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Abstract: Electric machines are important devices that convert electrical energy into mechanical
energy and are extensively used in a wide range of applications. Recent years have seen an increase
in applications where electric motors are used. The frequent use of electric motors in noise-sensitive
environments increases the requirements placed on electric motors intended for these applications,
especially when compared to electric motors commonly used in industrial applications. This paper
provides a comprehensive review of electric motor noise. Firstly, a brief introduction to noise is given.
Then, the sources of electromagnetic noise and vibration in electric machines, including mechanical,
aerodynamic and electromagnetic factors, are presented. Different methods such as analytical,
numerical and semi-analytical for calculating electromagnetic force, natural frequencies and noise
are also analyzed. Various methods for noise reduction are presented, including skewing, stator
and rotor notching and slot opening width. Finally, noise measurement standards and procedures
are described.

Keywords: electric machine; electromagnetic noise; induction motor; permanent magnet motor
(PMM); axial flux motor (AFM); noise calculation; noise reduction methods

1. Introduction

With the development in power electronics and motor and generator control technolo-
gies, recent years have seen an increase in applications where electric motors are used to
replace older systems based on combustion engines or hydraulic systems.

This increasing electrification has led to more and more electrical, electromagnetic and
electronic equipment being installed in locations where low acoustic noise generation is a
determining factor. This growing use of electric motors in noise-sensitive environments
means that the requirements imposed on electric motors intended for these applications
are higher than those applied to electric motors used for industrial applications. There-
fore, developing motors that guarantee low acoustic noise generation is becoming an
increasing necessity.

This article conducts a comprehensive literature review in the subject. Section 2
provides a concise introduction to noise, followed by an examination of the origins of
electromagnetic noise and vibration in electrical machines, considering both mechanical and
electromagnetic factors in Section 3. Section 4 presents various approaches for calculating
electromagnetic force, natural frequencies, and noise. Lastly, Section 5 provides different
techniques for mitigating noise and Section 6 describes noise measurement standards
and procedures.

2. Acoustics and Noise Principles
2.1. Decibel Unit, Types A, B and C

Sound is defined as the sensation produced in the organ of hearing by the vibratory
motion of bodies transmitted by an elastic medium such as air. The sound that the human
ear is capable of detecting ranges from 20 to 20,000 Hz. Although decibel (dB) is the
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most frequently unit used for measuring sound, watts (W) are also sometimes used when
describing sound power. The decibel is a logarithmic ratio between two known quantities.

How the human ear perceives sound depends on both the amplitude and the frequency
at which it is produced. Since humans are only capable of hearing a defined frequency
band of approximately 20 Hz to 20,000 Hz, sound may occur at frequencies outside that
band without being perceived by humans.

Weighting systems have been developed to adjust the level of specific frequencies in
order to more accurately reflect their impact on human perception, as well as to provide
more meaningful sound pressure data. Nowadays, the most common weighting scale in
use is “A” weighting. Sound pressure readings at this scale are typically indicated as dBA.
Despite its popularity in industrial specifications, this scale is intended to be applied to
sounds with a relatively low intensity of approximately 100 dB or less [1].

The steady-state raw gains for A-weighting can be calculated using Equations (1) and (2)
below [1].

RA( f ) =
122002 f 4

( f 2 + 20.62
)
( f 2 + 122002)

√
( f 2 + 107.72)( f 2 + 737.92)

(1)

where f = frequency (Hz).
Standard practice dictates that the weighting has to be normalized to 1000 Hz. There-

fore, the final gain (A) can be determined by the following equation.

A = 2.00 + 20log RA( f ) (2)

2.2. Audible Spectrum. Octaves

The audible spectrum is the range of sound frequencies capable of being detected by
the human ear. This spectrum is between 20 Hz and 20,000 Hz. Below 20 Hz would be
infrasound and above 20,000 Hz would be ultrasound.

To analyze sound, the most common approach is to group data into octave bands.
Each band covers a frequency range of 2:1 centered on established points, and they are
bounded by cutoff frequencies above and below the center frequency. For instance, the
250 Hz octave band contains all sound pressure data from 177 Hz to 354 Hz. The center
and cutoff frequencies for the full octave bands are shown in Table 1 below.

Table 1. Full band center and cutoff frequencies (adapted from [1]).

Central Frequency [Hz] Cutoff Frequency [Hz]

22

31.5

45

63

88

125

177

250

354

500

707

1000
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Table 1. Cont.

Central Frequency [Hz] Cutoff Frequency [Hz]

1414

2000

2828

4000

5657

8000

11,314

2.3. Acoustic Pressure and Acoustic Power

Sound power (Π) is defined by the following equation [2]:

Π =
∫

S

→
I d
→
S =

∫
S

IrdS =
∫

S
purdS (3)

where I is the intensity vector (rate of energy flow per unit area), S is the surface enclosing
the noise source, Ir is the component of the intensity vector normal to S, p is the sound
pressure, ur is the particle velocity normal to S, and the overbar represents the time average.

Sound pressure, also known as acoustic pressure, can provide valuable information
about how humans perceive noise. It is important to note that, unlike sound power, the
sound pressure level measured for a sound source can be influenced by the surrounding
environment. While the total sound power generated by a vibratory source is independent
of its environment, it cannot be measured directly. For this reason, sound level meters can
measure sound power based on sound pressure readings.

Furthermore, in recent times, it has been observed that some authors have shown
interest in analyzing additional parameters when measuring noise, in addition to sound
power and sound pressure. These parameters are “Loudness”, “Roughness”, “Sharpness”
or “Fluctuation strength” among others [3]. They indicate the perception of pleasantness or
unpleasantness that a particular sound can produce.

2.4. Standards

Regarding electric motors, the International Electrotechnical Commission (IEC) has
established a standard that governs the maximum allowable levels based on the type of
machine and its output power. This standard is applicable to noise and vibrations that all
electrical machine design must comply with:

• IEC 60034-9: Noise limits on rotating electrical machines.
• IEC 60034-14: Mechanical vibrations.

The object of the IEC 60034-9 standard is to determine the maximum A-weighted
sound power levels, LwA in decibels, for airborne noise emitted by rotating electrical
machines of standard designs, as a function of power, speed and load. The object of the
IEC 60034-14 standard is to specify the factory acceptance vibration test procedures and
vibration limits for electric machines uncoupled from any load or prime mover.

In addition to these standards, there are others that regulate the measurement of sound
pressure, such as:

• ISO 1680: Test code for the measurement of airborne noise emitted by rotating
electrical machinery.

• ISO 3740: Determination of sound power levels of noise sources. Guide for the use of
basic standards.

The ISO 1680 standard specifies all the information necessary to carry out efficiently
and under standardized conditions the determination, declaration, and verification of the



Energies 2023, 16, 5311 4 of 22

noise emission characteristics of rotating electrical machines. It specifies noise measurement
methods that can be used, and specifies the operating and mounting conditions required
for the test. The ISO 3740 standard gives guidance for the use of a set of twelve basic
International Standards describing various methods for determining sound power levels
from all types of machinery, equipment and products.

3. Noise Sources in Electric Motors

Electric motors primarily consist of two essential components: a stator and a rotor,
with the space between them known as the airgap. Additionally, there are several other
crucial elements to consider, including endshields, a housing, a shaft, and a cooling system,
which may involve components such as fans or water jackets.

Taking the previous components into consideration, three main types of noise sources
can be distinguished in electric motors:

• Of aerodynamic origin,
• Of mechanical origin, and
• Of electromagnetic origin.

The electromagnetic noise in electric motors, sometimes called electrical noise, is
primarily caused by the magnetic field in the air gap. Mechanical noise is mainly generated
by bearings, rotor-stator eccentricity, and mechanical imbalance. Lastly, aerodynamic noise
is the noise produced by the motor’s ventilation and cooling system. Some references [4]
also distinguish noise of electronic origin, as a consequence of electric motors fed by
electronic converters.

3.1. Mechanical and Aerodynamic Noise

Several authors have analyzed the aerodynamic noise in electric motors [5–7]. It is
expected that the noise level will increase as the speed of the motor’s cooling fan increases.
According to [6], electromagnetic noise is more dominant at low speeds, while aerodynamic
noise is more dominant at high speeds. To demonstrate this, the motors are slowly run up
to 3300 rpm and the sound pressure is measured. The same measurement is repeated once
the motor is running at 3300 rpm, but with the power turned off.

This type of noise is unaffected by motor load. The level of aerodynamic noise remains
the same whether the motor is running at full load or with no load at all.

The International Electrotechnical Commission (IEC) has defined the degree of protec-
tion against mechanical damage and environmental factors, such as moisture or corrosive
vapors, in the standard IEC60034-5. The designation for the degree of protection is denoted
by the letters “IP” followed by two numbers. For example, a motor labeled as IP23 indicates
that it is open to the surrounding environment, while a motor designated as IP55 suggests
that it is enclosed and protected. In this regard, noise levels differ depending on whether
the motor is open (IP23) or closed (IP55). The ventilation noise emitted by open motors
is significantly higher than that of closed motors, as the rotor generates less noise when
enclosed. This also applies to noise generated within the motor, whether of electromagnetic
or mechanical origin. Therefore, in order to minimize noise levels, it is recommended to
design motors that are as closed as possible (IP55).

There are several sources of mechanical noise, such as bearings, eccentricity between
rotor and stator, and mechanical unbalance. In [8], the influence of manufacturing toler-
ances has even been analyzed. It should be noted that the noise caused by rotor eccentricity
can also be considered as a type of electromagnetic noise, since the imbalance of electro-
magnetic forces caused by the eccentricity leads to increased noise.

In [9–11] the influence of rotor eccentricity on motor noise has been analyzed. Accord-
ing to [11], four types of eccentricities are distinguished (as can be seen in Figure 1):
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Figure 1. Main mechanical sources of air gap eccentricity: (a) shape deviation, (b) parallel eccentricity,
(c) inclined eccentricity and (d) curved eccentricity [11].

When the stator and rotor are not regular cylinders, their shape deviation can produce
air gap eccentricity, as in Figure 1a. Another very important, and widely analyzed, type
of air gap eccentricity is that the rotor axis does not coincide with the stator axis, as in
Figure 1b–d. When the rotor axis is straight, the eccentricity can be divided into parallel
eccentricity, Figure 1b, and inclined eccentricity, Figure 1c. When the rotor shaft is bent, the
eccentricity type is called curved, as in Figure 1d.

Test measurements [9,10] demonstrate that eccentricities between rotor and stator
lead to an increase in the noise level generated by motors. Another interesting conclusion
obtained by [12] is that the minimum achievable noise is highly dependent on the eccen-
tricity value, but the dimensions required for the motor to have the lowest noise level are
independent of any type of eccentricity.

3.2. Electromagnetic Noise

Electromagnetic fields result in forces that cause structural vibrations. The magnitude
of the vibrations depends on the amplitudes and especially on the frequencies of the forces,
and they must not coincide with the natural frequencies of the system. These surface
oscillations then cause a conversion from vibrational energy to sound energy.

3.2.1. Electromagnetic Forces

There are two types of forces behind noise of electromagnetic origin occurring in
electrical machines: magnetostriction forces and Maxwell forces. In radial-flow rotating
machines, the main structural modes of interest for acoustic noise are those that involved
radial vibration waves of the yoke (circumferential modes), which are generally the most
efficient ones for radiating acoustic noise. Both magnetostriction and Maxwell forces can
generate radial deflections of the stator yoke [13].

According to [2], obtained from Maxwell’s Tensor, the radial magnetic forces per unit
area are given by Equation (4):

F =
Br

2 − Bt
2

2µ0
(4)

where F is the force per unit area, Br is the radial component of the magnetic flux, Bt is the
tangential component and µ0 is the magnetic permeability of the vacuum.

The radial force generated within the motor induces vibrations in the stator, which
subsequently result in the emission of noise by the motor to its surroundings.

There are many references that analyze the forces of electromagnetic origin [14–23]
but, in most publications, it is common to neglect the tangential component, since it is
much smaller than the radial component. In contrast, the authors of [16] show that this
assumption is not always valid and that, when the orders of the harmonics of the radial and
tangential field are the same, ignoring the tangential component can change the amplitude
of these harmonics. According to [23], neglecting the tangential component results in a
calculation error that can be about 2 dB. These tangential forces have a greater influence
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when the ratio of stator yoke to tooth length is small. Therefore, it must be taken into
account in machines with high pole pairs.

3.2.2. Natural Frequencies and Vibration Modes

It is crucial to consider both force frequencies and natural frequencies of the stator
system when designing electric rotating machinery because, as mentioned in [5], the
vibration and resulting noise level are at their highest when the frequency of the magnetic
force is equal or close to the natural frequency of the stator system.

Natural frequencies are associated with different vibration modes (0, 1, 2, ...) and the
lower modes are the ones that contribute the most to the increase in electromagnetic noise.
Figure 2 shows the spatial distribution of forces producing vibration modes of different
orders (r = 0, 1, 2, 3, 4).
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Generally, the mode of the force has the greatest impact on vibration and noise behav-
ior, followed by the frequency of the force, and lastly the amplitude of the force [24].

Typically, natural frequencies of the motor stator are calculated without considering
the influence of its winding. However, the author of [25] was one of the first researchers
to analyze the impact of winding and different varnishes used in stator impregnation on
natural frequency.

Since natural frequency is associated with the mechanical stiffness of the stator, some
authors have investigated the influence of different magnetic sheet materials on motor noise
emission. In [26], the effect of grain-oriented versus non-grain-oriented magnetic sheet
on squirrel cage motor stator construction was analyzed, concluding that grain-oriented
magnetic sheets produce lower noise.

Additionally, when the motor is in thermal equilibrium, the stator temperature is
higher during continuous operation than at rest, and this temperature difference can affect
its natural frequency [27].

Finally, it is worth mentioning that neglecting the influence of motor endshields on
the natural frequency of the system may result in errors of up to 25% [28].
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3.2.3. Power Supply Control of the Electric Motor

The use of electric motors fed by variable frequency drives is becoming more common,
often replacing hydraulic motors. However, since these motors are not fed with sine waves,
they tend to generate higher levels of noise [8,29–31].

One of the most analyzed parameters by researchers is the switching frequency.
In [32,33], the noise emitted by the same motor is analyzed when different switching
frequencies of the frequency converter are used. At low frequencies, a higher switching
frequency results in lower machine noise, but for high frequency operation (100 Hz) the
differences are negligible.

Space Vector PWM (SVPWM) technique is the most widely used power supply strat-
egy in variable frequency drives because of its reduced harmonic distortion (THD) [34].
However, one of the main disadvantages of this technique is that harmonics and noise are
concentrated around the inverter switching frequency value and its multiples [35,36].

If the frequency of these harmonics coincides with the natural frequency of the motor,
the noise will increase considerably. Therefore, from the early stages of design, it is
convenient to pay special attention to the vibration modes and natural frequencies, as
explained in the previous section.

Recently, the trend has been to look for other power supply methods, different from
SVPWM, that achieve noise reduction [37]. For example, the authors of [38] present a
triangular modulated signal to reduce noise versus the traditional PWM. The difference
of the triangular periodic frequency carrier compared to the traditional PWM is that the
switching frequency is variable and, with a variable switching frequency signal, a sinusoidal
signal with lower harmonic distortion is obtained.

In addition, the authors of [3] discuss different power supply techniques within the tri-
angular signals. All of them are difficult to be applied in standard variable frequency drives.

3.2.4. Winding Influence

The influence of the winding type on noise generation in electric motors has been
extensively researched over the years, considering different options such as single and
double layer windings, fractional and integer windings, concentric and concentrated
windings and, finally, the winding pitch.

In [39–41], the difference between single- and double-layer windings is analyzed, and
the main conclusion is that double layer windings perform better against noise generation.
Furthermore, according to [9], the higher the number of parallel paths in the winding, the
lower the noise produced by the motors.

Regarding integer or fractional windings, different winding configurations for a
20-pole magnet machine are analyzed in [41]. In fact, one integer and 4 fractional winding
configurations are analyzed. One of its conclusions is that fractional windings present
a greater imbalance in the radial magnetic forces in the air gap. Alternatively, the most
significant force in permanent magnet motors (PMMs) with integer windings is the 0-order
force, whereas in PMMs with fractional windings is the lowest non-zero-order force [42].

As for concentrated windings, these types of windings present greater problems from
the noise and vibration point of view than distributed windings [43] (such as concen-
tric windings). The high harmonic content of the magnetomotive force is the source of
the problems.

In [44], the authors propose a new star-delta connected concentric winding con-
figuration, reducing the noise level by 10 dB(A). Finally, the author of [45] shows that
short-pitched windings have a lower noise level than windings without shortened pitch.

3.2.5. Noise in Induction Motors

In the case of induction motors, the magnetic field is generated by the stator, which
induces a magnetic field in the rotor following the one generated by the stator. Regarding
the harmonics present in squirrel cage motors, these can be reduced to three families [46]:
slotting force harmonics, “winding force” harmonics, and saturation force harmonics.
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Therefore, the design of the stator and rotor slots directly affects the harmonics and
acoustic characteristics of the motors. For example, closed rotor slots result in lower noise
levels [47] since rotor slotting force harmonics are partially eliminated.

For many years, the stator–rotor slot combination, and its influence on slot harmonics,
has been a widely studied parameter in squirrel-cage motors. The proper selection of the
number of stator and rotor slots for noise reduction was first proposed by [48]. In recent
times, the authors of [49] have presented updated rules and a compilation of previously
published research. The number of poles is another aspect related to the number of slots.
According to [50], the higher the number of poles, the higher the electromagnetic noise
will be.

One of the major advantages of squirrel cage motors fed by frequency inverters is
their wide speed range. However, as this range increases, it is inevitable that the speed
coincides, or at least passes through, a structural mode of the machine, making it possible
for resonances to appear [45].

Furthermore, as discussed in Section 3.2.1, neglecting the tangential component may
lead to errors in the calculation of the noise level in squirrel cage motors [23].

Another important aspect in induction motors is the influence that temperature has
on the noise emitted. In this regard, the authors of [6] conclude that there is a temperature
dependence and, as the temperature of the motor increases, both the natural frequency of
the eigenmode and the amplitude of the sound pressure level decrease.

3.2.6. Noise in PMMs

In the case of PMMs, the magnetic field is generated by the magnets of the rotor
following the rotating magnetic field generated by the stator. Within the topology of
permanent magnet synchronous motors there are mainly two types, depending on where
the magnets are placed: Surface Permanent Magnet motors (SPM) and Interior Permanent
Magnet motors (IPM).

A review on vibration and noise in PMMs with concentrated windings is presented
in [43]. Among the two synchronous motor topologies mentioned above, the IPM emits
higher noise when the winding is concentrated [51].

Unlike in induction motors, the cogging torque that is generated by the interaction
between the magnets and the magnetic sheet of the stator has to be taken into account in
PMMs. Having said that, low cogging torque does not necessarily imply that the motor is
less noisy [52].

As in squirrel-cage motors, neglecting tangential versus radial forces can lead to errors
in obtaining the noise level [53].

For the same number of poles, increasing the number of slots increases the harmonic
amplitudes. As a consequence, configurations with a lower number of slots will be less
noisy, as long as the mechanical configuration is similar [54].

The influence of the shape of magnets on the noise emitted by electric motors is
something worth considering. Researchers such as [55] have analyzed the impact of the
magnet edge shape on the magnetic force and its frequency components. Modifying the
edge of the magnet can shift the frequencies to higher orders of the frequency spectrum,
reducing the acoustic level. However, this is only effective if the new frequencies do not
coincide with any natural frequency of the system. Furthermore, this same effect can be
achieved by acting on the pole shape [56], in particular, on the pole width. The forces in the
air gap are reduced by enlarging the air gap at the ends of the tooth tips.

3.2.7. Noise in AFMs

Axial flux motors (AFMs) are designed with at least one disk-shaped rotor and one
ring-shaped stator, resulting in a flat and uniformly spaced air gap along the axial axis. The
term “axial” in the name of the motor refers to the direction of the magnetic flux, which is
parallel to the axis of rotation. This type of motor can be configured either with permanent
magnets or squirrel cage, although PMMs are more widely used.
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The axial magnetic force is what generates vibrations and noise in this motor
topology [42,57,58]. Moreover, in permanent magnet synchronous motors, another source
of noise is cogging torque and torque ripple [59,60]. These torques generate vibrations in
the housing and, consequently, noise emission.

The AFM topology offers a significant advantage over radial flux topology in permanent
magnet synchronous motors, since its lower cogging torque reduces the noise level [61,62]

Although the main cause of noise is the axial force, tangential forces are also present
in this type of motor. Ref. [61] states that neglecting these components hardly affects the
sound power calculation, demonstrating it through simulation.

Although the machine topology is different, the electromagnetic forces obtained from
Maxwell’s Tensor are expressed in the same way as for the radial flux topology [61,63],
neglecting the tangential component:

F =
Bz

2

2µ0
(5)

where F is the force per unit area, Bz is the axial component of the magnetic flux and µ0 is
the magnetic permeability of the vacuum.

Unlike radial flux motors, in which the circumferential modes were predominant,
the normal modes will be predominant in AFMs. Therefore, the distribution of forces of
electromagnetic origin, from order 0 to the third order, would be as shown in Figure 3.
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Another aspect to consider for this type of machines is that the natural frequency
of mode 0 is usually the lowest, unlike radial flux motors [61]. Consequently, low noise
pole/slot combinations in radial flux motors can induce high noise in AFMs [42,61]. The
fact that the 0th-order frequency is the lowest implies that, from the early design stages, it
can be increased by acting on the mechanical design of the motor casing and covers. It is of
the utmost importance that the natural frequency of the motor does not coincide with that
of the electromagnetic force, in order to avoid undesired resonances.

4. Modeling, Analysis, and Calculation of Noise in Electric Motors

It is crucial to foresee the behavior of an electric motor before it is manufactured and it
is very important to have the necessary tools and methodologies during the early stages of
design. Several tools are available to perform noise and vibration calculations in relation to
electric motors:

• Analytical calculations,
• Numerical calculations, and
• Semi-analytical calculations.

Analytical calculations can provide faster results, but numerical methods are usually
more accurate because structural details can be modeled.
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4.1. Natural Frequencies

One of the first calculations necessary to obtain the noise level in electric motors is the
calculation of natural frequencies of the system and modal analysis.

A large number of references can be found that conduct finite element simulations to
perform modal analysis and calculate natural frequencies. However, a common challenge
with these simulations is the significant processing time required. In response to this issue,
some authors have developed analytical calculation methods that effectively reduce these
processing times. Remarkably, the difference between the results obtained from these
analytical methods and experimental measurements is generally minimal [64]. Table 2
shows some of the references that calculate the natural frequencies of motors, including the
calculation methods used, mentioning if they verify the calculation results by testing, as
well as some interesting remarks.

Table 2. Summary of some of the most relevant references that calculate natural frequencies.

Calculation Method Reference Test Results Remarks

Analytical

[64] Yes
Results comparison between

5 different calculation methods,
2 of them analytical

[65] Yes AFM natural frequency calculation

[66] Yes
Two methods: Stator density

modification and addition
of mass points

[67] No

Adds equivalent material properties
to stator teeth and

winding combination
Validation with FEM

[68] Yes End covers are taken into account

FEM

[69] Yes
Comparison between only the stator

and the stator, cooling system
and housing

[68] Yes Stator and winding taken into
account for the FEM calculation

According to [2], the natural frequencies of modes 0, 1 and m can be analytically
calculated. This way, the natural frequency of mode 0 is given by:

f0 =
1

πDc

√
Ec

ρckikmd
(6)

where Dc is the mean diameter, Ec is the elasticity modulus of the stator material, ρc is the
density of the stator material, ki is the stacking factor, and kmd is the mass addition factor
defined as:

kmd = 1 +
Mt + Mw + Mi

Mc
(7)

where Mt is the mass of all stator teeth, Mw is the mass of stator windings, Mi is the mass
of insulation, and Mc is the mass of the stator yoke.

The natural frequency of mode 1 would be:

f1 =
1

πDc

√
Ec

ρckikmd

√
2

1 + k2 kmrot
kmd

(8)
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where k:
k =

hc√
3Dc

(9)

where hc is the stator yoke height and kmrot is the mass addition factor for rotation,
defined as:

kmrot = 1 +
s1ctLiht

2

πDc Ic

(
1 +

Mw + Mi
Mt

)(
4ht

2 + 6hcht + 3hc
2
)

(10)

where s1 is the number of teeth or slots, ct is the tooth width, Li is the effective length of the
stack, ht is the height of the tooth, and Ic is the moment of inertia defined as:

Ic =
hc

3Li
12

(11)

Finally, the natural frequency of order m:

fm = f0k
m
(
m2 − 1

)
√

m2 + 1
kaFm (12)

where ka > 1 represents the covers and housing support (legs or flange) and Fm is:

Fm = (1 +
k2(m2 − 1

)[
m2(4 + kmrot/kmd) + 3

]
m2 + 1

)−1/2 (13)

In relation to previous analytical natural frequency calculations, the authors of [67]
propose an improved analytical calculation method. It involves adding a material with
a mass and stiffness equivalent to the stator teeth and winding, in order to reduce the
calculation error in traditional analytical methods.

The abovementioned equations are applicable for radial flux motor stators. For
AFMs, the authors of [65] present an analytical equation for the calculation of the nat-
ural frequency (fn):

fn =
BkChCsCw

2π

√√√√√ Ec

(
Li/2

)2

ρcd4(1− σ2)
(14)

where Bk is the boundary condition coefficient, Ch is the stator hollow modification coeffi-
cient, Cs is the slot opening modification coefficient, Cw is the modification coefficient due
to the winding, d is the stator radius, and σ is the Poisson’s coefficient of the stator material.

The problem with Equation (14) is that the calculation errors with respect to the
natural frequencies measured by experimental methods are quite important. In contrast,
the authors of [60] also present an analytical formulation for the calculation of natural
frequencies of axial flow stators and the results with respect to test measurements are
much accurate.

According to [70], the zero-order natural frequency of the disk-shaped housing in
AFMs is the lowest, so the zero-order force will be important for vibration and noise
generation in such a motor topology. Radial flux motors do not exhibit this characteristic.

Regarding numerical methods, there are several commercial software packages that
allow calculating the natural frequencies, by means of 3D finite element methods (FEM).
The accuracy of the results obtained by FEM usually depends on the number of elements
used in the simulation. This type of calculations is frequently used in advanced design
phases, because the computational time is considerably high.

Another way to obtain the natural frequencies of the stator is by using experimental
methods, but the main drawback of these methods is that they do not allow design changes
to modify these natural frequencies. The most widely used and economical method is the
impact hammer excitation method [64].
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4.2. Electromagnetic Forces

In recent years, with the increasing requirements of vibration and noise in electric
motors, electromagnetic force calculation has attracted a great deal of attention. Many
calculation methods are emerging and, in general, there are three main categories: analytical
methods, numerical methods, and combinations of analytical and numerical methods.

Several analytical methods are presented in [11], such as:

• Exact subdomain analysis,
• The magnetic equivalent circuit,
• Maxwell’s Tensor,
• The winding function approach,
• The conformal mapping method, and
• The virtual work principle.

For induction machines, the magnetic equivalent circuit, the winding function ap-
proach, Maxwell’s Tensor and the virtual work principle are used. For permanent magnet
machines, exact subdomain analysis, the magnetic equivalent circuit, the conformal map-
ping method, Maxwell’s Tensor and the virtual work principle are used.

Considering the abovementioned analytical methods, the ones that are most commonly
used in commercial calculation software are Maxwell’s Tensor (MT) and the virtual work
principle (VWP) [71].

4.2.1. Maxwell’s Tensor (MT)

The total force on an object can be obtained by integrating the MT over a closed surface.
The MT is used to calculate the electromagnetic force (F) on a moving body:

F =
∫

V
O·TdV (15)

where V is the volume containing the object. Maxwell’s stress tensor Tij is defined as:

Tij =
BiBj

µ0
− δi,j

|B|2

2µ0
(16)

where B is the magnetic flux density, i and j represent the components in the specific
coordinate system and δij is the Kronecker delta function.

According to [72], the magnetic field is poorly defined at the corner of the teeth because
it comes off at an angle. Numerical errors increase near a discontinuity in the magnetic
permeability, such as at the tip of the teeth when using analytical calculations. To avoid
this, the authors of [71] recommend to calculate the MT in the middle of the air gap.

4.2.2. The Virtual Work Principle (VWP)

In this method, the electromagnetic force is calculated from a derivative of the stored
energy. Firstly, the VWP is used to obtain the magnetic field in the air gap. Then, the energy
of the magnetic field in the air gap is calculated and, finally, the force in the direction of the
x- and y-axis is estimated.

The energy of the magnetic field in the air gap (W) is given by:

W =
R
2

∫ 2π

0

∫ L

0
Λ(α, t)F(α, t)2dα dz (17)

where R and L are the rotor radius and length, respectively, Λ is the airgap permeance and
F is the electromagnetic force.

The force on the x-axis (Fx) and y-axis (Fy) can be obtained by deriving the energy equation:

Fx =
RL
2

∫ 2π

0

∂Λ

∂x
F(α, t)2dα (18)
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Fy =
RL
2

∫ 2π

0

∂Λ

∂y
F(α, t)2dα (19)

In [71], a comparison is made between the results obtained from the calculation
of forces by means of the MT and the VWP. The results obtained by both methods are
practically the same and there are hardly any significant differences.

4.3. Noise and Vibration Calculation

Once the structural and force calculations are completed, the resulting vibrations can be
determined by combining the obtained data. Subsequently, the noise levels can be derived
from the calculated vibrations. Similar to force calculations, there are three main types of
calculations: analytical calculations, numerical calculations, and semi-analytical calculations.

4.3.1. Analytical Calculations

Many authors have proposed analytical calculation methods. For example, in [73,74],
an analytical noise calculation model is presented and validated by finite element calcula-
tions. Firstly, they calculate the stator deflections (Ys

mw):

Ys
mw =

12RaRm
3Pmw

Eh3(m2 − 1)2 (20)

where h is the thickness of the stator yoke, Rm is the average stator radius without consider-
ing the teeth, E is the Young’s modulus of the stator in the radial direction and Ra is the
radius of the stator bore.

With this, dynamic displacements (Yd
mw) can be calculated:

Yd
mw = Ys

mw

√(
1− f 2

f 2
m

)
+ 4δ2

m
f 2

f 2
m

(21)

where δm is the damping coefficient, which ranges from 1 to 4%, and fm is the natural
frequency of the circumferential mode of order m of the stator. According to [2], the
damping coefficient is a nonlinear function of the natural frequencies.

Now, radiated power (Wm) is calculated as:

Wm( f ) =
ρ0c S σm( f )|ω Yd

mw|2
2

(22)

where σm is the radiation efficiency factor, ρ0 the air density, c the speed of sound and S the
outer surface of the stator.

The total sound power (Lw) will be the sum of the sound power of each mode m. The
total sound power level associated with a frequency is:

Lw( f ) = 10log10(
W( f )

W0
) (23)

being W0 equal to 10−12 W.
Additionally, the A-weighted sound power level (Lwa) is obtained as:

LwA = 10log10(∑
f

100.1(Lw( f )+wA( f )) (24)

where wA(f) is the A-weighting at frequency f.
All of the above is of application in radial flux motors but, in AFMs, according to [42],

the disk-shaped housing is the main noise radiator instead of the cylinder-shaped housing.
In [60,70], the vibration and noise of an axial flux PMM is studied and calculated analytically.
Both authors validate the analytical calculations with experimental results.
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4.3.2. Numerical Calculations

Numerical calculations involve the estimation of vibration and noise using finite
element method (FEM). In modern times, there are several commercial software tools
available for conducting such calculations. The main advantage of these numerical methods
is their higher accuracy compared to analytical approaches. However, it is important to
note that they typically require more computational time due to their complex nature and
extensive calculations involved. In [71], different types of software are presented and some
references that use these programs are given.

Most commonly, the Modal Superposition Method (MSM) is used to calculate the
vibration level and, based on these results, the boundary element method (BEM) is used to
obtain the noise level. This can be seen in [75] for radial flux induction motors, in [76,77]
for radial flux PMMs, and in [78,79] for AFMs.

According to [42], one of the major drawbacks of AFMs is that a 3D finite element
model is necessary for the calculation of the electromagnetic force, which means a longer
time to obtain the vibration and noise.

4.3.3. Semi-Analytical Calculations

One of the best known semi-analytical calculation methods is Statistical Energy Analy-
sis (SEA). This method consists of dividing a structure into several subsystems and writing
the energy balance equations [80,81]. According to the previous authors, this method is suit-
able for calculation at high frequencies, while discrepancies may appear at low frequencies.
A comparison between BEM and SEA can be found in [2].

Other authors, such as [22,82], combine numerical calculations for modal analysis and
electromagnetic forces, and use analytical calculations to obtain vibration and noise.

5. Noise Reduction Methods

Many researchers have been working on various techniques to reduce the noise
generated by electric motors, since the development of motors that produce low acoustic
noise is becoming increasingly necessary. In [42], the main methods of noise reduction in
electric motors are reviewed. These methods are easy to achieve but, unfortunately, they
result in an output torque reduction. Therefore, a balance between electromagnetic noise
reduction and output torque must be achieved. The main noise reduction methods are
summarized in Table 3 and classified by machine type.

Table 3. Summary of noise reduction methods and machine type.

Method Reference Machine Type

Skew
[83,84] Induction
[85–87] SPM

[88] IPM

Stator notching [89] Induction
[90–92] SPM

Rotor notching [89,93] Induction
[94–96] IPM

Slot opening width [97] Induction
[76] SPM

Magnet shape [56,86] SPM

Flux barrier [98,99] IPM

The skew method is about inclining the slots or magnets. Notching is about making
slots on the inner surface of the stator or the outer surface of the rotor. The “flux barrier”
method tries to put barriers to the flux on the motor rotor by means of slots or holes of
different geometrical shapes.
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5.1. Noise Reduction in Induction Motors

Table 3 summarizes the main noise reduction methods for squirrel cage motors. One of
the main drawbacks of the method presented by [84], with more than one skew step, is that
as those skew stages are increased the output torque of the motor will decrease. The stator
and rotor notching methods reduce noise due to reduced stator and rotor permeability
harmonics [89]. The reduction in power and efficiency due to this practice is very small.
Ref. [97] demonstrates that, contrary to the design standard that recommends decreasing
the stator and rotor slot opening in induction motors in order to reduce noise, a wider slot
opening can reduce noise if chosen correctly.

Apart from the methods presented in Table 3, the influence of using magnetic wedges
in induction motors is analyzed in [100]. Varying the permeability of the wedges, a
reduction of up to 2 dB is achieved. Furthermore, according to [73], other effective ways to
reduce noise are to increase the air gap and increase the stator yoke.

Another method proposed by [101] is the introduction of damper windings in the
stator slots near the air gap, which significantly reduces noise. Moreover, this reduction is
stable even when the motor speed varies. The main disadvantage is that a space is required
in the slot that would otherwise be occupied by the main winding.

5.2. Noise Reduction in PMMs

The main noise reduction methods for PMMs are also summarized in Table 3.
The difference between [86,87] is that the former uses the same magnet to perform the

skew in different stages, whereas the latter uses a zigzag-shaped magnet in a single piece,
which makes fabrication more difficult. Ref. [88] presents the same method but performs it
with an IPM. In [96], rotor notching on the d and q axes is used and [99] combines the rotor
notching and flux barrier methods.

Apart from the methods exposed in Table 3, the authors of [102] propose to increase the
stator yoke size as a noise and vibration reduction method, as in induction motors. In [103],
the effect of the load angle is analyzed, but the authors conclude that it is difficult to find
a general rule for choosing the load angle that minimizes the harmonics of the magnetic
forces. The angle that maximizes the output torque neither maximizes nor minimizes any
harmonics of magnetic forces. As in squirrel cage motors, the authors of [104] have shown
that a damping winding can successfully reduce electromagnetic noise in a PMSM. To
efficiently reduce harmonic components, it is also necessary to use appropriate capacitors;
otherwise, the damping winding could have an amplifying effect on specific harmonics.

According to [105], reducing the total harmonics of the normal force to the stator
tooth reduces the noise. Both the spatial order and the frequency of those harmonics
should be taken into account to find out the harmonics responsible for the vibration and
noise peaks [86].

5.3. Noise Reduction in AFMs

Noise in AFMs has not been as extensively studied as in the two previous machine
topologies, both being radial flux motors. Therefore, there are not many references that
analyze noise reduction techniques in these machines.

One of the few works that studies the noise reduction in AFMs is [106]. It analyzes
different polar arcs and displacement angles, and manages to reduce the noise while
maintaining the motor output torque.

Rotor skew is often used to suppress electromagnetic motor noise, but this method
would degrade the motor output torque. To reduce the motor noise without reducing the
motor output performance, the authors of [107] propose a new rotor structure combining
Halbach matrix and radial unequal width rotor skew.

Furthermore, according to [61], it is observed that when the tangential force is ignored
the overall sound power level (SWL) hardly changes. Since the tangential force leads to
cogging torque and torque ripple, it is the axial electromagnetic force, rather than cogging
torque and torque ripple, the main source of vibration and noise in AFMs.
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However, combinations of poles and slots with low cogging torque and torque ripple
ensure reduced vibration and noise in AFMs. Low levels of cogging torque and torque
ripple can ensure that the amplitude of zero-order axial force remains low, which results in
reduced vibration and noise. This is because the origin of axial and tangential forces with
the same order is identical.

Based on the discussion in Section 3.2.7, authors who propose methods to reduce
cogging torque in AFMs are also indirectly reducing the noise generated by these motors.
One of the most common methods is to change the magnet shape [108–110] to achieve
such cogging reduction. In addition, the authors of [108] also propose the displacement of
the teeth for double stator motors, so that they are not coincident and thus reducing the
cogging torque.

In [111], the influence of the stator slot opening on the cogging torque is analyzed and,
as the width of the slot opening is reduced, the cogging torque is consequently reduced.
It also raises the displacement of the slot opening from the slot center and skewed slot
openings. In [112], in addition to the slot opening, the influence of the stator tooth shape is
also taken into account. Contrary to [111], it exposes that doubling the width of the slot
opening reduces the cogging torque in the parallel-toothed stator.

5.4. Direct Noise Reduction Methods

In the cases where it is not possible to act on the design of the motors, there are
noise reduction methods that act on the motor control or power supply. One of the
most commonly used options in variable frequency drive motors are filters. In [113],
considerations for designing LC filters to reduce the noise of PWM-fed motors are proposed.

Introducing harmonics into the power supply current is another approach. Ref. [114]
proposes to inject a small current with controlled amplitude, frequency and phase, so that
this current generates forces that oppose those forces that contribute to noise generation.
In the case of AFMs, according to [115], it is also possible to reduce cogging torque (and,
consequently, noise) by injecting current harmonics.

One of the simplest methods to reduce noise is usually to increase the switching
frequency of the frequency converter but, according to [116], no noise benefits are noticeable
for switching frequencies greater than 2 kHz. In [117], a set of rules for the choice of power
supply switching frequency is given.

6. Noise Measurement

Different standards regulate the maximum permissible noise levels depending on the
type of machine, and also provide guidelines for carrying out measurements. The most
representative would be the following, as explained in Section 2: IEC 60034-9, IEC 60034-14,
ISO 1680, and ISO 3744.

Measurements of sound pressure levels in the presence of background noise should be
performed in semi-anechoic chambers to prevent possible interference. In cases where this
is not feasible and background noise is present, corrections must be made to the measured
sound pressure level. If the sound pressure level is 10 dB higher than the background
noise, the measurement error caused by the background noise is less than 0.4 dB. However,
if the sound pressure level is less than 5 dB higher than the background noise, accurate
measurements cannot be obtained [2].

To analyze the different vibrations of a structure at varying velocities, a spectrogram
representation is often used. A spectrogram is a 2D representation of three parameters [13]:

• y-axis: time, rotational speed, or supply frequency of the machine.
• x-axis: vibration frequency.
• z-axis: magnitude of vibration (displacement, velocity, or acceleration), in radial or

tangential direction.

In a spectrogram, the magnitude of vibration is shown as a color scale, typically
ranging from blue for the lowest value to red for the highest value. Some vertical bands
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usually appear in spectrograms and indicate the natural frequencies of the machine [13].
An example of these natural frequencies in a spectrogram is shown in Figure 4:
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7. Conclusions

This article reviews the current state of the art of noise in electric motors. First, a
brief introduction of noise is given, introducing the decibel unit, the audible spectrum, the
acoustic pressure and power, and the main noise-related standards.

Then, the sources of electromagnetic noise and vibration in electrical machines, which
include aerodynamic, mechanical and electromagnetic factors, are presented. One com-
monly overlooked factor in electromagnetic considerations is the neglect of the tangential
component of electromagnetic force. It is crucial to verify the frequency of this electromag-
netic force to prevent it from aligning with the natural frequency of the stator. This analysis
is performed with radial and axial flux machine topologies. Additionally, the influence of
power supply and winding configuration is assessed, with double layer windings proving
more effective than single layer windings.

Different methods to calculate electromagnetic force, natural frequencies and noise
are presented such as analytical, numerical and semi-analytical. Two analytical methods
for calculating electromagnetic forces have been analyzed, MT and the VWP. Interestingly,
both methods obtain very similar results, indicating their reliability.

Many noise reduction techniques for induction motors, PMMs and AFMs are presented
such as skewing, stator and rotor notching or slot opening width modification. In the case
of the AFM topology, it has been concluded that reducing cogging torque not only leads to
a decrease in torque fluctuations, but also contributes to a reduction in noise generation.
Finally, noise measurement standards and techniques are presented. The main objective of
this work is to provide a complete guide for the design and calculation of low-noise motors.
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