An Overview on Reversible Sea Return Electrodes for HVDC Links
Abstract
:1. Introduction
2. Types of Electrodes
2.1. Sea Electrodes
- Graphite electrodes
- 2.
- Titanium/titanium mesh-shaped electrodes
- 3.
- Silicon–Chromium–Iron (SiCrFe) electrodes.
2.2. Pond Electrodes
Properties of the Materials for Reversible Pond Electrodes
- High-Silicon–Chromium–Iron (HSCI) electrodes
- 2.
- Graphite electrodes
- 3.
- Magnetite electrodes
2.3. Shore Electrodes
2.4. Electrodes Comparison
3. Existing Installations
3.1. HVDC Plants with Marine Reversbile Electrodes in Europe
3.1.1. Fenno-Skan 1 and Fenno-Skan 2
- Finnish electrode
- Swedish electrode
3.1.2. Skagerrak 1, 2, 3 and 4
- Danish electrode
- Norwegian electrode
3.1.3. Konti-Skan 1 and 2
- Danish electrode
- Swedish electrode
3.1.4. Gotland II and III
- Mainland electrode
- Gotland Island electrode
3.2. HVDC Plants with Marine Reversbile Electrodes in Oceania
HVDC Inter-Island 2–3
- South Island electrode
- North Island electrode
3.3. HVDC Plants with Marine Reversbile Electrodes in Asia
Haneam-Cheju
- Peninsula electrode
- Island electrode
3.4. HVDC Plants with Marine Reversbile Electrodes in North America
3.4.1. Pacific DC Intertie
- Oregon electrode
- California electrode
3.4.2. Labrador Island Link
- Mainland electrode
- Island electrode
3.4.3. Maritime Link
- Newfoundland electrode
- Nova Scotia electrode
4. Environmental Issues and Interactions with Infrastructures
4.1. Impact on Infrastructures
4.1.1. Impact on Non-Insulated Metallic Objects
4.1.2. Impact on Insulated Metallic Objects
4.1.3. Impact on AC Grids
4.2. Impact on the Environment
4.2.1. Chemical Products
4.2.2. Electric Field
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rehman, B.; Rehman, A.U.; Khan, W.A.; Sami, I.; Ro, J.-S. Operation and Challenges of Multi-Infeed Lcc–Hvdc System: Commutation Failure, AC/DC Power Flow, and Voltage Stability. Appl. Sci. 2021, 11, 8637. [Google Scholar] [CrossRef]
- Flourentzou, N.; Agelidis, V.G.; Demetriades, G.D. VSC-Based HVDC Power Transmission Systems: An Overview. IEEE Trans. Power Electron. 2009, 24, 592–602. [Google Scholar] [CrossRef]
- Bahrman, M.P.; Johnson, B.K. The ABCs of HVDC Transmission Technologies. IEEE Power Energy Mag. 2007, 5, 32–44. [Google Scholar] [CrossRef]
- Mazzanti, G.; Marzinotto, M. Extruded Cables for High-Voltage Direct-Current Transmission: Advances in Research and Development; Wiley-IEEE Press: Hoboken, NJ, USA, 2013. [Google Scholar]
- Arrillaga, J.; Arrillaga, J. High Voltage Direct Current Transmission; IET: London, UK, 1998; Volume 29. [Google Scholar]
- Sanchez Garciarivas, R.; Rasilla Gonzalez, D.; Navarro, J.A.; Soriano, L.A.; Rubio, J.D.J.; Gomez, M.V.; Garcia, V.; Pacheco, J. Vsc-Hvdc and Its Applications for Black Start Restoration Processes. Appl. Sci. 2021, 11, 5648. [Google Scholar] [CrossRef]
- CIGRE. WG B4.61 General Guidelines for HVDC Electrode Design; CIGRE: Paris, France, 2017. [Google Scholar]
- DL/T 437-2012 Technical Guide of HVDC Earth Electrode System. 2012. Available online: https://www.chinesestandard.net/PDF.aspx/DLT437-2012 (accessed on 1 June 2023).
- ABB Skagerrak. Available online: https://library.e.abb.com/public/59091e6efb69419dbe1ff4a6f9adac4e/Skagerrak%20The%20Next%20Generation.pdf (accessed on 1 June 2023).
- Marzinotto, M.; Mazzanti, G.; Nervi, M. Ground/Sea Return with Electrode Systems for HVDC Transmission. Int. J. Electr. Power Energy Syst. 2018, 100, 222–230. [Google Scholar] [CrossRef]
- Iossel, Y.; Kazarov, G.; Koski, V.; Poliakov, A.; Gebhardt, H. Sea Electrode for a High Voltage Direct Current Transmission System. U.S. Patent 6242688B1, 2001. Available online: https://patents.google.com/patent/US6242688B1/en?oq=U.S.+Patent+6242688B1 (accessed on 1 June 2023).
- Wiktorsson, H.; Svensson, J.; Mellgren, G.; Ullman, A. Apparatus and Method for Transmission of High Voltage Direct Current 1995. Available online: https://patents.google.com/patent/US20150333645/pt-pt (accessed on 1 June 2023).
- Ullman, A.; Bergman, L.-E.; Bohlin, S.-E.; Heiskanen, P. Electrode 1989. Available online: https://patents.google.com/patent/WO1989012334A1/en?oq=A)WO+89%2f12334 (accessed on 1 June 2023).
- Ullman, A.; Carlsson, H.; Kroon, M. Anchor for Underwater Electrodes. Available online: https://data.epo.org/publication-server/document?iDocId=1294553&iFormat=0 (accessed on 1 June 2023).
- Molfino, P.; Nervi, M.; Rossi, M.; Malgarotti, S.; Odasso, A. Concept Design and Development of a Module for the Construction of Reversible HVDC Submarine Deep-Water Sea Electrodes. IEEE Trans. Power Deliv. 2016, 32, 1682–1687. [Google Scholar] [CrossRef]
- Anotec Industries Ltd. Publication HSCI Anode Life, Consumption, Utilization and Limitations; Anotec Industries: Langley, BC, Canada, 2005. [Google Scholar]
- Tykeson, K.; Nyman, A.; Carlsson, H. Environmental and Geographical Aspects in HVDC Electrode Design. IEEE Trans. Power Deliv. 1996, 11, 1948–1954. [Google Scholar] [CrossRef]
- ABB Corrosion Testing of Silicon Iron Electrodes Operating as Anodes and Cathodes.
- Cathodic Protection Co., Ltd Magnetite Anodes Data Sheet 2.3.1.
- Cathodic Protection Co., Ltd MMO Tubular Anode Data Sheet 2.2.1.
- Dell, D.G. The North Island Sea Electrode. N. Z. Eng. 1965, 20, 213–222. [Google Scholar]
- Andersen, E.; Neilsen, N.R. Anodic Earth Electrode for the Konti Skan Hvdc Link. Direct Curr. 1966, 11, 54–56. [Google Scholar]
- ABB Fenno-Skan. Available online: http://www.abb.com/industries/ap/db0003db004333/3acfe6c11d602c2bc125774a0030b2b4.aspx (accessed on 1 June 2023).
- Nyman, A.; Jaaskelainen, K.; Vaitomaa, M.; Jansson, B.; Danielsson, K.-G. The Fenno-Skan Hvdc Link Commissioning. IEEE Trans. Power Deliv. 1994, 9, 1–9. [Google Scholar] [CrossRef]
- ENTSO-E. Nordic and Baltic HVDC Utilization and Availability Statistics; European Network of Transmission System Operators for Electricity: Brussels, Belgium, 2016. [Google Scholar]
- CIGRÉ Working Group 14.2 Summary of Existing Ground Electrode Designs. 1998.
- Ingemansson, T.D.; Kiiveri, T.; Nurminen, H.; Pääjärvi, B.L.; Danielsson, K.G. New Fenno-Skan 2 HVDC Pole with an Upgrade of the Existing Fenno-Skan 1 Pole; CIGRE: Paris, France, 2012. [Google Scholar]
- Hagloef, L.; Hammarlund, B. Skagerrak Transmission-the World’s Longest HVDC Submarine Cable Link. ASEA (Allm. Sven. Elektr. AB) J. 1980, 53, 3–11. [Google Scholar]
- HITACHI Energy Konti-Skan. Available online: https://www.hitachienergy.com/it/it/about-us/case-studies/konti-skan (accessed on 1 June 2023).
- Sorensen, P.L.; Franzén, B.; Wheeler, J.D.; Bonchang, R.E.; Barker, C.D.; Preedy, R.M.; Baker, M.H. Konti-Skan 1 HVDC Pole Replacement. In CIGRÉ Session; CIGRE: Paris, France, 2004; Volume 4. [Google Scholar]
- Axelsson, U.; Holm, A.; Liljegren, C.; Aberg, M.; Eriksson, K.; Tollerz, O. The Gotland HVDC Light Project-Experiences from Trial and Commercial Operation. In Proceedings of the 16th International Conference and Exhibition on Electricity Distribution, Part 1: Contributions, Amsterdam, The Netherlands, 18–21 June 2001; CIRED (IEE Conf. Publ No. 482). IET: London, UK, 2001; Volume 1, p. 5. [Google Scholar]
- HITACHI Energy Gotland. Available online: https://www.hitachienergy.com/fr/fr/about-us/customer-success-stories/gotland-hvdc-light (accessed on 1 June 2023).
- TransPower HVDC Grid Upgrade Plan, Volume 1, P10. 2012. Available online: https://www.transpower.co.nz/sites/default/files/plain-page/attachments/hvdc-gup-vol-I-may-2008.pdf (accessed on 1 June 2023).
- Teeuwsen, S.P.; Love, G.; Sherry, R. 1400 MW New Zealand HVDC Upgrade: Introducing Power Modulation Controls and Round Power Mode. In Proceedings of the 2013 IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 1–5. [Google Scholar]
- Sutton, S.J.; Lewin, P.L.; Swingler, S.G. Review of Global HVDC Subsea Cable Projects and the Application of Sea Electrodes. Int. J. Electr. Power Energy Syst. 2017, 87, 121–135. [Google Scholar] [CrossRef]
- Bong-Eon, K.; Gil-Jo, J.; Ik-Hee, M.; Seung-Kyoo, K. Introduction of Haenam-Jeju HVDC System. In Proceedings of the ISIE 2001, 2001 IEEE International Symposium on Industrial Electronics Proceedings, (Cat. No. 01TH8570), Pusan, South Korea, 12–16 June 2001; IEEE: Piscataway, NJ, USA, 2001; Volume 2, pp. 1006–1010. [Google Scholar]
- Bonneville Power Administration. The Pacific Intertie Scheme; Bonneville Power Administration: Portland, OR, USA, 2009. [Google Scholar]
- Litzenberger, W.; Lips, P. Pacific HVDC Intertie. IEEE Power Energy Mag. 2007, 5, 45–51. [Google Scholar] [CrossRef]
- Nalcor Energy. Labrador-Island Transmission Link; Nalcor Energy: St. John’s, NL, Canada, 2009. [Google Scholar]
- Link, L.-I.T.; Energy, N. Environmental impact statement guidelines and scoping document. 2011. [Google Scholar]
- Vestergaard, O.; Lundberg, P. Maritime Link the First Bipolar VSC HVDC with Overhead Line. In Proceedings of the 2019 AEIT HVDC International Conference (AEIT HVDC), Florence, Italy, 9–10 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [Google Scholar]
- Li, X.; Li, C.; Bai, F.; Cao, F. Study on the Interference Distribution Characteristics of the HVDC Grounding Electrode Current with Buried Pipelines Based on MoM and FEM. Appl. Sci. 2022, 12, 4433. [Google Scholar] [CrossRef]
- Wu, Y.; Cai, H. Discussion on the Safe Distance Between HVDC Electrode and Pipeline. IEEE Access 2023, 11, 28090–28102. [Google Scholar] [CrossRef]
- Rusck, S. HVDC Power Transmission: Problems Relating to Earth Return. Direct Curr. 1962, 11, 290–300. [Google Scholar]
- Kimbark, E.W. Direct Current Transmission; Wiley: Hoboken, NJ, USA, 1971; Volume 1. [Google Scholar]
- Gleadow, J.C.; Bisewski, B.J.; Stewart, M.C. DC Ground Currents and Transformer Saturation on the New Zealand HVDC Link. In Proc. CIGRE; CIGRE: Paris, France, 1993. [Google Scholar]
- Zeng, R.; Yu, Z.; He, J.; Zhang, B.; Niu, B. Study on Restraining DC Neutral Current of Transformer during HVDC Monopolar Operation. IEEE Trans. Power Deliv. 2011, 26, 2785–2791. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, Z.; Ma, Y. Research on DC Magnetic Bias of Power Transformer. Procedia Eng. 2012, 29, 452–455. [Google Scholar] [CrossRef] [Green Version]
- Marzinotto, M.; Molfino, P.; Nervi, M. On the Measurement of Fields Produced by Sea Return Electrodes for HVDC Transmission. In Proceedings of the 2020 International Symposium on Electromagnetic Compatibility-EMC EUROPE, Online, 23–25 September 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6. [Google Scholar]
- Faugstad, K.; O’Brien, M.; Rashwan, M.; Smith, M.; Zavahir, M. An Environmental Survey on the Operation and Impact of HVDC Electrodes; CIGRÉ: Osaka, Japan, 2007. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brignone, M.; Marzinotto, M.; Mestriner, D.; Nervi, M.; Molfino, P. An Overview on Reversible Sea Return Electrodes for HVDC Links. Energies 2023, 16, 5349. https://doi.org/10.3390/en16145349
Brignone M, Marzinotto M, Mestriner D, Nervi M, Molfino P. An Overview on Reversible Sea Return Electrodes for HVDC Links. Energies. 2023; 16(14):5349. https://doi.org/10.3390/en16145349
Chicago/Turabian StyleBrignone, Massimo, Massimo Marzinotto, Daniele Mestriner, Mario Nervi, and Paolo Molfino. 2023. "An Overview on Reversible Sea Return Electrodes for HVDC Links" Energies 16, no. 14: 5349. https://doi.org/10.3390/en16145349
APA StyleBrignone, M., Marzinotto, M., Mestriner, D., Nervi, M., & Molfino, P. (2023). An Overview on Reversible Sea Return Electrodes for HVDC Links. Energies, 16(14), 5349. https://doi.org/10.3390/en16145349