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Abstract: The parameter identification of a PEMFC is the process of using optimization algorithms
to determine the ideal unknown variables suitable for the development of an accurate fuel-cell-
performance prediction model. These parameters are not always available from the manufacturer’s
datasheet, so they need to be determined to accurately model and predict the fuel cell’s performance.
Five optimization methods—bald eagle search (BES) algorithm, equilibrium optimizer (EO), coot
(COOT) algorithm, antlion optimizer (ALO), and heap-based optimizer (HBO)—are used to compute
seven unknown parameters of a PEMFC. During optimization, these seven parameters are used as
decision variables, and the fitness function to be minimized is the sum square error (SSE) between the
estimated cell voltage and the actual measured cell voltage. The SSE obtained for the BES algorithm
was noted to be 0.035102. The COOT algorithm recorded an SSE of 0.04155, followed by ALO with
an SSE of 0.04022 and HBO with an SSE of 0.056021. BES predicted the performance of the fuel cell
accurately; hence, it is suitable for the development of a digital twin for fuel-cell applications and
control systems for the automotive industry. Furthermore, it was deduced that the convergence
speed for BES was faster compared to the other algorithms investigated. This study aims to use
metaheuristic algorithms to predict fuel-cell performance for the development and commercialization
of digital twins in the automotive industry.

Keywords: PEM fuel cell; optimization; parameter identification; modeling

1. Introduction

For both small power uses and bigger industrial applications, clean energy sources
are becoming increasingly necessary due to the rapid decline in fossil fuel sources and the
growing demand for electricity [1]. Harnessing energy from renewable sources such as
solar and wind is often relied on, but these sources are affected by environmental condi-
tions, which has led to the development of fuel cells to help supplement existing green
energy sources. Fuel cells have traditionally been divided into stationary, portable, or
transportation types [2]. Fuel-cell technology has advanced quickly in the automotive
sector due to the growing usage of fuel cells for heavy-duty land vehicles such as public
buses. Stationary fuel cells for homes and businesses have also become more popular [3].
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Stationary fuel cells have a variety of applications. Several businesses and researchers
have developed a keen interest in fuel cells in recent years. The chemical energy produced
by the reaction between oxygen and hydrogen, or natural air, can be quickly converted
into electrical energy by fuel cells [4]. Many fuel-cell types exist, such as alkaline, solid
oxide, proton exchange membrane, and phosphoric acid fuel cells [5]. Each of these types
of fuel cells has its own use, but the most common type of fuel cell used in the automotive
industry is the PEMFC [6,7]. The advantages of PEMFCs include their high efficiency,
low emissions, high power density, and the ability to be quickly refueled. PEMFCs can
be used to power many types of applications, including transportation, standby power,
residential, and industrial applications. Additionally, PEMFC technology is relatively sim-
ple and cost-effective when compared to other fuel-cell technologies. The No Free Lunch
Theorem states that any optimization algorithm will have no performance advantage over
any other algorithm when averaged over all possible problems. This follows from the fact
that any algorithm must make assumptions and trade-offs to optimize a problem. Any
such assumptions can be beneficial for some problems while detrimental for others. The
accuracy of the mathematical model for a PEMFC is highly dependent on the amount
of manufacturer information available. Therefore, the unknown parameters for PEMFCs
must be clearly defined to establish a perfect agreement between the experimental and
mathematical models. The chemical characteristic within the cell is a key determinant of the
output voltage of the cell [8]. There are currently some concepts established in the literature
capable of estimating the exact PEMFC parameters. Most of these optimization-based
approaches are considered as being simple, consistent, and robust [9]. In terms of the
optimal parameters in relation to PEMFCs, several investigations have been carried out
in the literature. For instance, a multiverse optimizer was explored for the determination
of the parameters for a PEMFC-equivalent circuit [10]. The total number of parameters
considered in the study was seven. Other authors equally reported various optimization
parameters capable of ensuring convergence [11]. There was a clear classification of the
various methods, specifically involving evolutionary-based, swarm physics as well as
nature. Hegazy et al. [12] also evaluated various metaheuristics in the optimization of mi-
crogrids. To reduce the sum squared error (SSE), adaptive sparrow search algorithms were
also explored to evaluate the variation between the calculated and measured voltage [13].
Yousri et al. [14] concluded that the fractional-order-modified Harris hawk optimizer was
the best algorithm for the mathematical modeling of PEMFCs. To further reduce the dispar-
ity between the estimated and empirical results, other authors used a developed coyote
optimization algorithm [15]. Yuan et al. [15] carried out the investigation using two types
of fuel cells. The application of an improved monarch butterfly optimizer has also been
explored in determining unknown parameters to ensure a reduction in the integral time
absolute error [16]. With varying conditions around the cell, two types of cells were also
studied (2 kW Nexa and 6 kW Nedstack PS6) using an improved chimp optimizer [17]. The
improved chimp optimizer was also evaluated for three commercial fuel cells. A 15-nature
algorithm was used to validate the outcome of the study. Tabbi et al. [18] concluded that
the artificial ecosystem-based algorithm presented a better result compared to the grey wolf
optimizer, particle swarm optimizer, slime mold algorithm, and Harris hawk optimizer [18].
A hybrid method comprising a combination between a vortex search algorithm and dif-
ferential evolution for the identification of the optimal parameters for PEMFCs has also
been presented in the literature [19]. The SSE was considered as the ideal fitness function
between the experimental voltages and those generated for the stack deduced mathemat-
ically. A monarch butterfly optimizer was also experimented on a 250 W PEMFC stack
under varying conditions [20]. A further investigation also evaluated the ideal parameters
for PEMFCs by considering the SSE between experimental and numerical data using meta-
heuristics [21]. A slime mold optimizer was also used by Gupta et al. for the determination
of the unknown parameters for PEMFCs [22]. An improved search optimizer for evaluating
the parameters for PEMFCs was also investigated by Qin et al. [23]. The SSE between the
experimental and estimated data was considered as the target. A Bayesian-regularized
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neural network was adopted in extracting the ideal parameters for PEMFCs [24]. Using a
sunflower optimizer, an estimation of the unknown parameters for PEMFCs was carried
out by Yuan et al. [25]. A converged moth search algorithm has also been reported in
the literature to be suitable in reducing the SSE between the measured and experimental
voltages [26]. BCS 500 stack and Nedstack PS6 data were used for the study. A bi-subgroup
algorithm for extracting the unknown parameters from PEMFCs has also been reported
in the literature [27]. Syah et al. [28] used a balanced strider method in reducing the total
squared variation between experimental and numerical voltages. The cost of the stack was
also utilized as the target using a modified grass fibrous root algorithm [29]. Using three
types of fuel cells (BCS 500/250 and Nedstack PS6), a particle swarm optimizer was utilized
in the identification of the best parameters for the fuel cell [30]. Mossa et al. [31] used two
optimizers (Harris hawk and atom search algorithm) mainly for estimating the unknown
values for PEMFCs. The SSE value recorded for the measured and mathematical data was
taken as the fitness function. Rezk et al. [32] utilized a gradient-based algorithm for the
determination of the ideal parameters between three types of fuel cells and compared it
with other algorithms. A chaos owl search optimizer has also been adopted to reduce the
sum squared deviation for measured as well as mathematically determined voltages [33].
A chaotic binary shark smell optimizer was also adopted for the estimation of the unknown
data for a PEMFC [34]. A heterogeneous comprehensive learning Archimedes optimizer
was also adopted for determining the unknown parameters for fuel cells [35]. A deer hunt-
ing algorithm has also been adopted in estimating the parameters for a PEMFC. The study
also involved the application of artificial neural networks [36]. A water cycle algorithm was
equally harnessed in estimating the unknown values for PEMFCs [37]. An enhanced bald
eagle search algorithm has also been reported in the literature as being ideal for exploring
the unknown values [38] using the SSE as the target for reducing the values between
the measured and estimated data. A coyote optimizer was employed by Abaza et al. [39]
for estimating the unknown parameters. The utilization of a semi-empirical model for
PEMFCs has equally been reported using the SSE as the target [40]. By reducing the in-
tegral absolute error between the various types of voltages, Lu et al. [41] explored the
application of a crow search approach in the determination of unknown parameters. An
equilibrium optimizer has equally been adopted for estimating the unknown values for
fuel cells [42]. A satin bowerbird algorithm has been captured in the literature as being
suitable for the estimation of the ideal parameters for developing polarization curves [43].
An L-SHADE-EpSin approach was used in the literature in the development of a model
for PEMFC estimation [44]. Isa et al. [45] equally explored the application of an antlion as
well as a dragonfly optimizer for estimating the unknown parameters for PEMFCs. The
identification of fuel PEMFC parameters has also been explored using Harris hawk algo-
rithms by Song et al. [46]. A barnacles mating optimizer was also explored in modeling the
fuel-cell behavior accurately [47]. An Archimedes optimizer was also used in the literature
mainly for reducing the deviation between the data gathered from the experimental and
mathematical models [48]. A transient search optimizer was also reported as being suitable
in accurately estimating the unknown parameters for PEMFCs [49]. Calasan et al. [50] used
the Lambert W function in reducing the deviation between measured as well as simulated
voltages. This study, however, presents the accurate prediction of the seven unknown
parameters of PEMFCs often not available in the manufacturer’s data sheet. The study fur-
ther corroborates the prospects of metaheuristic algorithms in the development of a digital
twin for PEMFCs, paying critical attention to the sum squared error, which is the objective
function, and the computational time for the entire predictive process. Section 2 of the
investigation captures the detailed information regarding the electrochemical reaction of a
PEMFC, while Section 3 highlights the information on the PEMFC-parameter-estimation
approach and Section 4 delves more into the bald eagle search (BES) algorithm. A summary
of the experimental procedure is found in Section 5, and the results are summarized and
discussed in Section 6. The main findings are outlined in Section 7 to reflect on the overall
outcome of the study.
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2. Electrochemical Reaction Inside a PEMFC

The electrochemical reaction inside a PEMFC involves the oxidation of fuel molecules
at the anode and the reduction in oxygen molecules at the cathode. Protons (H+) are
generated at the anode and flow across an electrolyte membrane to the cathode [51]. This
electrochemical reaction produces water, heat, and electricity. Figure 1 presents the various
compositions of a fuel cell. As can be observed, the various electrodes (anode and cathode)
are separated by a membrane. The membrane is designed to be permeable to only protons.
Furthermore, there is the presence of a catalyst to speed up the electrochemical reaction [52].
The cell is designed to ensure that when the hydrogen fuel reaches the membrane, it
dissociates into two ions. Due to the morphological composition of the membrane, the
protons go through the membrane to the cathodic electrode, while the electrons go through
an external circuit to produce electricity and water as a byproduct of the reaction. The
overall reaction within the cell is summarized in Equations (1)–(3) [51].
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Anode
H2 → 2H+ + 2e− (1)

Cathode
H2 + 2e− + 1/

2O2 → 2H+ + 2e− (2)

Complete chemical reaction

H2 +
1/

2O2 → H2O (3)

Fuel Cell Modeling Mathematically

For both small power uses and bigger industrial applications, clean energy sources
are becoming increasingly necessary due to the rapid decline in fossil fuel sources and
the growing demand for electricity [50]. Harnessing energy from renewables is often
relied on, but these sources are affected by environmental conditions, which has led to the
development of fuel cells to help supplement existing green energy sources. Fuel cells have
traditionally been divided into stationary, portable, or transportation types [51,52]. The
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polarization curve for a fuel cell being operated at 80 ◦C is captured in Figure 2. It can be
noticed that there are three main areas on the polarization curve. These areas are broadly
known as activation losses, ohmic losses, and concentration losses [53]. There is no linearity
within the activation region. The activation region presents holistic information regarding
the electrochemical reaction within the cell. The ohmic losses are commonly found within
the membrane. The final section is the mass concentration losses due to variations in the
concentration gradient within the cell [54]. The total cell voltage is depicted in Equation (4)
as Vf c [53].

Vf c = Ecell −Vact −Vohmic −Vconc (4)
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Ecell denotes the open circuit voltage, while Vact represents the activation polarization;
Vohmic is the ohmic loss, and Vconc is the concentration loss [54]. It is also evident that within
the ohmic section, the output voltage is dependent on the current density. The slope is
also obtained based on the ionic resistance of the electrolyte, as explained earlier. The
concentration loss is due to mass transfer limitations leading to a sharp decline in the
voltage to zero. Increasing the total output voltage (Vt) of the cell is dependent on the
number of cells (Xn) connected in a series, as depicted in Equation (5) [50].

Vt = Xn ×Vcell (5)

Ecell is basically the open circuit voltage, which is determined using the Nernst equa-
tion [55], but other parameters that consider the variation in temperature surrounding the
cell are also taken into account, as depicted in Equation (6) [50].

Ecell= 1.22− 8.5× 10−3 (T − 298.15) + 4.3085× 10−5 × T
(

In
[
PH2 + 0.5PO2

])
(6)
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The temperature for the cell is represented as T, while the partial pressure of oxygen is
PO2 and that of hydrogen is PH2 . Equations (7) and (8) denote the various partial pressure
parameters represented mathematically [51,52].

PH2 = 0.5× RHa × PSat
H2O ×


RHa × PSat

H2O

Pa
× exp (

1.635
(

icell
A

)
T1.334 )

−1

− 1

 (7)

Po2 = RHc × PSat
H2O ×


RHa × PSat

H2O

Pc
× exp (

4.192
(

icell
A

)
T1.334 )

−1

− 1

 (8)

The anodic relative humidity is represented as RHa, while that of the cathode is
RHc. The anode pressure at the inlet is Pa, while that at the cathode is Pc. The area of
the cell is captured as A, while the current is icell . The water vapor saturation is (PSat

H2O),
and this parameter has a direct correlation to temperature T, as captured in Equation (9).
On the other hand, Equation (10) is utilized in the determination of the activation losses.
ξ1, ξ2, ξ3, ξ4, are semi-empirical parametric coefficients, while oxygen concentration is
highlighted as CO2 and computed using Equation (11). Calculating the ohmic losses is
achieved using Equation (12) [52].

log10 (PSat
H2O) = 2.95× 10−2 × (T − 273.15)− 9.19× 10−5 × (T − 2.73.15)2

+1.44× 10−7 × (T − 273.15)3 − 2.18
(9)

Vact = −
[
ξ1 +ξ2, T + ξ3 TIn

(
CO2

)
+ ξ4TIn

(
I f c

)]
(10)

CO2 =
PO2

5.08× 106 exp
(

498
T

)
(11)

Vohmic = i(Rm + Rc) (12)

Rm and Rc
(
Ωcm−2) denote the electronic and ionic resistance, respectively. The

electronic resistance is attributed to the slightest perturbations in relation to the current
and voltage, and Equation (13) [50] is utilized to calculate this mathematically, while the
membrane parametric coefficient is determined using Equation (14). Equation (15) [51] is
utilized in computing the concentration polarization mathematically. b is the parametric
coefficient, sometimes referred to as the diffusion parameter, and the maximum current
density is Jmax, while J is the actual current density.

Rm = ρm

(
l
A

)
(13)

ρm =
181.6 [1 + 0.03

(
i
A

)
+ 0.062( T

303 )
2( i

A )
2.5][

λ− 0.634− 3
(

i
A

)]
exp
[
4.18

(
T−303

T

)] (14)

Vconc = −bln
(

1− J
Jmax

)
(15)

3. PEMFC-Parameter-Estimation Approach

In developing a computational model for PEMFCs mathematically, the calculation
of the specific seven model parameters ( ξ1, ξ2, ξ3, ξ4, R, B, λ) is very important. The
major setback here is the fact that these parameters are usually unknown. There is an
equally significant variation in the model parameters based on the operating conditions.
These phenomena often cause an effect on the developed IV curve being accurate. Most
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manufacturers of fuel cells do not usually provide this information, and identifying these
parameters is challenging. A solution to mitigate this challenge is considering the prob-
lem using various optimization techniques. The introduction of an artificial intelligence
approach for determining the unknown parameters for fuel cells is gradually becoming
a primary research focus. The estimation of model parameters can be deduced from the
experimental data using the RMSE as an objective function for the experimental and nu-
merically determined datasets. From Equation (16), the experimental value is Va, while
the predicted voltage is Vi. N is the number of data points. Figure 3 highlights the various
steps adopted in the parametric estimation of a fuel cell’s unknown parameters.

Min

(
F =

N

∑
i=1

(Va −Vi )
2

)
(16)
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4. Bald Eagle Search Algorithm

The BES algorithm is an efficient heuristic search algorithm that uses a combination
of depth-first and best-first searches. It works by first expanding a node according to the
best-first search, then exploring each branch in the deepest possible manner. This algorithm
has been found to be effective for a range of applications, such as finding paths in graphs
and solving mazes. The algorithm involves three stages: selecting the space with the most
potential prey, searching within that space, and swooping from the best-found position to
an optimal hunting spot. The first stage is modeled as follows:

x(t + 1) = xbest + α·r·(xmean − x(t)) (17)

where α is a constant [1.5, 2], and r is a random value. The second stage can be modeled
as follows:

xi(t + 1) = xi(t) + Yi(xi(t)− xi+1(t)) + Xi.(xi(t)− xmean) (18)

where X and Y are directional coordinates, calculated as follows:

Xi =
rx(i)

max(|rx |) ; rx(i) = r(i)· sin(θ(i))

Yi =
ry(i)

max(|ry|) ; ry(i) = r(i)·cos(θ(i))

θ(i) = β1·π·r; r(i) = θ(i)·R·r

(19)

where β1 is a constant [5, 10], and R is a constant gain [0.5, 2]. The last stage can be
expressed as follows:

xi(t + 1) = r·xbest + X1i(xi(t)− r1·xmean) + Y1i(xi(t)− r2·xbest)

X1i =
rx(i)

max(|rx |) ; rx(i) = r(i)·sinh(θ(i))

Y1i =
ry(i)

max(|ry|) ; ry(i) = r(i)· cosh(θ(i))

θ(i) = β2·π·r; r(i) = θ(i)

(20)
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The BES flowchart is illustrated in Figure 4.
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5. Experimental Procedure

Avista SR–12 PEMFC is considered in this work. The current deduced from the cell
varied between 0 and 34 A, and the variation in terms of voltage was between 23 and
43 VDC. The fuel for the cell was passed through an in-house-developed chamber to ensure
the hydrogen gas was humidified before entering the cell. This step was critical in ensuring
the membrane was well-humidified to allow an increase in protonic conductivity but a
reduction in resistance to the electrolyte. Attached to the cell is also a boost converter and a
battery, as well as a load cell. The hydrogen gas entering the cell was varied in terms of
pressure and flow rate (Figure 5a) to ensure the determination of the effect of the operating
conditions on the overall cell performance. The cell was made up of 48 cells, with the active
area denoted as 62.5 cm2. The highest cell current was 42 A, while the stack temperature
varied between 65 and 80 ◦C. The cell stacks were cooled using air (Figure 5a,b).
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6. Results and Discussion

The optimal parameters of an SR-12 PEM FC have been defined by using five recent
optimization methods, namely, bald eagle search algorithm (BES), equilibrium optimizer
(EO), coot algorithm (COOT), antlion optimizer (ALO), and heap-based optimizer (HBO).
The laptop specifications were HP OMEN 17, Core i9, 32 GB, 1 TB SSD. The simulations
were performed using MATLAB software version 2020a. The specifications of SR-12 PEM
500 are shown in Table 1.

Table 1. The specifications of SR-12 PEM 500.

Data

No. of cells 48
Area 62.5 cm2

l 178 µm
P∗H2

1 bar
P∗o2

1 bar
Temperature 323 K
RHa (%) 100
RHa (%) 100

In order to guarantee an equal comparison, the number of populations was kept at
25, while the maximum number of iterations (nmax) was selected as 250 and 500 to show
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the effect of the number of iterations on the algorithms’ performance. The maximum and
minimum limits of the unknown parameters are outlined in Table 2. Table 3 shows the
optimal values of the PEMFC parameters after 30 runs. The absolute error for the obtained
parameters using different methods compared to BES is presented in Table A1. The results
were evaluated statistically, as shown in Table 4.

Table 2. Maximum and minimum limits of the parameters.

Parameter ξ1 ξ2 ξ3 ξ4 λ B R

Max. −1.19969 0.001 3.6 × 10−5 −2.6 × 10−4 10 0.0136 1 × 10-4

Min. 0.8532 0.005 9.8 × 10−5 −9.54 × 10−5 24 0.5 8 × 10-4

Table 3. Optimal values of the PEMFC model parameters using different optimization methods.

Variable ALO BES COOT EO HBO

nmax 500

ξ1 −1.00213 −0.88445 −0.85575 −0.8532 −1.19909
ξ2 0.003131 0.002587 0.003031 0.002271 0.004194
ξ3 6.35 × 10−5 5.18 × 10−5 8.63 × 10−5 3.76 × 10−5 9.28 × 10−5

ξ4 −1.02 × 10−5 −1.02 × 10−4 −1.02 × 10−4 −1.02 × 10−4 −1.03 × 10−4

λ 24 24 22.98325 23.9994 23.99187
B 0.147078 0.147078 0.147054 0.147062 0.147649
R 5.82 × 10−4 5.82 × 10−4 5.70 × 10−4 5.83 × 10−4 5.33 × 10−4

t (s) 2.217 1.101 1.359 1.503 1.896

nmax 250

ξ1 −0.90198 −1.07564 −0.95545 −1.15522 −1.0264
ξ2 2.81 × 10−3 3.01 × 10−3 3.20 × 10−3 3.17 × 10−3 2.77 × 10−3

ξ3 6.31 × 10−5 4.08 × 10−5 7.75 × 10−5 3.51 × 10−5 3.56 × 10−5

ξ4 −0.0001 −0.0001 −0.0001 −0.0001 −0.0001
λ 23.99998 24 18.76678 21.76225 17.1276
B 0.147188 0.147078 0.147206 0.14717 0.148609
R 5.72 × 10−4 5.82 × 10−4 4.77 × 10−4 5.43 × 10−4 3.12 × 10−4

t is the average time for a single simulation run.

Table 4. Statistical assessments for the considered optimization algorithms.

Metric ALO BES COOT EO HBO

nmax 500

Best 0.03551 0.035099 0.035203 0.035099 0.035512
Worst 0.088554 0.03516 0.057578 0.080252 0.140873
Mean 0.053168 0.035102 0.04155 0.047299 0.056021
StD 0.015021 1.15 × 10−8 0.006312 0.012671 0.019082

Median 0.047477 0.035099 0.039141 0.042721 0.053123
Variance 0.000226 1.33 × 10−10 0.00004 0.000161 0.000364

nmax 250

Best 0.035665 0.035099 0.035972 0.035377 0.041025
Worst 0.084315 0.041652 0.089465 0.09115 0.277627
Mean 0.04758 0.035794 0.048877 0.059477 0.089071
StD 0.010739 0.001557 0.013843 0.016703 0.045321

Median 0.043887 0.035107 0.043326 0.060752 0.083815
Variance 0.000115 2.42487 × 10−6 0.000192 0.000279 0.002054

Considering Table 4, with a maximum number of 500 iterations, the mean cost func-
tion values range from 0.035102 to 0.056021. The minimum mean cost function value
of 0.035102 is obtained by BES, followed by COOT (0.04155), whereas the largest mean
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cost function value of 0.056021 is obtained by HBO. The standard deviation values range
between 1.15 × 10−5 and 0.019082. The minimum standard deviation value of 1.15 × 10−5

is achieved by BES, followed by COOT (0.006312), whereas the largest standard deviation
value of 0.019082 is obtained by HBO. In the case of a maximum number of 250 iterations,
the mean cost function values range from 0.035794 to 0.089071. The minimum mean cost
function value of 0.035794 is obtained by BES, followed by ALO (0.04758), whereas the
largest mean cost function value of 0.089071 is obtained by HBO. The standard deviation
values range between 0.001557 and 0.045321. The minimum standard deviation value of
0.001557 is achieved by BES, followed by ALO (0.010739), whereas the largest standard
deviation value of 0.045321 is obtained by HBO. So, BES is better than ALO, EO, COOT, and
HBO. The details of the objective function values for the different algorithms throughout
30 runs is demonstrated in Table 5.

Table 5. Objective function values for the different algorithms throughout 30 runs.

Run ALO BES COOT EO HBO ALO BES COOT EO HBO

nmax 500 nmax 250

1 0.061045 0.035099 0.041897 0.043371 0.061045 0.069544 0.03559 0.066005 0.039074 0.069544
2 0.03551 0.035099 0.057578 0.035206 0.03551 0.042054 0.035159 0.089465 0.08997 0.042054
3 0.044722 0.0351 0.037212 0.054035 0.044722 0.038159 0.035099 0.037021 0.060585 0.038159
4 0.045554 0.035099 0.036802 0.03593 0.045554 0.049855 0.035102 0.041889 0.06092 0.049855
5 0.058755 0.03516 0.04322 0.043943 0.058755 0.042842 0.035105 0.052037 0.080191 0.042842
6 0.036432 0.035099 0.043051 0.037184 0.036432 0.042523 0.041652 0.050637 0.043589 0.042523
7 0.04339 0.035099 0.042054 0.03805 0.04339 0.063406 0.035103 0.053675 0.035407 0.063406
8 0.083922 0.035099 0.041 0.036183 0.083922 0.04853 0.035099 0.036328 0.047768 0.04853
9 0.087286 0.035121 0.054107 0.041179 0.087286 0.038219 0.035338 0.081844 0.078667 0.038219

10 0.069625 0.035099 0.03661 0.048265 0.069625 0.043728 0.035105 0.079143 0.063174 0.043728
11 0.059361 0.035099 0.049718 0.065185 0.059361 0.041954 0.035981 0.051543 0.043901 0.041954
12 0.049401 0.035099 0.037363 0.035099 0.049401 0.054698 0.035099 0.041514 0.035377 0.054698
13 0.088554 0.035099 0.035631 0.039107 0.088554 0.041833 0.040977 0.039554 0.080345 0.041833
14 0.06482 0.035099 0.049396 0.044619 0.06482 0.050085 0.036513 0.051696 0.042868 0.050085
15 0.037251 0.035099 0.038151 0.035113 0.037251 0.04126 0.03664 0.051652 0.080236 0.04126
16 0.040361 0.035099 0.03612 0.049796 0.040361 0.035745 0.035557 0.036767 0.046892 0.035745
17 0.039375 0.035099 0.046439 0.051557 0.039375 0.036448 0.035099 0.043006 0.078408 0.036448
18 0.039232 0.035099 0.049288 0.080252 0.039232 0.044045 0.035099 0.055907 0.057489 0.044045
19 0.051856 0.035099 0.036807 0.071827 0.051856 0.058844 0.035192 0.057119 0.09115 0.058844
20 0.057312 0.035099 0.054051 0.04207 0.057312 0.084315 0.035099 0.041082 0.037868 0.084315
21 0.068326 0.035099 0.036793 0.039929 0.068326 0.048396 0.035099 0.044696 0.043607 0.048396
22 0.042721 0.035099 0.036611 0.039384 0.042721 0.045652 0.036608 0.03902 0.060021 0.045652
23 0.045484 0.035099 0.040131 0.036169 0.045484 0.035665 0.036399 0.038404 0.072356 0.035665
24 0.040642 0.035099 0.040156 0.047737 0.040642 0.050396 0.035099 0.043646 0.066669 0.050396
25 0.05499 0.035099 0.03577 0.039146 0.05499 0.055817 0.035426 0.038915 0.066761 0.055817
26 0.04306 0.035101 0.045983 0.077701 0.04306 0.048563 0.035109 0.040728 0.047401 0.048563
27 0.068888 0.035099 0.035447 0.059882 0.068888 0.042822 0.035099 0.037187 0.037412 0.042822
28 0.044559 0.035099 0.035203 0.039904 0.044559 0.056942 0.035186 0.05352 0.067886 0.056942
29 0.054714 0.035099 0.036305 0.062891 0.054714 0.038241 0.035099 0.035972 0.066791 0.038241
30 0.0379 0.035099 0.037609 0.048247 0.0379 0.036811 0.035099 0.036341 0.06152 0.036811

Figure 6 shows the current density, voltage, and power characteristics of the PEMFC
using BES. There is an excellent agreement between the estimated and measured data.
This proves the superiority of the BES in determining the unknown parameters of the
PEMFC. The absolute error in the cell voltage with different optimization algorithms is
presented in Table 6 and Figure 7. For the first run with 500 iterations, as presented in
Tables 5 and 6, the SSE values range from 0.0351 to 0.06104. The minimum SSE value of
0.0351 is obtained using the BES, followed by COOT (0.0419), whereas the worst SSE of
0.06104 is obtained by ALO. The best MAE of 0.03251 is obtained by BES, and the worst
MAE of 0.04247 is obtained by ALO. Referring to Figure 7a, the maximum absolute error of
0.13831 is obtained by ALO. In the case of the first run with 250 iterations, as demonstrated
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in Tables 5 and 6, the SSE values range from 0.03559 to 0.06954. The minimum SSE value
of 0.03559 is obtained using the BES, followed by EO (0.03907), whereas the worst SSE of
0.06104 is obtained by ALO. The best MAE of 0.03251 is obtained by BES, and the worst
MAE of 0.06954 is obtained by ALO. Referring to Figure 7b, the maximum absolute error of
0.24777 is obtained by HBO.
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Table 6. Absolute error in the cell voltage with different optimization algorithms.

Run Current
Density ALO BES COOT EO HBO ALO BES COOT EO HBO

nmax 500 nmax 250

1 0.00615 0.01268 0.04476 0.07324 0.00669 0.12212 0.03292 0.04531 0.16414 0.07084 0.24777
2 0.02665 0.00782 0.00088 0.00502 0.00114 0.00392 0.00956 0.00077 0.00548 0.00112 0.05217
3 0.041 0.0338 0.05721 0.06767 0.0459 0.06785 0.02748 0.05718 0.07668 0.06293 0.04065
4 0.05371 0.0633 0.09384 0.10689 0.07679 0.11161 0.05492 0.09383 0.12629 0.10205 0.09686
5 0.10086 0.07999 0.04275 0.02929 0.06626 0.01962 0.08972 0.04277 0.00546 0.03275 0.00866
6 0.11398 0.05669 0.02037 0.00796 0.04362 0.00139 0.06595 0.02041 0.02775 0.01083 0.01661
7 0.16031 0.02646 0.0019 0.00935 0.01714 0.01462 0.03298 0.00186 0.04268 0.0086 0.04014
8 0.20787 0.01186 0.00405 0.00594 0.00783 0.00423 0.01483 0.00406 0.03121 0.00713 0.03589
9 0.23411 0.04643 0.03831 0.03923 0.04569 0.04545 0.04741 0.03825 0.01984 0.03717 0.01142

10 0.2829 0.01971 0.02662 0.03181 0.02539 0.04699 0.01732 0.02642 0.02491 0.02864 0.00943
11 0.30873 0.00237 0.01707 0.02387 0.01145 0.04384 0.00154 0.01678 0.02401 0.0204 0.00452
12 0.32922 0.02677 0.04735 0.05507 0.03845 0.07873 0.02184 0.04699 0.06083 0.05152 0.03793
13 0.36243 0.03256 0.00342 0.00506 0.01703 0.03428 0.03875 0.00388 0.01968 0.00165 0.00934
14 0.40344 0.0167 0.02034 0.02843 0.00245 0.06324 0.02363 0.01981 0.05289 0.02569 0.01487
15 0.43623 0.04365 0.00362 0.00309 0.02313 0.04067 0.0504 0.00412 0.03369 0.00123 0.01316
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Table 6. Cont.

Run Current
Density ALO BES COOT EO HBO ALO BES COOT EO HBO

16 0.47108 0.08116 0.04297 0.03871 0.06164 0.00087 0.08681 0.04327 0.00448 0.0394 0.06301
17 0.50511 0.10926 0.08048 0.07946 0.0946 0.04551 0.11271 0.08031 0.04633 0.07889 0.11956
18 0.53832 0.0314 0.02332 0.02593 0.02755 0.00217 0.03138 0.02224 0.00115 0.02432 0.0935
19 0.56498 0.00843 0.01338 0.01879 0.00357 0.01068 0.01251 0.011 0.00932 0.01684 0.12236
20 0.59122 0.13831 0.06751 0.0602 0.0999 0.04179 0.14793 0.072 0.04172 0.06146 0.09935

SSE 0.06104 0.0351 0.0419 0.04337 0.05577 0.06954 0.03559 0.066 0.03907 0.06954
RMSE 0.05525 0.04189 0.04577 0.04657 0.05281 0.05897 0.04218 0.05745 0.0442 0.05897
MAE 0.04247 0.03251 0.03575 0.03581 0.03998 0.04603 0.03256 0.04093 0.03417 0.04603
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Figure 7. Absolute error in the cell voltage with different optimization algorithms: (a) nmax 500;
(b) nmax 250.

Figures 8 and 9 demonstrate the objective function variation with 500 and 250 it-
erations, respectively. As demonstrated in Figure 8a and Table 5, for the first run with
500 iterations, the SSE values converge to 0.061045, 0.035099, 0.041897, 0.043371, and
0.061045, respectively, for ALO, BES, COOT, EO, and HBO. BES catches the optimal so-
lution rapidly, whereas HBO needs more time to reach its best solution. During Run 14,
as demonstrated in Figure 8b and Table 5, the SSE values converge to 0.069544, 0.03559,
0.066005, 0.039074, and 0.069544, respectively, for ALO, BES, COOT, EO, and HBO. BES
catches the optimal solution rapidly, whereas for the second time, HBO needs more time to
reach its best solution.
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ANOVA and Tukey tests were conducted to support the investigation. An ANOVA
test is a statistical method used to compare two or more groups. This test measures the
mean differences between groups, providing an assessment of how likely each observed
difference is to have arisen by random chance. An ANOVA helps answer the question of
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whether the difference between the means of two or more samples is statistically significant.
It works by comparing the variability between groups and the variability within groups
to determine whether the differences between group means could have arisen by chance.
Table 7 gives the ANOVA test results, and Figure 10 illustrates the corresponding ranking.
The BES algorithm can deliver the best performance regarding mean fitness and variations,
as demonstrated by Figure 10.

Table 7. ANOVA test results.

Source df SS MS F Prob

Columns
500-25

4
0.0087 0.00218 13.31 2.919 × 10−9

250-25 0.0491 0.01227 22.44 1.942 × 10−14

Error
500-25

145
0.0237 0.00016

250-25 0.0793 0.00055

Total
500-25

149
0.0324

250-25 0.1283

The Tukey test is a statistical procedure used to compare the means of two or more
independent samples or datasets. It is a type of post hoc test that takes into account the
similarity of group means when evaluating the differences between them. The test is based
on the assumption that all datasets have the same variance and that their distribution can
be approximated by a normal distribution. It is a powerful tool for detecting significant
differences between groups.

The Tukey HSD test, as shown in Figure 11, was performed to approve the two types
of ANOVA test results. The ALO, EO, and HBO groups significantly differ from BES for
the first case. The COOT mean results indicate that the COOT can provide the second-best
results. For the second case, two groups (EO and HBO) have means significantly different
from BES, whereas ALO and COOT can provide near performance. However, the BES
algorithm offers the best performance for the two cases. The ultimate results of the BES
confirm that it can effectively solve this issue.
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7. Conclusions

The optimal parameter identification process of the SR–12 PEM fuel-cell model has
been investigated in this research work using different recent optimization algorithms. Five
optimization methods, namely, bald eagle search algorithm (BES), equilibrium optimizer
(EO), coot algorithm (COOT), antlion optimizer (ALO), and heap-based optimizer (HBO),
have been considered. Two different numbers of iterations were chosen: 250 and 500. With
a 500 maximum number of iterations, the mean cost function values ranged from 0.035102
to 0.056021. The minimum mean cost function value of 0.035102 was obtained by BES,
followed by COOT (0.04155), whereas the largest mean cost function value of 0.056021 was
obtained by HBO. The standard deviation values ranged between 1.15× 10−5 and 0.019082.
The minimum standard deviation value of 1.15 × 10−5 was achieved by BES, followed by
COOT (0.006312), whereas the largest standard deviation value of 0.019082 was obtained
by HBO. From the data gathered, it can be deduced that the BES predicts results more
accurately using the SSE as an objective function and ensures that convergence is attained
at a faster rate compared to the other metaheuristic algorithms under investigation; hence,
it is suitable for finding solutions to global optimization problems aside from fuel cells.
The present study is, however, aimed at providing technical information in relation to
the commercialization of fuel cells via the development of digital twins through accurate
predictive modeling in the absence of seven unknown parameters; hence, it could be
an accurate reference source for the fuel-cell research community and policy makers in
the modeling and simulation of fuel cells for the automotive industry and portable and
stationary applications. In future work, the validation of the proposed method will be
evaluated under the different operating conditions of a PEM fuel cell.
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Appendix A

Table A1. Absolute error for the obtained parameters using different methods compared to BES.

Variable ALO BES COOT EO HBO

nmax 500

ξ1 0.11768 0 0.0287 0.03125 0.31464
ξ2 0.000544 0 0.000444 0.000316 0.001607
ξ3 0.0000117 0 0.0000345 0.0000142 0.000041
ξ4 0 0 0 0 1 × 10−6

λ 0 0 1.01675 0.0006 0.00813
B 0 0 2.4 × 10−5 1.6 × 10−5 0.000571
R 0 0 1.2 × 10−5 1 × 10−6 0.000049

nmax 250

ξ1 0.17366 0 0.12019 0.07958 0.04924
ξ2 0.0002 0 0.00019 0.00016 0.00024
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Table A1. Cont.

Variable ALO BES COOT EO HBO

ξ3 2.23 × 10−5 0 3.67 × 10−5 5.7 × 10−6 5.2 × 10−6

ξ4 0 0 0 0 0
λ 2 × 10−5 0 5.23322 2.23775 6.8724
B 0.00011 0 0.000128 9.2 × 10−5 0.001531
R 0.00001 0 0.000105 3.9 × 10−5 0.00027
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