A Method of Assessing the Selection of Carport Power for an Electric Vehicle Using the Metalog Probability Distribution Family
Abstract
:1. Introduction
2. Objects and Research Methodology
3. Results
3.1. Analysis of the Instantaneous Power Generated by the Carport
3.2. Analysis of the Daily Amount of Energy Produced by the Carport
3.3. Analysis of the Monthly Amount of Energy Produced by the Carport
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nassar, Y.F.; Aissa, K.; Alsadi, S. Air Pollution Sources in Libya. Res. Rev. J. Ecol. Environ. Sci. 2018, 6, 63–79. Available online: https://scholar.ptuk.edu.ps/handle/123456789/213 (accessed on 26 April 2023).
- Colmenar-Santos, A.; Muñoz-Gómez, A.-M.; Rosales-Asensio, E.; López-Rey, Á. Electric vehicle charging strategy to support renewable energy sources in Europe 2050 low-carbon scenario. Energy 2019, 183, 61–74. [Google Scholar] [CrossRef]
- Čulík, K.; Štefancová, V.; Hrudkay, K.; Morgoš, J. Interior Heating and Its Influence on Electric Bus Consumption. Energies 2021, 14, 8346. [Google Scholar] [CrossRef]
- Dizo, J.; Blatnický, M.; Semenov, S.; Mikhailov, E.; Kostrzewski, M.; Drozdziel, P.; Štastniak, P. Electric and plug-in hybrid vehicles and their infrastructure in a particular European region. Transp. Res. Procedia 2021, 55, 629–636. [Google Scholar] [CrossRef]
- Liberto, C.; Valenti, G.; Orchi, S.; Lelli, M.; Nigro, M.; Ferrara, M. The Impact of Electric Mobility Scenarios in Large Urban Areas: The Rome Case Study. IEEE Trans. Intell. Transp. Syst. 2018, 19, 3540–3549. [Google Scholar] [CrossRef]
- Marczak, H.; Drozdziel, P. Analysis of Pollutants Emission into the Air at the Stage of an Electric Vehicle Operation. J. Ecol. Eng. 2021, 22, 182–188. [Google Scholar] [CrossRef]
- Mruzek, M.; Gajdáč, I.; Kučera, L.; Gajdošík, T. The Possibilities of Increasing the Electric Vehicle Range. Procedia Eng. 2017, 192, 621–625. [Google Scholar] [CrossRef]
- Tomaszewska, A.; Chu, Z.; Feng, X.; O’Kane, S. Lithium-ion battery fast charging: A review. eTransportation 2019, 1, 1–28. [Google Scholar] [CrossRef]
- Wahid, M.R.; Budiman, B.A.; Joelianto, E.; Aziz, M. A Review on Drive Train Technologies for Passenger Electric Vehicles. Energies 2021, 14, 6742. [Google Scholar] [CrossRef]
- Dittrich, A.; Beroun, S.; Zvolsky, T. Diesel gas dual engine with liquid LPG injection into intake manifold. Eng. Rural. Develop. 2018, 1978–1983. [Google Scholar] [CrossRef]
- Gnap, J.; Dočkalik, M. Impact of the operation of LNG trucks on the environment. Open Eng. 2021, 11, 937–947. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, X.; Zhu, Z. Economic evaluation and production process simulation of biodiesel production from waste cooking oil. Curr. Res. Green Sustain. Chem. 2021, 4, 100091. [Google Scholar] [CrossRef]
- Matijošius, J.; Orynycz, O.; Kovbasenko, S.; Simonenko, V.; Shuba, Y.; Moroz, V.; Gutarevych, S.; Wasiak, A.; Tucki, K. Testing the Indicators of Diesel Vehicles Operating on Diesel Oil and Diesel Biofuel. Energies 2022, 15, 9263. [Google Scholar] [CrossRef]
- Pietra, A.; Gianni, M.; Zuliani, N.; Malabotti, S.; Taccani, R. Experimental Characterization of an Alkaline Electrolyser and a Compression System for Hydrogen Production and Storage. Energies 2021, 14, 5347. [Google Scholar] [CrossRef]
- Piotrowska, K.; Piasecka, I.; Kłos, Z.; Marczuk, A.; Kasner, R. Assessment of the Life Cycle of a Wind and Photovoltaic Power Plant in the Context of Sustainable Development of Energy Systems. Materials 2022, 15, 7778. [Google Scholar] [CrossRef] [PubMed]
- Połom, M.; Wiśniewski, P. Implementing Electromobility in Public Transport in Poland in 1990–2020. A Review of Experiences and Evaluation of the Current Development Directions. Sustainability 2021, 13, 4009. [Google Scholar] [CrossRef]
- Wasiak, A.; Orynycz, O.; Tucki, K.; Świć, A. Hydrogen Enriched Hydrocarbons as New Energy Resources—As Studied by Means of Computer Simulations. Adv. Sci. Technol. Res. J. 2022, 16, 78–85. [Google Scholar] [CrossRef]
- Conradie, P.; Asekun, O.O.; Skrúcaný, T.; Kendra, M.; Stopka, O. The effect of fuel on the energy consumption and production of greenhouse gases in transport. Arch. Automot. Eng. Arch. Motoryz. 2018, 82, 5–14. [Google Scholar] [CrossRef]
- Dziewiątkowski, M.; Szpica, D. Evaluation of the conversion rate regarding hydrocarbons contained in the exhaust gases of an engine fuelled with compressed natural gas (CNG) using different catalysts operating at different temperatures. Mechanika 2021, 27, 492–497. [Google Scholar]
- Górski, K.; Smigins, R.; Matijošius, J.; Rimkus, A.; Longwic, R. Physicochemical Properties of Diethyl Ether—Sunflower Oil Blends and Their Impact on Diesel Engine Emissions. Energies 2022, 15, 4133. [Google Scholar] [CrossRef]
- Manko, I.; Shuba, Y.; Korpach, A.; Gutarevyc, S.; Ragulskiene, J.; Pauliukas, A. Measurement of fuel consumption and harmful emissions of cars when using different types of fuel. J. Meas. Eng. 2020, 8, 182–196. [Google Scholar] [CrossRef]
- Mikulski, M.; Vasudev, A.; Hunicz, J.; Rybak, A.; Gęca, M. Combustion of hydrotreated vegetable oil in a diesel engine: Sensitivity to split injection strategy and exhaust gas recirculation. In Proceedings of the ASME 2020 Internal Combustion Engine Division Fall Technical Conference, ICEF 2020, Virtual, 4–6 November 2020. [Google Scholar]
- Milojevic, S.; Savic, S.; Maric, D.; Stopka, O.; Krstic, B.; Stojanovic, B. Correlation between Emission and Combustion Characteristics with the Compression Ratio and Fuel Injection Timing in Tribologically Optimized Diesel Engine. Teh. Vjesn. 2022, 29, 1210–1219. [Google Scholar]
- Šarkan, B.; Gnap, J.; Loman, M.; Harantová, V. Examining the Amount of Particulate Matter (PM) Emissions in Urban Areas. Appl. Sci. 2023, 13, 1845. [Google Scholar] [CrossRef]
- Alwesabi, Y.; Liu, Z.; Kwon, S.; Wang, Y. A novel integration of scheduling and dynamic wireless charging planning models of battery electric buses. Energy 2021, 230, 120806. [Google Scholar] [CrossRef]
- Du, J.; Liu, Y.; Mo, X.; Li, Y.; Li, J.; Wu, X.; Ouyang, M. Impact of high-power charging on the durability and safety of lithium batteries used in long-range battery electric vehicles. Appl. Energy 2019, 255, 113793. [Google Scholar] [CrossRef]
- Available online: https://server.growatt.com/login (accessed on 5 April 2023).
- Ehsani, M.; Singh, K.V.; Bansal, H.O.; Mehrjardi, R.T. State of the Art and Trends in Electric and Hybrid Electric Vehicles; IEEE: New York, NY, USA, 2021; Volume 109, pp. 967–984. [Google Scholar] [CrossRef]
- Małek, A.; Dudziak, A.; Stopka, O.; Caban, J.; Marciniak, A.; Rybicka, I. Charging Electric Vehicles from Photovoltaic Systems—Statistical Analyses of the Small Photovoltaic Farm Operation. Energies 2022, 15, 2137. [Google Scholar] [CrossRef]
- Sokolovskij, E.; Małek, A.; Caban, J.; Dudziak, A.; Matijošius, J.; Marciniak, A. Selection of a Photovoltaic Carport Power for an Electric Vehicle. Energies 2023, 16, 3126. [Google Scholar] [CrossRef]
- Madeti, S.R.; Singh, S. Monitoring system for photovoltaic plants: A review. Renew. Sustain. Energy Rev. 2017, 67, 1180–1207. [Google Scholar] [CrossRef]
- Available online: https://monitoringpublic.solaredge.com/solaredge-web/p/home/public?locale=en_GB (accessed on 5 April 2023).
- Kostopoulos, E.M.; Spyropoulos, G.; Christopoulos, K.; Kaldellis, J.K. Solar energy contribution to an electric vehicle needs on the basis of long-term measurements. Procedia Struct. Integr. 2018, 10, 203–210. [Google Scholar] [CrossRef]
- Gan, Y.; Chen, Z.; Wu, L.; Cheng, S.; Lin, P. Fault diagnosis of PV array using adaptive network based fuzzy inference system. Proc. IOP Conf. Ser. Earth Environ. Sci. 2020, 467, 012083. [Google Scholar] [CrossRef]
- Globisch, J.; Plötz, P.; Dütschke, E.; Wietschel, M. Consumer preferences for public charging infrastructure for electric vehicles. Transp. Policy 2019, 81, 54–63. [Google Scholar] [CrossRef]
- Erd, A.; Stokłosa, J. Main Design Guidelines for Battery Management Systems for Traction Purposes. In Proceedings of the XI International Scientific and Technical Conference Automotive Safety 2018, Casta, Slovakia, 18–20 April 2018. [Google Scholar] [CrossRef]
- Gnann, T.; Funke, S.; Jakobsson, N.; Plötz, P.; Bennehag, A. Fast charging infrastructure for electric vehicles: Today’s situation and future needs. Transp. Res. D Transp. Environ. 2018, 62, 314–329. [Google Scholar] [CrossRef]
- Kulik, A.C.; Tonolo, É.A.; Scortegagna, A.K.; da Silva, J.E.; Urbanetz Junior, J. Analysis of Scenarios for the Insertion of Electric Vehicles in Conjunction with a Solar Carport in the City of Curitiba, Paraná—Brazil. Energies 2021, 14, 5027. [Google Scholar] [CrossRef]
- Iringová, A.; Kovačic, M. Design and optimization of photovoltaic systems in a parking garage—A case study. Transp. Res. Procedia. 2021, 55, 1171–1179. [Google Scholar] [CrossRef]
- Ibrahim, A.; Jiang, F. The electric vehicle energy management: An overview of the energy system and related modeling and simulation. Renew. Sustain. Energy Rev. 2021, 144, 111049. [Google Scholar] [CrossRef]
- Fragiacomo, P.; Piraino, F.; Genovese, M. Insights for Industry 4.0 Applications into a Hydrogen Advanced Mobility. Procedia Manuf. 2020, 42, 239–245. [Google Scholar] [CrossRef]
- Di Foggia, G. Drivers and challenges of electric vehicles integration in corporate fleet: An empirical survey. Res. Transp. Bus. Manag. 2021, 41, 100627. [Google Scholar] [CrossRef]
- Schücking, M.; Jochem, P. Two-stage stochastic program optimizing the cost of electric vehicles in commercial fleets. Appl. Energy 2021, 293, 116649. [Google Scholar] [CrossRef]
- Seddig, K.; Jochem, P.; Fichtner, W. Two-stage stochastic optimization for cost-minimal charging of electric vehicles at public charging stations with photovoltaics. Appl. Energy 2019, 242, 769–781. [Google Scholar] [CrossRef]
- Nait-Sidi-Moh, A.; Ruzmetov, A.; Bakhouya, M.; Naitmalek, Y.; Gaber, J. A Prediction Model of Electric Vehicle Charging Requests. Procedia Comput. Sci. 2018, 141, 127–134. [Google Scholar] [CrossRef]
- Nassar, Y.F.; Alsadi, S.Y.; Miskeen, G.M.; El-Khozondar, H.J.; Abuhamoud, N.M. Mapping of PV Solar Module Technologies Across Libyan Territory. In Proceedings of the 2022 Iraqi International Conference on Communication and Information Technologies (IICCIT), Basrah, Iraq, 7–8 September 2022; pp. 227–232. [Google Scholar] [CrossRef]
- Stańczyk, T.L.; Hyb, L. Technological and organisational challenges for e-mobility. Arch. Automot. Eng. Arch. Motoryz. 2019, 84, 57–70. [Google Scholar] [CrossRef]
- Habla, W.; Huwe, V.; Kesternich, M. Electric and conventional vehicle usage in private and car sharing fleets in Germany. Transp. Res. D Transp. Environ. 2021, 93, 102729. [Google Scholar] [CrossRef]
- Nassar, Y.F.; Alsadi, S.Y.; El-Khozondar, H.J.; Ismail, M.S. Design of an isolated renewable hybrid energy system: A case study. Mater. Renew. Sustain. Energy 2022, 11, 225–240. [Google Scholar] [CrossRef]
- Novoa, L.; Brouwer, J. Dynamics of an integrated solar photovoltaic and battery storage nanogrid for electric vehicle charging. J. Power Sources 2018, 399, 166–178. [Google Scholar] [CrossRef]
- Keelin, T.W. The Metalog Distributions. Decis. Anal. 2016, 13, 243–277. [Google Scholar] [CrossRef]
- Keelin, T.W.; Howard, R.A. The Metalog Distributions: Virtually Unlimited Shape Flexibility, Combining Expert Opinion in Closed Form, and Bayesian Updating in Closed Form; Stanford University: Stanford, CA, USA, 2021. [Google Scholar]
- Available online: http://metalogdistributions.com/software.html (accessed on 22 May 2023).
- Runolinna, M.; Turnquist, M.; Teittinen, J.; Ilmonen, P.; Koskinen, L. Extreme Path Delay Estimation of Critical Paths in Within-Die Process Fluctuations Using Multi-Parameter Distributions. J. Low Power Electron. Appl. 2023, 13, 22. [Google Scholar] [CrossRef]
- Kleniewska, M.; Mitrowska, D.; Wasilewicz, M. Estimating Daily Global Solar Radiation with No Meteorological Data in Poland. Appl. Sci. 2020, 10, 778. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.bayesfusion.com/2022/06/27/genie-4-0/ (accessed on 26 April 2023).
- Available online: https://monitoringpublic.solaredge.com/solaredge-web/p/site/public?name=Dryszczow&locale=en_GB#/dashboard (accessed on 26 April 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Małek, A.; Caban, J.; Dudziak, A.; Marciniak, A.; Ignaciuk, P. A Method of Assessing the Selection of Carport Power for an Electric Vehicle Using the Metalog Probability Distribution Family. Energies 2023, 16, 5077. https://doi.org/10.3390/en16135077
Małek A, Caban J, Dudziak A, Marciniak A, Ignaciuk P. A Method of Assessing the Selection of Carport Power for an Electric Vehicle Using the Metalog Probability Distribution Family. Energies. 2023; 16(13):5077. https://doi.org/10.3390/en16135077
Chicago/Turabian StyleMałek, Arkadiusz, Jacek Caban, Agnieszka Dudziak, Andrzej Marciniak, and Piotr Ignaciuk. 2023. "A Method of Assessing the Selection of Carport Power for an Electric Vehicle Using the Metalog Probability Distribution Family" Energies 16, no. 13: 5077. https://doi.org/10.3390/en16135077
APA StyleMałek, A., Caban, J., Dudziak, A., Marciniak, A., & Ignaciuk, P. (2023). A Method of Assessing the Selection of Carport Power for an Electric Vehicle Using the Metalog Probability Distribution Family. Energies, 16(13), 5077. https://doi.org/10.3390/en16135077