hydrogen production: Fundamentals for a techno-economic and environmental assessment of HyBECCS approaches. GCB Bioenergy 2022, 14, 597–619. [Google Scholar] [CrossRef]
- Boot-Handford, M.E.; Abanades, J.C.; Anthony, E.J.; Blunt, M.J.; Brandani, S.; Mac Dowell, N.; Fernández, J.R.; Ferrari, M.-C.; Gross, R.; Hallett, J.P.; et al. Carbon capture and storage update. Energy Environ. Sci. 2014, 7, 130–189. [Google Scholar] [CrossRef]
- Verduyn, M.; Geerlings, H.; van Mossel, G.; Vijayakumari, S. Review of the various CO2 mineralization product forms. Energy Procedia 2011, 4, 2885–2892. [Google Scholar] [CrossRef] [Green Version]
- Da Pires Mata Costa, L.; Micheline Vaz de Miranda, D.; Couto de Oliveira, A.C.; Falcon, L.; Stella Silva Pimenta, M.; Guilherme Bessa, I.; Juarez Wouters, S.; Andrade, M.H.S.; Pinto, J.C. Capture and Reuse of Carbon Dioxide (CO2) for a Plastics Circular Economy: A Review. Processes 2021, 9, 759. [Google Scholar] [CrossRef]
- Ravikumar, D.; Keoleian, G.A.; Miller, S.A.; Sick, V. Assessing the Relative Climate Impact of Carbon Utilization for Concrete, Chemical, and Mineral Production. Environ. Sci. Technol. 2021, 55, 12019–12031. [Google Scholar] [CrossRef]
- Full, J.; Baumgarten, Y.; Dokur, Y.; Miehe, R.; Sauer, A. Biogas Plants as Hydrogen Production Facilities and Greenhouse Gas Sinks: Technology Comparison, Challenges and Potentials for Carbon Negative Hydrogen Production (HyBECCS). Procedia CIRP 2022, 107, 185–190. [Google Scholar] [CrossRef]
- Tomita, E.; Kawahara, N.; Azimov, U. Biogas Combustion Engines for Green Energy Generation; Springer International Publishing: Cham, Swizterland, 2022; ISBN 9783030945381. [Google Scholar]
- Mishra, A.; Kumar, M.; Bolan, N.S.; Kapley, A.; Kumar, R.; Singh, L. Multidimensional approaches of biogas production and up-gradation: Opportunities and challenges. Bioresour. Technol. 2021, 338, 125514. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Li, H.; Yan, J.; Liu, L.; Yu, Z.; Yu, X. Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation. Renew. Sustain. Energy Rev. 2015, 51, 521–532. [Google Scholar] [CrossRef]
- Mallon, W.; Buit, L.; van Wingerden, J.; Lemmens, H.; Eldrup, N.H. Costs of CO2 Transportation Infrastructures. Energy Procedia 2013, 37, 2969–2980. [Google Scholar] [CrossRef] [Green Version]
- Becattini, V.; Gabrielli, P.; Antonini, C.; Campos, J.; Acquilino, A.; Sansavini, G.; Mazzotti, M. Carbon dioxide capture, transport and storage supply chains: Optimal economic and environmental performance of infrastructure rollout. Int. J. Greenh. Gas Control 2022, 117, 103635. [Google Scholar] [CrossRef]
- Schaffelhofer, K. Neuer Gasmotor MAN E3872 mit 44.0% Wirkungsgrad und 735 kW Leistung aus nur 12 Zylindern, München. 2021. Available online: https://press.mantruckandbus.com/corporate/de/neuer-gasmotor-man-e3872-mit-440--wirkungsgrad-und-735-kw-leistung-aus-nur-12-zylindern/ (accessed on 2 May 2023).
- Mayr, K.; Hofer, F.; Ragowsky, G.; Gruber, W.; Arnberge, A.; Kabza, A.; Wolf, P.; Schmidt, M.; Jörissen, L. Systemvergleich Zwischen Wasserstoffverbrennungsmotor und Brennstoffzelle im Schweren Nutzfahrzeug: Eine Technische und Ökonomische Analyse Zweier Antriebskonzepte, Stuttgart. 2021. Available online: https://www.e-mobilbw.de/fileadmin/media/e-mobilbw/Publikationen/Studien/e-mobilBW-Studie_H2-Systemvergleich.pdf (accessed on 2 May 2023).
- Cullen, D.A.; Neyerlin, K.C.; Ahluwalia, R.K.; Mukundan, R.; More, K.L.; Borup, R.L.; Weber, A.Z.; Myers, D.J.; Kusoglu, A. New roads and challenges for fuel cells in heavy-duty transportation. Nat. Energy 2021, 6, 462–474. [Google Scholar] [CrossRef]
- Schmidt, T. Wasserstofftechnik: Grundlagen, Systeme, Anwendung, Wirtschaft, 2nd ed.; Carl Hanser Verlag: München, Germany, 2022; ISBN 9783446473539. [Google Scholar]
- Berne, E.K.; Berner, R.A. Global Environment: Water, Air, and Geochemical Cycles; Princeton University Press: Princeton, NJ, USA, 2012; ISBN 9780691136783. [Google Scholar]
- Deutsches Institut für Normung e.V. DIN EN ISO, 14040:2021-02. Environmental Management—Life Cycle Assessment—Principles and Framework (ISO 14040:2006 + Amd 1:2020). German Version EN ISO 14040:2006 + A1:2020; Beuth Verlag: Berlin, Germany, 2021. [Google Scholar] [CrossRef]
- Klöpffer, W.; Grahl, B. Ökobilanz (LCA): Ein Leitfaden für Ausbildung und Beruf; Wiley-VCH: Weinheim, Germany, 2009; ISBN 9783527320431. [Google Scholar]
- Gupta, R.B. Hydrogen Fuel: Production, Transport, and Storage, 1st ed.; CRC Press: Boca Raton, FL, USA, 2008; ISBN 9781420045758. [Google Scholar]
- Acar, C.; Dincer, I. Analysis and assessment of a continuous-type hybrid photoelectrochemical system for hydrogen production. Int. J. Hydrogen Energy 2014, 39, 15362–15372. [Google Scholar] [CrossRef]
- Green, M.A. Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane. AIP Conf. Proc. 2006, 823, 319–326. [Google Scholar] [CrossRef] [Green Version]
- Moradi, R.; Groth, K.M. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. Int. J. Hydrogen Energy 2019, 44, 12254–12269. [Google Scholar] [CrossRef]
- Ullah Khan, I.; Hafiz Dzarfan Othman, M.; Hashim, H.; Matsuura, T.; Ismail, A.F.; Rezaei-DashtArzhandi, M.; Wan Azelee, I. Biogas as a renewable energy fuel—A review of biogas upgrading, utilisation and storage. Energy Convers. Manag. 2017, 150, 277–294. [Google Scholar] [CrossRef]
- Mertins, A.; Heiker, M.; Rosenberger, S.; Wawer, T. Competition in the conversion of the gas grid: Is the future of biogas biomethane or hydrogen? Int. J. Hydrogen Energy 2023, in press. [CrossRef]
- Kumar, S.; Kwon, H.-T.; Choi, K.-H.; Lim, W.; Cho, J.H.; Tak, K.; Moon, I. LNG: An eco-friendly cryogenic fuel for sustainable development. Appl. Energy 2011, 88, 4264–4273. [Google Scholar] [CrossRef]
- Economides, M.J.; Sun, K.; Subero, G. Compressed Natural Gas (CNG): An Alternative to Liquefied Natural Gas (LNG). SPE Prod. Oper. 2006, 21, 318–324. [Google Scholar] [CrossRef]
- Smajla, I.; Karasalihović Sedlar, D.; Drljača, B.; Jukić, L. Fuel Switch to LNG in Heavy Truck Traffic. Energies 2019, 12, 515. [Google Scholar] [CrossRef] [Green Version]
- Gustafsson, M.; Svensson, N. Cleaner heavy transports—Environmental and economic analysis of liquefied natural gas and biomethane. J. Clean. Prod. 2021, 278, 123535. [Google Scholar] [CrossRef]
- Ogden, J.; Jaffe, A.M.; Scheitrum, D.; McDonald, Z.; Miller, M. Natural gas as a bridge to hydrogen transportation fuel: Insights from the literature. Energy Policy 2018, 115, 317–329. [Google Scholar] [CrossRef]
- Johansson, J.; Leirnes, J.; Walton, K.; Yilmaz, E.; Zindel, E. Hydrogen Power and Heat with Siemens Energy Gas Turbines: Reliable and Flexible Carbon-Free Energy, Erlangen. 2022. Available online: https://www.siemens-energy.com/global/en/offerings/technical-papers/download-hydrogen-gas-turbine-readiness-white-paper.html (accessed on 3 May 2023).
- Stephan, P.; Stephan, K. Dubbel Taschenbuch für den Maschinenbau 1: Grundlagen und Tabellen; Springer: Berlin/Heidelberg, Germany, 2020; ISBN 9783662597118. [Google Scholar]
- Hermeling, W. Handbuch für den LNG- und CNG-Praktiker; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2020; ISBN 9783658285517. [Google Scholar]
- Bossel, U. Wasserstoff löst keine Energieprobleme. TATuP 2006, 15, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Trávníček, P.; Vítěz, T.; Koutný, T. The Equation of State of Biogas. Acta Univ. Agric. Silvic. Mendel. Brun. 2017, 65, 537–543. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, R.; Ghosh, P.; Kumar, M.; Vijay, V.K. Evaluation of biogas upgrading technologies and future perspectives: A review. Environ. Sci. Pollut. Res. Int. 2019, 26, 11631–11661. [Google Scholar] [CrossRef]
- Liu, K.; Song, C.; Subramani, V. Hydrogen and Syngas Production and Purification Technologies; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2010; ISBN 9780470561256. [Google Scholar]
- Barton, J.W.; Bowers, S.L.; Butcher, T.G.; Harshman, R.A.; Lee, G.D.; Warfield, L. Appendix. In Specifications, Tolerances, and Other Technical Requirements for Weighing and Measuring Devices; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2021. [Google Scholar] [CrossRef]
- Apostolou, D.; Xydis, G. A literature review on hydrogen refuelling stations and infrastructure. Current status and future prospects. Renew. Sustain. Energy Rev. 2019, 113, 109292. [Google Scholar] [CrossRef]
- European Commission. Fuel Price Comparison. 2022. Available online: https://alternative-fuels-observatory.ec.europa.eu/consumer-portal/fuel-price-comparison (accessed on 1 June 2023).
- Sandhu, G.S.; Frey, H.C.; Bartelt-Hunt, S.; Jones, E. Real-world activity, fuel use, and emissions of heavy-duty compressed natural gas refuse trucks. Sci. Total Environ. 2021, 761, 143323. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Quarterly Report: On European Gas Markets. 2022. Available online: https://energy.ec.europa.eu/document/download/0e69ba99-07e9-4aed-8c34-dbfa3ae0add7_en?filename=Quarterly%20report%20on%20European%20gas%20markets%20Q1_2022.pdf (accessed on 19 June 2023).
- Duan, Z.; Mei, N.; Feng, L.; Yu, S.; Jiang, Z.; Chen, D.; Xu, X.; Hong, J. Research on Hydrogen Consumption and Driving Range of Hydrogen Fuel Cell Vehicle under the CLTC-P Condition. WEVJ 2022, 13, 9. [Google Scholar] [CrossRef]
- Abbas, H.F.; Wan Daud, W. Hydrogen production by methane decomposition: A review. Int. J. Hydrogen Energy 2010, 35, 1160–1190. [Google Scholar] [CrossRef]
- Miyagawa, T.; Goto, M. Hydrogen Production Cost Forecasts since the 1970s and Implications for Technological Development. Energies 2022, 15, 4375. [Google Scholar] [CrossRef]
- Poralla, M.; Honegger, M.; Ahonen, H.-M.; Michaelowa, A.; Weber, A.-K. Sewage Treatment for the Skies: Mobilising Carbon Dioxide Removal through Public Policies and Private Financing; NET-Rapido Consortium and Perspectives Climate Research: London, UK; Freiburg im Breisgau, Germany, 2021. [Google Scholar]
- Puro.Earth. CORC Supplier Listing. Available online: https://puro.earth/CORC-CO2-removal-certificate (accessed on 15 May 2023).
- European Commission. Certification of Carbon Removals—EU Rules. Available online: https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/13172-Certification-of-carbon-removals-EU-rules_en (accessed on 1 June 2023).
Energy Input | Energy Output | |
---|---|---|
Chemical energy content CH4 | 27.8 kWh | 0.0 kWh |
Chemical energy content H2 | 0.0 kWh | 33.33 kWh |
Thermal energy | 25.0 kWh | 0.0 kWh |
Total | 52.8 kWh | 33.33 kWh |
Process Option 1 | Process Option 2 | |
---|---|---|
Usable Energy | 1.0 kWh | 1.0 kWh |
Efficiency (heavy-duty transport) | 44.0% | 63.0% |
Relative Efficiency (production) | 100% | 63.1% |
Total Efficiency | 44.0% | 39.8% |
Energy Input | 2.27 kWh | 2.52 kWh |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Full, J.; Hohmann, S.; Ziehn, S.; Gamero, E.; Schließ, T.; Schmid, H.-P.; Miehe, R.; Sauer, A. Perspectives of Biogas Plants as BECCS Facilities: A Comparative Analysis of Biomethane vs. Biohydrogen Production with Carbon Capture and Storage or Use (CCS/CCU). Energies 2023, 16, 5066. https://doi.org/10.3390/en16135066
Full J, Hohmann S, Ziehn S, Gamero E, Schließ T, Schmid H-P, Miehe R, Sauer A. Perspectives of Biogas Plants as BECCS Facilities: A Comparative Analysis of Biomethane vs. Biohydrogen Production with Carbon Capture and Storage or Use (CCS/CCU). Energies. 2023; 16(13):5066. https://doi.org/10.3390/en16135066
Chicago/Turabian StyleFull, Johannes, Silja Hohmann, Sonja Ziehn, Edgar Gamero, Tobias Schließ, Hans-Peter Schmid, Robert Miehe, and Alexander Sauer. 2023. "Perspectives of Biogas Plants as BECCS Facilities: A Comparative Analysis of Biomethane vs. Biohydrogen Production with Carbon Capture and Storage or Use (CCS/CCU)" Energies 16, no. 13: 5066. https://doi.org/10.3390/en16135066
APA StyleFull, J., Hohmann, S., Ziehn, S., Gamero, E., Schließ, T., Schmid, H. -P., Miehe, R., & Sauer, A. (2023). Perspectives of Biogas Plants as BECCS Facilities: A Comparative Analysis of Biomethane vs. Biohydrogen Production with Carbon Capture and Storage or Use (CCS/CCU). Energies, 16(13), 5066. https://doi.org/10.3390/en16135066