Hydrothermal Carbonisation as Treatment for Effective Moisture Removal from Digestate—Mechanical Dewatering, Flashing-Off, and Condensates’ Processing
Abstract
:1. Introduction
- The optimisation of the dewatering pressure of municipal solid waste digestate after HTC;
- The determination of a possible means of purifying the condensate with nanofiltration membranes after the condensing of vapours flashed for heat recovery after HTC;
- The evaluation of the biomethane potential of flashed vapours.
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aragón-Briceño, C.I.; Ross, A.B.; Camargo-Valero, M.A. Mass and energy integration study of hydrothermal carbonization with anaerobic digestion of sewage sludge. Renew. Energy 2021, 167, 473–483. [Google Scholar] [CrossRef]
- Shi, W.; Fenton, O.; Ashekuzzaman, S.M.; Daly, K.; Leahy, J.J.; Khalaf, N.; Hu, Y.; Chojnacka, K.; Numviyimana, C.; Healy, M.G. An examination of maximum legal application rates of dairy processing and associated STRUBIAS fertilising products in agriculture. J. Environ. Manag. 2022, 301, 113880. [Google Scholar] [CrossRef]
- Numviyimana, C.; Warchoł, J.; Khalaf, N.; Leahy, J.J.; Chojnacka, K. Phosphorus recovery as struvite from hydrothermal carbonization liquor of chemically produced dairy sludge by extraction and precipitation. J. Environ. Chem. Eng. 2022, 10, 106947. [Google Scholar] [CrossRef]
- Śliz, M.; Wilk, M. A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow. Renew. Energy 2020, 156, 942–950. [Google Scholar] [CrossRef]
- Wilk, M.; Magdziarz, A.; Kalemba-Rec, I.; Szymańska-Chargot, M. Upgrading of green waste into carbon-rich solid biofuel by hydrothermal carbonization: The effect of process parameters on hydrochar derived from acacia. Energy 2020, 202, 117717. [Google Scholar] [CrossRef]
- Magdziarz, A.; Wilk, M.; Wądrzyk, M. Pyrolysis of hydrochar derived from biomass—Experimental investigation. Fuel 2020, 267, 117246. [Google Scholar] [CrossRef]
- Kumar, N.; Weldon, R.; Lynam, J.G. Hydrothermal carbonization of coffee silverskins. Biocatal. Agric. Biotechnol. 2021, 36, 102145. [Google Scholar] [CrossRef]
- Sobek, S.; Tran, Q.-K.; Junga, R.; Werle, S. Hydrothermal carbonization of the waste straw: A study of the biomass transient heating behavior and solid products combustion kinetics. Fuel 2021, 314, 122725. [Google Scholar] [CrossRef]
- Lühmann, T.; Wirth, B. Sewage Sludge Valorization via Hydrothermal Carbonization: Optimizing Dewaterability and Phosphorus Release. Energies 2020, 13, 4417. [Google Scholar] [CrossRef]
- Román, S.; Libra, J.; Berge, N.; Sabio, E.; Ro, K.; Li, L.; Ledesma, B.; Álvarez, A.; Bae, S. Hydrothermal carbonization: Modeling, final properties design and applications: A review. Energies 2018, 11, 216. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.M.; Ekpo, U.; Ross, A.B. The influence of pH on the combustion properties of bio-coal following hydrothermal treatment of swine manure. Energies 2020, 13, 331. [Google Scholar] [CrossRef] [Green Version]
- Djandja, O.S.; Yin, L.-X.; Wang, Z.-C.; Duan, P.-G. From wastewater treatment to resources recovery through hydrothermal treatments of municipal sewage sludge: A critical review. Process Saf. Environ. Prot. 2021, 151, 101–127. [Google Scholar] [CrossRef]
- Picone, A.; Volpe, M.; Messineo, A. Process Water Recirculation during Hydrothermal Carbonization of Waste Biomass: Current Knowledge and Challenges. Energies 2021, 14, 2962. [Google Scholar] [CrossRef]
- Funke, A.; Ziegler, F. Hydrothermal carbonisation of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod. Biorefining 2010, 4, 160–177. [Google Scholar] [CrossRef]
- Acharjee, T.C.; Coronella, C.J.; Vasquez, V.R. Effect of thermal pretreatment on equilibrium moisture content of lignocellulosic biomass. Bioresour. Technol. 2011, 102, 4849–4854. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.B.; Panigrahi, S.; Dubey, B.K. Hydrothermal carbonization of yard waste for solid bio-fuel production: Study on combustion kinetic, energy properties, grindability and flowability of hydrochar. Waste Manag. 2019, 91, 108–119. [Google Scholar] [CrossRef]
- Kambo, H.S.; Dutta, A. Comparative evaluation of torrefaction and hydrothermal carbonization of lignocellulosic biomass for the production of solid biofuel. Energy Convers. Manag. 2015, 105, 746–755. [Google Scholar] [CrossRef]
- Czerwińska, K.; Śliz, M.; Wilk, M. Hydrothermal carbonization process: Fundamentals, main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge. A review. Renew. Sustain. Energy Rev. 2022, 154, 111873. [Google Scholar] [CrossRef]
- Mlonka-Mędrala, A.; Sieradzka, M.; Magdziarz, A. Thermal upgrading of hydrochar from anaerobic digestion of municipal solid waste organic fraction. Fuel 2022, 324, 124435. [Google Scholar] [CrossRef]
- Mokrzycki, J.; Lorenc-Grabowska, E.; Kordek-Khalil, K.; Rutkowski, P. Hydrothermal and pyrolytic biochars from waste milk thistle (Silybum marianum) extrudates as precursors for production of effective isoproturon adsorbents. J. Water Process Eng. 2020, 37, 101459. [Google Scholar] [CrossRef]
- Mayer, F.; Bhandari, R.; Gäth, S.A. Life cycle assessment on the treatment of organic waste streams by anaerobic digestion, hydrothermal carbonization and incineration. Waste Manag. 2021, 130, 93–106. [Google Scholar] [CrossRef]
- Stobernack, N.; Mayer, F.; Malek, C.; Bhandari, R. Evaluation of the energetic and environmental potential of the hydrothermal carbonization of biowaste: Modeling of the entire process chain. Bioresour. Technol. 2020, 318, 124038. [Google Scholar] [CrossRef]
- Medina-Martos, E.; Istrate, I.R.; Villamil, J.A.; Gálvez-Martos, J.L.; Dufour, J.; Mohedano, Á.F. Techno-economic and life cycle assessment of an integrated hydrothermal carbonization system for sewage sludge. J. Clean. Prod. 2020, 277. [Google Scholar] [CrossRef]
- Mendecka, B.; Lombardi, L.; Micali, F.; de Risi, A. Energy Recovery from Olive Pomace by Hydrothermal Carbonization on Hypothetical Industrial Scale: A LCA Perspective. Waste Biomass Valorization 2020, 11, 5503–5519. [Google Scholar] [CrossRef]
- Aragón-Briceño, C.; Ross, A.B.B.; Camargo-Valero, M.A.A. Evaluation and comparison of product yields and bio-methane potential in sewage digestate following hydrothermal treatment. Appl. Energy 2017, 208, 1357–1369. [Google Scholar] [CrossRef]
- Ahmed, M.; Andreottola, G.; Elagroudy, S.; Negm, M.S.; Fiori, L. Coupling hydrothermal carbonization and anaerobic digestion for sewage digestate management: Influence of hydrothermal treatment time on dewaterability and bio-methane production. J. Environ. Manag. 2021, 281, 111910. [Google Scholar] [CrossRef] [PubMed]
- Cao, Z.; Hülsemann, B.; Wüst, D.; Oechsner, H.; Lautenbach, A.; Kruse, A. Effect of residence time during hydrothermal carbonization of biogas digestate on the combustion characteristics of hydrochar and the biogas production of process water. Bioresour. Technol. 2021, 333, 125110. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-F.; Qian, C.; Jiang, J.-K.; Ye, X.-D.; Yu, H.-Q. Response of extracellular polymeric substances to thermal treatment in sludge dewatering process. Environ. Pollut. 2017, 231, 1388–1392. [Google Scholar] [CrossRef]
- Jain, A.; Balasubramanian, R.; Srinivasan, M.P. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem. Eng. J. 2016, 283, 789–805. [Google Scholar] [CrossRef]
- Gao, N.; Li, Z.; Quan, C.; Miskolczi, N.; Egedy, A. A new method combining hydrothermal carbonization and mechanical compression in-situ for sewage sludge dewatering: Bench-scale verification. J. Anal. Appl. Pyrolysis 2019, 139, 187–195. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Li, A. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: Influence of operating conditions and the process energetics. Water Res. 2014, 65, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Aragon-Briceño, C.; Pożarlik, A.; Bramer, E.; Brem, G.; Wang, S.; Wen, Y.; Yang, W.; Pawlak-Kruczek, H.; Niedźwiecki, Ł.; Urbanowska, A.; et al. Integration of hydrothermal carbonization treatment for water and energy recovery from organic fraction of municipal solid waste digestate. Renew. Energy 2022, 184, 577–591. [Google Scholar] [CrossRef]
- Wilk, M.; Czerwińska, K.; Śliz, M.; Imbierowicz, M. Hydrothermal carbonization of sewage sludge: Hydrochar properties and processing water treatment by distillation and wet oxidation. Energy Rep. 2023, 9, 39–58. [Google Scholar] [CrossRef]
- Czerwińska, K.; Śliz, M.; Wilk, M. Thermal Disposal of Post-processing Water Derived from the Hydrothermal Carbonization Process of Sewage Sludge. Waste Biomass Valorization 2023, 1–10. [Google Scholar] [CrossRef]
- Czerwińska, K.; Marszałek, A.; Kudlek, E.; Śliz, M.; Dudziak, M.; Wilk, M. The treatment of post-processing liquid from the hydrothermal carbonization of sewage sludge. Sci. Total Environ. 2023, 885, 163858. [Google Scholar] [CrossRef]
- Lisseth, C.; Martinez, M.; Sermyagina, E.; Saari, J.; Silva, M.; Jesus, D.; Cardoso, M.; de Almeida, G.M.; Vakkilainen, E. Biomass and Bioenergy Hydrothermal carbonization of lignocellulosic agro-forest based biomass residues. Biomass Bioenergy 2021, 147, 106004. [Google Scholar] [CrossRef]
- Wnukowski, M.; Owczarek, P.; Niedźwiecki, Ł. Wet Torrefaction of Miscanthus—Characterization of Hydrochars in View of Handling, Storage and Combustion Properties. J. Ecol. Eng. 2015, 16, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Hastings, J.T.; Acharjee, T.C.; Coronella, C.J.; Vásquez, V.R. Mass and energy balances of wet torrefaction of lignocellulosic biomass. Energy Fuels 2010, 24, 4738–4742. [Google Scholar] [CrossRef]
- MICRODYN-NADIR. Flat Sheet Membrane Data Sheets—MICRODYN-NADIR n.d. Available online: https://www.microdyn-nadir.com/flat-sheet-membrane-data-sheets/ (accessed on 15 February 2021).
- Tauber, J.; Parravicini, V.; Svardal, K.; Krampe, J. Quantifying methane emissions from anaerobic digesters. Water Sci. Technol. 2019, 80, 1654–1661. [Google Scholar] [CrossRef] [Green Version]
- Aragón-Briceño, C.I.; Grasham, O.; Ross, A.B.; Dupont, V.; Camargo-Valero, M.A. Hydrothermal carbonization of sewage digestate at wastewater treatment works: Influence of solid loading on characteristics of hydrochar, process water and plant energetics. Renew. Energy 2020, 157, 959–973. [Google Scholar] [CrossRef]
- Kovacs, Z.; Samhaber, W. Characterization of nanofiltration membranes with uncharged solutes. Membrantechnika 2008, 12, 22–36. [Google Scholar]
- Luo, J.; Ding, L.; Qi, B.; Jaffrin, M.Y.; Wan, Y. A two-stage ultrafiltration and nanofiltration process for recycling dairy wastewater. Bioresour. Technol. 2011, 102, 7437–7442. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Luo, J.; Chen, X.; Hang, X.; Shen, F.; Wan, Y. Fully recycling dairy wastewater by an integrated isoelectric precipitation–nanofiltration–anaerobic fermentation process. Chem. Eng. J. 2016, 283, 476–485. [Google Scholar] [CrossRef]
- Campbell, B.S.; Thorpe, R.B.; Peus, D.; Lee, J. Anaerobic digestion of untreated and treated process water from the hydrothermal carbonisation of spent coffee grounds. Chemosphere 2022, 293, 133529. [Google Scholar] [CrossRef] [PubMed]
- Zacharof, M.-P.; Mandale, S.J.; Oatley-Radcliffe, D.; Lovitt, R.W. Nutrient recovery and fractionation of anaerobic digester effluents employing pilot scale membrane technology. J. Water Process Eng. 2019, 31, 100846. [Google Scholar] [CrossRef]
Parameter | Test Solution | ||||
---|---|---|---|---|---|
K0 | K1 | K2 | K3 | K4 | |
pH | 8.12 | 10.46 | 10.88 | 9.98 | 9.61 |
conductivity, mS/cm | 32.8 | 8.23 | 5.74 | 1.841 | 1.042 |
dry mass, mg/dm3 | 27,050 | 790 | 850 | 680 | 570 |
COD, mg O2/dm3 | 30,940 | 2670 | 2130 | 1410 | 840 |
BOD5, mg O2/dm3 | 6200 | 484 | 448 | 464 | 460 |
DOC, mg C/dm3 | 7970 | 1250 | 940 | 660 | 370 |
N-NH4+, mg/dm3 | 3026 | 2364 | 2396 | 327 | 218 |
N-NO3−, mg/dm3 | 0 | 0 | 0 | 17.6 | 18 |
N, mg/dm3 | 3280 | 2880 | 2640 | 389 | 261 |
Na+, mg/dm3 | 2300 | 1720 | 1290 | 630 | 460 |
K+, mg/dm3 | 2150 | 1580 | 1030 | 550 | 390 |
Mg2+, mg/dm3 | 285 | 41 | 11.8 | 10.3 | 10.9 |
Ca2+, mg/dm3 | 440 | 95.2 | 22.1 | 20.8 | 21.3 |
F−, mg/dm3 | 82.5 | 8.14 | 2.83 | 11 | 11.3 |
Cl−, mg/dm3 | 5965 | 35 | 50.2 | 14.6 | 14.1 |
Br−, mg/dm3 | 14.6 | 1.14 | 1.14 | 0.25 | 1.24 |
P-PO43−, mg/dm3 | 30.3 | 5.52 | 2.54 | 2.87 | 3 |
SO42−, mg/dm3 | 1240 | 83.3 | 45 | 35.8 | 35.4 |
P, mg/dm3 | 31.8 | 6.2 | 5.3 | 5.6 | 4.9 |
Membrane Type | Membrane Material | Na2SO4 Retention | MWCO, kDa | Contact Angle | Max Temp., °C | pH Range | Effective Filtration Surface, cm2 |
---|---|---|---|---|---|---|---|
NP010P | polyethersulfone | 25–40% | 1040–1400 | 62.5° | 95 | 0–14 | 45.3 |
NP030P | 80–95% | 520–700 |
Sample | pdewatering, MPa | Moisture Content, %w.b. |
---|---|---|
Raw digestate | - | 75.7 |
Dewatered digestate | 3 | 65.3 |
Dewatered hydrochars | 3 | 45.4 |
5 | 42.9 | |
7 | 41.4 | |
10 | 37.1 |
Parameter | Test Solution | ||||
---|---|---|---|---|---|
K0 | K1 | K2 | K3 | K4 | |
BMP, dm3CH4/dm3liquid | 2.80 | 0.44 | 0.33 | 0.23 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlak-Kruczek, H.; Urbanowska, A.; Niedzwiecki, L.; Czerep, M.; Baranowski, M.; Aragon-Briceño, C.; Kabsch-Korbutowicz, M.; Arora, A.; Seruga, P.; Wnukowski, M.; et al. Hydrothermal Carbonisation as Treatment for Effective Moisture Removal from Digestate—Mechanical Dewatering, Flashing-Off, and Condensates’ Processing. Energies 2023, 16, 5102. https://doi.org/10.3390/en16135102
Pawlak-Kruczek H, Urbanowska A, Niedzwiecki L, Czerep M, Baranowski M, Aragon-Briceño C, Kabsch-Korbutowicz M, Arora A, Seruga P, Wnukowski M, et al. Hydrothermal Carbonisation as Treatment for Effective Moisture Removal from Digestate—Mechanical Dewatering, Flashing-Off, and Condensates’ Processing. Energies. 2023; 16(13):5102. https://doi.org/10.3390/en16135102
Chicago/Turabian StylePawlak-Kruczek, Halina, Agnieszka Urbanowska, Lukasz Niedzwiecki, Michał Czerep, Marcin Baranowski, Christian Aragon-Briceño, Małgorzata Kabsch-Korbutowicz, Amit Arora, Przemysław Seruga, Mateusz Wnukowski, and et al. 2023. "Hydrothermal Carbonisation as Treatment for Effective Moisture Removal from Digestate—Mechanical Dewatering, Flashing-Off, and Condensates’ Processing" Energies 16, no. 13: 5102. https://doi.org/10.3390/en16135102
APA StylePawlak-Kruczek, H., Urbanowska, A., Niedzwiecki, L., Czerep, M., Baranowski, M., Aragon-Briceño, C., Kabsch-Korbutowicz, M., Arora, A., Seruga, P., Wnukowski, M., Mularski, J., Bramer, E., Brem, G., & Pożarlik, A. (2023). Hydrothermal Carbonisation as Treatment for Effective Moisture Removal from Digestate—Mechanical Dewatering, Flashing-Off, and Condensates’ Processing. Energies, 16(13), 5102. https://doi.org/10.3390/en16135102