A Non-Equilibrium Thermodynamic Approach for Analysis of Power Conversion Efficiency in the Wind Energy System
Abstract
:1. Introduction
2. Indicators of EC Performance According to Linear Non-Equilibrium Thermodynamics
2.1. Basic Provisions of Linear Non-Equilibrium Thermodynamics
2.2. A Universal Method of Describing and Evaluating Performance Indicators of Linear ECs
- relation of forces
- phenomenological relationship
2.3. Performance Indicators of Cascaded Linear ECs
2.4. The Energy Optimization Method of the Stady-State Operation Mode of the System
3. Thermodynamic Analysis of Energy Conversion Efficiency in WT
3.1. Mathematical Description of the Aeromechanical Regularities of WT Operation as a Linear EC
3.2. The Main Performance Indicators of the Experimental WT
4. Thermodynamic Analysis of the PMSG Energy Conversion Efficiency
4.1. Mathematical Description of Mechano-Electrical Regularities of PMSG Operation as a Linear EC
4.2. Determination of the Parameters of the Studied PMSG
4.3. Thermodynamic Performance Indicators of the Studied PMSG
5. Thermodynamic Analysis of Energy Conversion Efficiency in the “VAWT—PMSG” Complex
5.1. Thermodynamic Performance Indicators of the Studied PMSG Driven by the Studied VAWT
5.2. Thermodynamic Parameters of the WECS as a Cascade EC
5.3. Research on Ways to Improve the WECS Efficiency
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Turns, S.R.; Pauley, L.L. Thermodynamics: Concepts and Applications, 2nd ed.; Cambridge University Press: Cambridge, UK, 2020; 854p. [Google Scholar]
- Demirel, Y. Non-Equilibrium Thermodynamics: Transport and Rate Processes in Physical, Chemical and Biological Systems, 2nd ed.; Elsevier Science & Technology Books: Amsterdam, The Netherlands, 2007; 754p. [Google Scholar]
- Christen, T. Efficiency and Power in Energy Conversion and Storage: Basic Physical Concepts; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2018; 178p. [Google Scholar] [CrossRef]
- Kleidon, A. Working at the Limit: A Review of Thermodynamics and Optimality of the Earth System. Earth Syst. Dyn. Discuss. 2022, preprint. [Google Scholar] [CrossRef]
- Perera, S.M.H.D.; Putrus, G.; Conlon, M.; Narayana, M.; Sunderland, K. Wind energy harvesting and conversion systems: A technical review. Energies 2022, 15, 9299. [Google Scholar] [CrossRef]
- Shchur, I.; Klymko, V.; Xie, S.; Schmidt, D. Design features and numerical investigation of counter-rotating VAWT with co-axial rotors displaced from each other along the axis of rotation. Energies 2023, 16, 4493. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Q.; Yuan, R.; Luo, K.; Fan, J. Large eddy simulation of the layout effects on wind farm performance coupling with wind turbine control strategies. ASME. J. Energy Resour. Technol. 2022, 144, 051304. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, K.; Wu, C.; Tan, J.; He, R.; Ye, S.; Fan, J. Inter-farm cluster interaction of the operational and planned offshore wind power base. J. Clean. Prod. 2023, 396, 136529. [Google Scholar] [CrossRef]
- Zhang, S.; Luo, K.; Yuan, R.; Wang, Q.; Wang, J.; Zhang, L.; Fan, J. Influences of operating parameters on the aerodynamics and aeroacoustics of a horizontal-axis wind turbine. Energy 2018, 160, 597–611. [Google Scholar] [CrossRef]
- Sahin, A.D.; Dincer, I.; Rosen, M.A. Thermodynamic analysis of wind energy. Int. J. Energy Res. 2006, 30, 553–566. [Google Scholar] [CrossRef]
- Hu, W.; Liu, Z.; Tan, J. Thermodynamic analysis of wind energy systems. In Wind Solar Hybrid Renewable Energy System; Kenneth, O.E., Tahour, A., Aissaou, A.G., Eds.; IntechOpen: London, UK, 2019; pp. 1–19. [Google Scholar] [CrossRef] [Green Version]
- Diyoke, C.; Ngwaka, U. Thermodynamic analysis of a hybrid wind turbine and biomass gasifier for energy supply in a rural off-grid region of Nigeria. Energy Sources Part A Recovery Util. Environ. Eff. 2021, 1–26. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, K.; Li, X.; Xu, J. Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage. Energy 2014, 77, 460–477. [Google Scholar] [CrossRef]
- Koschwitz, P.; Bellotti, D.; Sanz, M.C.; Alcaide-Moreno, A.; Liang, C.; Epple, B. Dynamic parameter simulations for a novel small-scale power-to-ammoniac. Processes 2023, 11, 680. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, Y.; Lin, F.; Yang, K. Thermodynamic analysis of a novel combined cooling, heating, and power system consisting of wind energy and transcritical compressed CO2 energy storage. Energy Convers. Manag. 2022, 260, 115609. [Google Scholar] [CrossRef]
- Ehyaei, M.A.; Baloochzadeh, S.; Ahmadi, A.; Abanades, S. Energy, exergy, economic, exergoenvironmental, and environmental analyses of a multigeneration system to produce electricity, cooling, potable water, hydrogen and sodium-hypochlorite. Desalination 2021, 501, 114902. [Google Scholar] [CrossRef]
- Vosough, A.; Vosough, S. Different kind of renewable energy and exergy concept. Int. J. Multidiscip. Sci. Eng. 2011, 2, 1–7. [Google Scholar]
- Westerhoff, H.V.; van Dam, K. Thermodynamics and Control of Biological Free-Energy Transduction; Elsevier: Amsterdam, The Netherlands, 1987; 298p. [Google Scholar] [CrossRef]
- Shchur, I.; Rusek, A.; Lis, M. Optimal frequency control of the induction electric drive based on the thermodynamics of irreversible processes. Electrotech. Comput. Syst. 2011, 3, 377–380. Available online: https://eltecs.op.edu.ua/index.php/journal/article/view/751 (accessed on 17 February 2019).
- Kondepudi, D.; Prigogine, I. Modern Thermodynamics: From Heat Engines to Dissipative Structures, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2015; 560p. [Google Scholar] [CrossRef]
- Li, Y.; Yang, S.; Feng, F.; Tagawa, K. A review on numerical simulation based on CFD technology of aerodynamic characteristics of straight-bladed vertical axis wind turbines. Energy Rep. 2023, 9, 4360–4379. [Google Scholar] [CrossRef]
- Krause, P.; Wasynczuk, O.; Sudhoff, S.; Pekarek, S. Analysis of Electric Machinery and Drive Systems, 3rd ed.; Wiley: Hoboken, NJ, USA, 2013; 688p. [Google Scholar] [CrossRef]
- Majout, B.; El Alami, H.; Salime, H.; Zine Laabidine, N.; El Mourabit, Y.; Motahhir, S.; Bouderbala, M.; Karim, M.; Bossoufi, B. A review on popular control applications in wind energy conversion system based on permanent magnet generator PMSG. Energies 2022, 15, 6238. [Google Scholar] [CrossRef]
- Shchur, I.; Rusek, A.; Biletskyi, Y. Energy-shaping optimal load control of PMSG in a stand-alone wind turbine as a port-controlled Hamiltonian system. Przegląd Elektrotechniczny (Electr. Rev.) 2014, 5, 50–55. [Google Scholar] [CrossRef]
- Torki, W.; Grouz, F.; Sbita, L. Vector control of a PMSG direct-drive wind turbine. In Proceedings of the 2017 International Conference on Green Energy Conversion Systems (GECS), Hammamet, Tunisia, 23–25 March 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Fernandez-Bernal, F.; García-Cerrada, A.; Faure, R. Determination of parameters in interior permanent-magnet synchronous motors with iron losses without torque measurement. IEEE Trans. Ind. Appl. 2001, 37, 1265–1272. [Google Scholar] [CrossRef]
- Golovko, V.M.; Ostroverkhov, M.Y.; Kovalenko, M.A.; Kovalenko, I.Y.; Tsyplenkov, D.V. Mathematical simulation of autonomous wind electric installation with magnetoelectric generator. Nauk. Visnyk Natsionalnoho Hirnychoho Universytetu 2022, 5, 74–79. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Y.; Yin, W.; Lei, G.; Zhu, J. Design and optimization technologies of permanent magnet machines and drive systems based on digital twin model. Energies 2022, 15, 6186. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Rated power, PWT.n (kW) | 10 |
Rated wind speed, Vw (m/s) | 12 |
Maximum of power coefficient, Cp.max | 0.3661 |
Optimum value of TSR, λopt | 3.873 |
Rotor radius, R (m) | 2.65 |
Rotor high, H (m) | 1.25 |
Air density, ρ (kg/m3) | 4.78 |
Parameters | Value |
---|---|
Rated power, PG.n (kW) | 10 |
Rated angular velocity, ωG.n (s−1) | 17.54 |
Rated torque, TG.n (Nm) | 570.2 |
Number of pole pairs, p | 24 |
PM flux linkage, ψpm (Wb) | 0.41 |
Relative losses in copper, δCu | 0.07 |
Relative losses in steel, δFe | 0.03 |
Angle of shift between armature voltage and current, φ (deg) | 30 |
Winding resistance, Ra (Ω) | 0.286 |
Winding inductance, La (mH) | 6.1 |
Rated equivalent iron loss resistance, Rc.n (Ω) | 84.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shchur, I.; Lis, M.; Biletskyi, Y. A Non-Equilibrium Thermodynamic Approach for Analysis of Power Conversion Efficiency in the Wind Energy System. Energies 2023, 16, 5234. https://doi.org/10.3390/en16135234
Shchur I, Lis M, Biletskyi Y. A Non-Equilibrium Thermodynamic Approach for Analysis of Power Conversion Efficiency in the Wind Energy System. Energies. 2023; 16(13):5234. https://doi.org/10.3390/en16135234
Chicago/Turabian StyleShchur, Ihor, Marek Lis, and Yurii Biletskyi. 2023. "A Non-Equilibrium Thermodynamic Approach for Analysis of Power Conversion Efficiency in the Wind Energy System" Energies 16, no. 13: 5234. https://doi.org/10.3390/en16135234
APA StyleShchur, I., Lis, M., & Biletskyi, Y. (2023). A Non-Equilibrium Thermodynamic Approach for Analysis of Power Conversion Efficiency in the Wind Energy System. Energies, 16(13), 5234. https://doi.org/10.3390/en16135234