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Abstract: Due to nonlinear components in the charging piles of electric vehicles, harmonics and
nonstationary signals in the electric vehicle charging load bring voltage and current distortion,
seriously affecting the accuracy of the power-related calculation in nonsinusoidal environments. This
paper proposed a new approach to calculate the active power and root mean square values from
decomposed components using the adaptive chirp mode decomposition (ACMD) method on voltage
and current. The advantage of the ACMD-based method is that it correctly provides the power-
related quantities of harmonics or nonstationary components for the electric vehicle charging load.
The performance of the proposed method was verified using synthetic signals and simulation tests.
The experimental results presented better estimations for each quantity defined in IEEE Standard
1459-2010, compared with the discrete wavelet transform approach.

Keywords: electric vehicles; power calculation; harmonics; nonstationary; adaptive chirp mode
decomposition

1. Introduction

With the enhancement of environmental protection awareness, electric vehicles have
been widely used in many countries to alleviate global warming and energy crisis [1,2].
Typically, electric vehicles obtain electrical energy from the power grid through charging
piles, especially direct current (DC) charging piles, whereas due to nonlinear components
contained in the batteries of the electric vehicles and charging piles, the charging behavior
of the electric vehicles, especially fast charging mode, brings a large number of harmonic
and nonstationary signals, resulting in voltage and current distortion on the grid side of
the charging piles, i.e., the voltage or current waveform is not standard sinusoidal [3].
The nonsinusoidal waveform would seriously affect the accuracy of electricity metering;
thus, the research on the power calculation for electric vehicles makes sense for fair trade
between users and power companies, as well as the generation, transmission, and operation
of electricity.

For the power calculation under nonsinusoidal conditions, Budeanu [4] and Fryze [5]
first proposed the definition of power quantities, commonly referred to as power theories,
based on frequency-domain or time-domain analysis, respectively. After that, the defi-
nitions of various power components have been developed by many researchers [6–11].
Among these, IEEE Standard 1459-2010 [12], as one of the most prominent power theo-
ries, provides definitions mainly based on Fourier transform analysis. Although Fourier
transform can provide the frequency information of analytical signals, it is only suitable to
analyze the stationary and periodic signals due to the missing time-domain information.
Commonly, harmonics, sudden changes, and nonstationary signals are generated during
the charging processing of electric vehicles [13]. For Fourier transform, it is not possible to
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extract the time–frequency information of nonstationary signals; thus, it would bring large
errors in power calculation.

To address the limitation of Fourier transform, wavelet-related transforms, as one of
the most widely used time–frequency analyses, have been applied to power calculation in
nonsinusoidal environments. Discrete wavelet transform (DWT) is first applied to calculate
the root mean square (RMS) and power values by decomposing the given signals into
constituent frequency sub-bands [14,15]. According to the definition of IEEE Standard 1459-
2010 [12], the DWT was utilized to estimate the power components in a single system [14]
and a three-phase system [16]. Further, for maintaining the temporal resolution of each
decomposition level, stationary discrete wavelet transform (SDWT) without downsampling
was used for the power calculation [17]. To achieve uniform frequency bandwidth for each
sub-band, discrete wavelet packet transform (DWPT) [18] or stationary DWPT [19] was
proposed for power calculation.

Although wavelet-related transforms can decompose the signals into frequency sub-
bands through a filtering process, there is the issue of energy leakage [20], i.e., the content of
decomposed frequency sub-bands does not correspond to individual harmonics or special
nonstationary signal components. If the sub-bands are used for the power calculation of
individual harmonic components or special nonstationary signal components, the results
cause inconsistencies from the real power. This limitation of wavelet-related transforms is
not present in adaptive chirp mode decomposition (ACMD). The ACMD extracts signal
modes one by one with good adaptability and high time–frequency resolution, widely used
in many fields [21–24]. However, the ACMD has not been applied for power calculation in
the literature.

Thus, according to the definition of the IEEE Standard 1459-2010 [12], this paper
presents an ACMD-based method to calculate power-related quantities of the charging
load of the electric vehicles through the charging piles, since the electric vehicles connect to
the power grid through the charging piles. Based on a time–frequency representation of the
voltage and current using the ACMD method, the power-related quantities are calculated
for the fundamental, harmonic, and nonstationary components, respectively. The proposed
method is suitable for estimating harmonics or nonstationary components of voltage and
current signals on the grid side of the charging piles, improving the representation of
power-related quantities in nonstationary conditions.

2. Proposed Method

This section first presents the general mathematical mode of the voltage and current
signals, according to the principle of the charging piles of electric vehicles. And then,
the ACMD method is introduced to decompose the voltage and current signals into each
component. Finally, decomposed components are utilized to estimate the corresponding
active power and the RMS value of the voltage and current signals for the electric vehicle
charging load.

2.1. General Mathematical Mode of Charging Voltage and Current

Due to the wide use of power electronic devices in the charging piles, the charging
for the batteries of electric vehicles brings harmonic current and nonstationary signals
to the power grid. The general structure of the charging piles is mainly composed of
a rectifier circuit, a power converter, and an output filter circuit, as shown in Figure 1.
Alternating current (AC) power is rectified to DC power through a three-phase bridge
uncontrollable rectifier circuit and then provided for the DC/DC power converter to output
the required DC of the electric vehicles. Finally, DC is filtered to charge the batteries of the
electric vehicles.
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Figure 1. Topology of the charging pile of electric vehicles.

More studies on the load characteristics of electric vehicles show that the voltage
and current waveforms on the grid side of the charging piles, collected at charging
stations [13,25], contain multiple harmonics and nonstationary signals. Typically, the
current waveform mainly includes 6 h ± 1 order harmonics, and the amplitude of the
harmonics gradually decreases with the increase in the harmonic order, which further can
be confirmed in the simulation model in Section 3.2.

Generally, the voltage and current on the grid side of the charging piles can be respec-
tively expressed as

u(t) = ub(t) + ∑
h=1

uh(t) + us(t)

=
√

2Ub sin(ωt + ϕb) + ∑
h=1

√
2Uh sin((6h± 1)ωt + ϕh) + us(t) (1)

and

i(t) = ib(t) + ∑
h=1

ih(t) + is(t)

=
√

2Ib sin(ωt + φb) + ∑
h=1

√
2Ih sin((6h± 1)ωt + φh) + is(t), (2)

where (ub, uh, us) denote the fundamental, harmonic, and nonstationary components of the
voltage signal, respectively; (ib, ih, is) denote the fundamental, harmonic, and nonstationary
ones of the current signal, respectively; ω is the fundamental frequency in radians; and (ϕb,
ϕh, φb, φh) are the initial phases of the fundamental voltage, the h-th harmonic voltage, the
fundamental current, and the h-th harmonic current, respectively.

To accurately calculate the charging power of charging piles for the electric vehicles,
the ACMD is firstly applied to decompose the fundamental, harmonic, and nonstationary
components from u(t) and i(t) in our work, and then the power-related quantities are
calculated according to IEEE Standard 1459-2010 [12].

2.2. ACMD-Based Power-Related Calculation
2.2.1. Adaptive Chirp Mode Decomposition (ACMD)

The ACMD, as a recursive mode decomposition technique, can adaptively extract
signal components one by one using the matching pursuit method. For a nonstationary
signal x(t) with m components, it can be modeled as

x(t) =
m

∑
i=1

xi(t) =
m

∑
i=1

Ai(t) cos
(

2π
∫ t

0
fi(τ)dτ + ϕi

)
, (3)
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where Ai(t), fi(t), and ϕi denote the instantaneous amplitude, instantaneous frequency, and
the initial phase of the i-th component, respectively. Based on the technique of frequency
demodulation, a demodulation frequency f̃i(t) is introduced, and then Equation (3) can be
reformulated as

x(t) =
m

∑
i=1

{
pi(t) cos

(
2π
∫ t

0
f̃i(τ)dτ

)
+ qi(t) sin

(
2π
∫ t

0
f̃i(τ)dτ

)}
, (4)

with

pi(t) = Ai(t) cos
(

2π
∫ t

0
( fi(τ)− f̃i(τ))dτ + ϕi

)
qi(t) = Ai(t) sin

(
2π
∫ t

0
( fi(τ)− f̃i(τ))dτ + ϕi

)
, (5)

where cos(2π
∫ t

0 f̃i(τ)dτ) and sin(2π
∫ t

0 f̃i(τ)dτ) denote two demodulation operators, and
pi(t) and qi(t) denote two demodulated signals with a phase difference of 90◦. In particular,
pi(t) and qi(t) become slowly varying baseband signals and have the narrowest bandwidth
when f̃i(t) = fi(t).

To extract the i-th signal component xi(t), the ACMD solve the minimization problem
as follows

min
{pi(t)},{qi(t)},{ fi(t)}

{
‖p
′′
i (t)‖2

2 + ‖q
′′
i (t)‖2

2 + γ‖x(t)− xi(t)‖2
2

}
,

s.t. xi(t) = pi(t) cos
(

2π
∫ t

0
f̃i(τ)dτ

)
+ qi(t) sin

(
2π
∫ t

0
f̃i(τ)dτ

)
(6)

where ‖ · ‖2 denotes L2 norm, (·)′′ denotes the second derivative, two terms ‖p
′′
i (t)‖2

2 and
‖q′′i (t)‖2

2 are used as smoothness constraints for measuring bandwidth of the signal, γ > 0
is the penalty factor, and the last term ‖x(t)− xi(t)‖2

2 denotes the residue energy after the
currently estimated i-th component is eliminated.

To implement ACMD decomposition in a computer, the signal x(t) is sampled at
discrete time t = t0, ..., tN−1, where N is the number of samples. And then, the objective
function of (6) can be written in a discrete form

L(pi, qi, fi) = ‖Dpi‖2
2 + ‖Dqi‖2

2 + γ‖x− (pici + qisi)‖2
2, (7)

where D is a second-order difference matrix, given by

D =


1 −2 1 · · · · · · 0
0 1 −2 1 · · · 0
...

. . . . . . . . . . . .
...

0 · · · · · · −1 2 −1


(N−2)×N

,

and

ci = diag[cos(θi(t0)), ..., cos(θi(tN−1))]

si = diag[sin(θi(t0)), ..., sin(θi(tN−1))],

with θi(t) = 2π
∫ t

0 f̃i(τ)dτ, where diag[·] denotes the diagonal matrix.
To solve the optimization problem in (7), an iterative algorithm is used to alternately

update the demodulated signals pi, qi, and the frequency fi. For the m-th iteration, with the
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current frequency f (m−1)
i , the solutions of pi and qi are updated by setting ∂L(pi, qi, fi)/∂pi =

0 and ∂L(pi, qi, fi)/∂qi = 0, given by

p(m)
i =

(
1
γ

DTD + (c(m)
i )Tc(m)

i

)−1
(c(m)

i )Tx

q(m)
i =

(
1
γ

DTD + (s(m)
i )Ts(m)

i

)−1
(s(m)

i )Tx, (8)

respectively, and then, the instantaneous frequency fi is updated by

f (m+1)
i = f (m)

i +

(
2
β

DTD + I
)−1

M f̃ (m)
i , (9)

with

M f̃ (m)
i (t) =

1
2π

d
dt

(
tan−1

(
p(m)

i (t)

q(m)
i (t)

))

=
q(m)

i (t)
(

p(m)
i (t)

)′
− p(m)

i (t)
(

q(m)
i (t)

)′
2π

((
p(m)

i (t)
)2

+
(

q(m)
i (t)

)2
) , (10)

where β > 0 is a weighting factor, and (·)′ denotes the derivative.
Since the iterative algorithm requires the initial frequency f (0)i in advance, synchroex-

tracting transform (SET) [26] is adopted to estimate f (0)i in this study. The SET, as a novel
postprocessing strategy of short-time Fourier transform, has the advantage of better energy
concentration to provide good instantaneous initial frequency for iteration. The iterative
process continues until there is little difference in the extracted signal component xi in two
adjacent iterations. After the signal component xi is extracted from the raw signal, the
residual signal is obtained by removing xi from the raw signal, and then the iteration can
be applied to the residual signal to extract the next signal component sequentially.

The above procedure is repeated for M times, and the components of signal x(t) are
finally obtained as

x(t) =
M

∑
k=1

xk(t) + Rs(t), (11)

where Rs(t) denotes the residual signal after M components are separated from the original
signal. More details of the iteration algorithm can be found in [27].

When the ACMD method is applied to the voltage and current signals of charging piles,
the corresponding fundamental component, harmonic components, and nonstationary
components are separated from each other, and then, the decomposed components are used
to implement the calculation of the active power, the RMS values of the voltage and current.

2.2.2. Power Calculation

According to IEEE Standard 1459-2010 [12], the active power (P), the RMS values of
the voltage (U) and current (I) are calculated as

P =
1

KT

∫ t0+KT

t=t0

u(t)× i(t)dt, (12)

U =

√
1

KT

∫ τ+KT

t=τ
u2(t)dt, (13)
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and

I =

√
1

KT

∫ τ+KT

t=τ
i2(t)dt, (14)

respectively, where τ and τ + KT are the start time and end time of measurements, respec-
tively, and kT is an integer multiple of the power system fundamental period.

Using u(t) in (1) and i(t) in (2), the active power P in (12) is expressed as

P = Pbb + Pbh + Pbs + Phb + Phh + Phs + Psb + Psh + Pss (15)

with

Pbb =
1

KT

∫ t0+KT

t=t0

ub(t)ib(t)dt, Phh =
1

KT ∑
h=1

∫ t0+KT

t=t0

uh(t)ih(t)dt

Pss =
1

KT

∫ t0+KT

t=t0

us(t)is(t)dt,

Pbh =
1

KT ∑
h=1

∫ t0+KT

t=t0

ub(t)ih(t)dt, Phb =
1

KT ∑
h=1

∫ t0+KT

t=t0

uh(t)ib(t)dt,

Pbs =
1

KT

∫ t0+KT

t=t0

ub(t)is(t)dt, Psb =
1

KT

∫ t0+KT

t=t0

us(t)ib(t)dt,

Phs =
1

KT ∑
h=1

∫ t0+KT

t=t0

uh(t)is(t)dt, Psh =
1

KT ∑
h=1

∫ t0+KT

t=t0

us(t)ih(t)dt, (16)

where Pbb, Phh, and Pss are the fundamental, harmonic, and nonstationary active power,
respectively; and Pbh, Phb, Pbs, Psb, Phs, and Psh are the distortion active powers, generated by
the different cross-combinations from the fundamental/harmonic/nonstationary voltage
and the fundamental/harmonic/nonstationary current, respectively.

Since ∫ 2π

0
sin(nωt) sin(mωt)dt = 0

for n 6= m, we have Pbh = Phb = 0. And then, Pbs ' 0, Psb ' 0, Phs ' 0, and
Psh ' 0 can be considered in statistics, although there are minor errors. Thus, accord-
ing to References [25,28], (Pbs, Psb, Phs, and Psh) can be ignored, and then, the simplified
calculation of the active power in (15) is given by

P = Pbb + Phh + Pss, (17)

i.e., the active power is the summation of the fundamental, harmonic, and nonstationary
active power.

Accordingly, we calculate the RMS values of the voltage and current as

U =
√

U2
b + U2

h + U2
s , I =

√
I2
b + I2

h + I2
s , (18)

where (Ub, Uh, and Us) are the RMS values of the fundamental, harmonic, and nonstationary
voltage, respectively, and (Ib, Ih, and Is) are the RMS values of the fundamental, harmonic,
and nonstationary current, respectively.

In practice, the analog voltage and current are first digitalized, and the continuous
integration operation would be converted into the discrete ones. Thus, the active power
(Pbb, Phh, and Pss) in (17) can be calculated as

Pbb =
1
N

N−1

∑
n=0

ub(n)× ib(n), Phh =
1
N ∑

h=1

N−1

∑
n=0

uh(n)× ih(n), Pss =
1
N

N−1

∑
n=0

us(n)× is(n), (19)
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where (ub,h,s(n), ib,h,s(n)) are the digitalized data of (ub,h,s(t), ib,h,s(t)) at the n-th sampling
index, respectively, and N is the integration interval. Accordingly, the RMS values of the
voltage and current in (18) can be calculated as

Ub =

√√√√ 1
N

N−1

∑
n=0

u2
b(n), Ib =

√√√√ 1
N

N−1

∑
n=0

i2b(n),

Uh =

√√√√ 1
N ∑

h=1

N−1

∑
n=0

u2
h(n), Ih =

√√√√ 1
N ∑

h=1

N−1

∑
n=0

i2h(n),

Us =

√√√√ 1
N

N−1

∑
n=0

u2
s (n), Is =

√√√√ 1
N

N−1

∑
n=0

i2s (n), (20)

for the fundamental, harmonics, and nonstationary components, respectively.

3. Experiments and Results

In this section, we evaluate the proposed ACMD-based estimation of RMS values and
active power using synthetic signals and simulation tests. In the following experiments,
the key parameters γ and β of the ACMD method are set as γ = 10−6 and β = 10−9,
respectively. The performance of the ACMD-based method is compared with the DWT-
based method, since DWT is a time–frequency method widely used in signal analysis for
power systems. The relative error of the estimated quantity is calculated as

Error =
|Re f − Est|

Re f
, (21)

where Re f is the reference value, and Est is the estimated value from the ACMD or DWT
method.

3.1. Nonstationary Synthetic Signal

To demonstrate the performance of the ACMD method in signal decomposition and
power-related estimation, three stationary waveforms, containing the fundamental and
two harmonics, and one nonstationary component, are considered in synthetic signals of
the voltage and current, expressed as

u(t) = u1(t) + u2(t) + u3(t) + u4(t),

=
√

2(220 sin(2π × 50t) + 20 sin(2π × 250t + 2π) + 5 sin(2π × 350t + π))

+ e−0.3t cos(2π(450t + 0.5π cos(2π × 30t)))), (22)

i(t) = i1(t) + i2(t) + i3(t) + i4(t),

=
√

2(25 sin(2π × 50t) + 10 sin(2π × 250t) + 5 sin(2π × 350t))

+ 2e−0.3t cos(2π(450t + 0.5π cos(2π × 30t)))), (23)

where the fundamental frequency is 50 Hz, the sampling frequency is 1500 Hz for discretiz-
ing i(t) and u(t), and the time interval of the synthetic signal is 0.5 s in this experiment.

To visually evaluate the decomposition performance of ACMD and DWT methods,
we show the resultant synthetic current waveform and each component in Figure 2a as
the ground-truth ones, based on (22). After the DWT with mother wavelet ‘db4’ and
ACMD methods are used to decompose the current i(t), the decomposed components
and reconstructed signal are shown in Figure 2b,c. According to the principle of the DWT
method, the fundamental component can be extracted from three-level DWT decomposition,
and its frequency is within that of the highest-level approximation coefficients, i.e., ca3
in Figure 2b. From the decomposed results of the DWT method shown in Figure 2b, we



Energies 2023, 16, 5305 8 of 13

observe that there is a component that does not already exist in (22) within [93.75,187.5] Hz.
In addition, the obtained components within [0, 93.75] Hz are not pure fundamental
components as expected but mixed with the leakage components from other frequency
ranges. Similar patterns exist in other frequency ranges, whereas the ACMD method
obtains each component, more closely to the ground-truth ones, compared with the results
from the DWT method.

0 0.05 0.1 0.15(s)
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Figure 2. Current synthetic waveform and the corresponding decomposed results by using DWT
and ACMD methods: (a) synthetic current and its components; (b) decomposed and reconstructed
results of the DWT method; (c) decomposed and reconstructed results of the ACMD method.

The calculated quantities and relative errors (‰) of the fundamental, harmonics, and
nonstationary components are shown in Table 1, where the reference values are directly
calculated from the analytic expressions in (22), agreeing with IEEE Standard 1459-2010.
The estimated quantities for the three-type components are calculated from the decomposed
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results from the ACMD and DWT methods. The results in Table 1 show that the DWT-
based method causes small estimations for the fundamental and large ones for harmonic,
especially for nonstationary components, resulting in bringing large estimated errors
for each component. The main reason is its leakage issue as mentioned above, whereas
compared with the DWT-based method, the ACMD-based method brings quantities closer
to the reference values with fewer estimation errors.

Table 1. Comparisons of estimated quantities of ACMD-based and DWT-based methods for synthetic
signal.

Quantity Reference Values ACMD DWT

Symbols Parameters Analytical Value Error (‰) Value Error (‰)

U Voltage RMS (V) 220.97 220.82 0.68 220.87 0.45
I Current RMS (A) 27.39 27.38 0.36 27.38 0.36
P Active power (W) 5625.86 5618.00 1.40 5602.85 4.09

Ub Fundamental voltage RMS (V) 220.00 219.85 0.68 217.96 9.27
Ib Fundamental current RMS (A) 25.00 24.98 0.80 24.80 8.00

Pbb Fundamental active power (W) 5500.00 5492.78 1.31 5399.46 18.28
Uh Harmonic voltage RMS (V) 20.62 20.59 1.45 35.13 703.68
Ih Harmonic current RMS (A) 11.18 11.17 0.89 10.85 29.52

Phh Harmonic active power (W) 125.00 124.66 2.72 186.88 495.04
Us Nonstationary voltage RMS (V) 1.31 1.07 183.21 6.46 3931.29
Is Nonstationary current RMS (A) 0.66 0.53 196.96 4.14 5272.72

Pss Nonstationary active power (W) 0.86 0.57 337.21 16.52 18,209.30

3.2. Simulation Signal

The performance of the proposed ACMD-based calculation method is further validated
by using a simulation model in MATLAB/SIMULINK, as shown in Figure 3. The current
and voltage waveforms at the grid side of the charging pile are shown in Figure 4a,b,
respectively. From Figure 4, we observe that the charging current is similar to a square wave,
deviating from the standard sine signal, while the voltage contains fewer harmonics, closer
to the sine signal. Further, considering there are nonlinear elements in the charging piles of
electric vehicles, the nonstationary signals are introduced to the current and voltage for
realistically simulating the charging characteristics of electric vehicles. In this experiment,
sawtooth impulse and high-frequency attenuation signals are used for the nonstationary
signals us and is, expressed as

us(t) =

{
8× sawtooth(2π × 1800t + 0.5π, 0.5), t ∈ (0.4, 0.55)s,

8× e−40t sin(2π × 1500t), t ∈ (0.75, 0.9)s,
(24)

and

is(t) =

{
10× sawtooth(2π × 1800t + 0.5π, 0.5), t ∈ (0.4, 0.55)s,

10× e−40t sin(2π × 1500t), t ∈ (0.75, 0.9)s,
(25)

respectively. Figure 4c shows the waveform of is(t) . To observe the components of current,
the spectrum of the current i(t) is shown in Figure 4d, which demonstrates that 6 h ± 1
order harmonics with successively attenuated amplitude appear on the corresponding
spectral bins beside the fundamental, and the nonstationary signals appear on multiple
high-frequency ranges, as shown in the enlarged drawing.
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Figure 3. Simulation model in MATLAB/SIMULINK.

Figure 4. Waveform generated from simulation model and the spectrum of current: (a) current;
(b) voltage; (c) nonstationary is; (d) the spectrum of the current.

The sampling frequency is 4000 Hz in this experiment, and five-level DWT decompo-
sition with the mother wavelet ‘db4’ is applied on current and voltage, making it that the
highest-level frequency range corresponds to that of the fundamental component (i.e., ca5).
Figure 5 shows the decomposed results of the current. From the decomposed fundamental
and nonstationary components, it is easy to discern that both of them are mixed with other
frequency components. Meanwhile, the ACMD method is utilized for current and voltage,
and the decomposed results for the current are shown in Figure 6. Since the ACMD method
performs decomposition recursively, two nonstationary signals are extracted separately,
and close to the raw waveform in the views of waveform trend and occurrence interval.
For harmonics, parts of the waveform within black windows are enlarged and displayed in
small attached windows for comparison. Compared with the results from the DWT method
in Figure 5, the decomposed components from the ACMD method in Figure 6 more agree
with the real ones.

Using the decomposed components from the DWT and ACMD methods, the RMS
values, active power, and relative error (‰) for the three components are calculated and
shown in Table 2. Since the real value for each component can not be calculated directly
as the case for synthetic signals, the RMS values of the fundamental and harmonics are
calculated from the corresponding information of spectral magnitude, while the quantities
of the nonstationary component are calculated according to us and is(t) in (24) and (25).
Similar to the comparison results for synthetic signals, the ACMD-based method achieves
better estimation for each component and total active power for simulation data compared
with the DWT-based method.
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Figure 5. Decomposed results by using DWT method for current.

Figure 6. Decomposed results by using ACMD method for current.

Table 2. Comparisons of estimated quantities of ACMD-based and DWT-based methods for simula-
tion signals in MATLAB/SIMULINK.

Quantity Reference Values ACMD DWT

Symbols Parameters Analytical Value Error (‰) Value Error (‰)

U Voltage RMS (V) 224.76 224.77 0.0 223.88 3.92
I Current RMS (A) 49.54 49.62 1.61 49.49 1.01
P Active power (W) 10,756.46 10,749.33 0.66 10,659.48 9.02

Ub Fundamental voltage RMS (V) 224.41 224.46 0.22 200.07 108.46
Ib Fundamental current RMS (A) 47.8200 47.83 0.21 42.74 106.23

Pbb Fundamental active power (W) 10,686.11 10,691.48 0.50 8512.89 203.36
Uh Harmonic voltage RMS (V) 10.49 10.75 24.78 100.39 8570.06
Ih Harmonic current RMS (A) 12.60 12.74 11.11 24.69 959.52

Phh Harmonic active power (W) 48.48 51.07 53.42 2139.69 43,135.52
Us Nonstationary voltage RMS (V) 2.28 2.47 83.33 3.78 657.89
Is Nonstationary current RMS (A) 2.86 2.82 13.98 3.69 290.21

Pss Nonstationary active power (W) 6.54 5.79 114.48 6.89 53.45
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4. Conclusions

In this paper, a new approach based on the ACMD method was proposed to estimate
the power-related quantities for electric vehicle charging load, according to the definition
in the IEEE Standard 1459-2010 in the time–frequency domain. The current and voltage on
the grid side of the charging piles were decomposed into the fundamental correctly, har-
monic, and nonstationary components through the ACMD method. With the decomposed
components, the active power and the RMS values were calculated for each component and
the overall. Compared with the DWT-based method, the proposed ACMD-based method
achieved better estimation of power-related quantities for the electric vehicle charging load
with significantly fewer estimation errors, especially for the harmonics and nonstationary
components. To further explore the advantage of the ACMD method for more applications
in power systems, our future works will focus on power-related estimation of three-phase
systems or other electric devices (e.g., power transformer) for abnormality detection, fault
diagnosis, etc.
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ub(t) and ib(t) Fundamental voltage and current, respectively
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