Load Forecasting for the Laser Metal Processing Industry Using VMD and Hybrid Deep Learning Models
Abstract
:1. Introduction
1.1. Background
1.2. Related Work and Contribution
- The inclusion of the time factor as a crucial component that influences load forecasting, which allows for the differentiation of each data point and the formation of numerous sub-datasets based on various conditions.
- The implementation of several deep learning models for short-term load forecasting for one hour ahead, considering different conditions.
- The comparison and assessment of the performance of the deep learning models for load forecasting across diverse sub-datasets.
2. Deep Learning Description
2.1. Multilayer Perceptron (MLP)
2.2. Recurrent Neural Network (RNN)
2.3. Convolutional Neural Network (CNN)
2.4. Hybrid Deep Learning Model
3. Description of Proposed Methodology
3.1. Data Collection
3.2. Data Preprocessing
3.2.1. Data Normalization
3.2.2. Dataset Splitting
3.2.3. Sliding Window Approach
3.3. Variational Mode Decomposition (VMD)
3.4. Building Forecasting Model
3.5. Model Evaluation
4. Dataset Description
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zielińska-Sitkiewicz, M.; Chrzanowska, M.; Furmańczyk, K.; Paczutkowski, K. Analysis of Electricity Consumption in Poland Using Prediction Models and Neural Networks. Energies 2021, 14, 6619. [Google Scholar] [CrossRef]
- Chow, J.H.; Wu, F.F.; Momoh, J.A. Applied Mathematics for Restructured Electric Power Systems; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–9. [Google Scholar] [CrossRef]
- Szymańska, E.J.; Mroczek, R. Energy Intensity of Food Industry Production in Poland in the Process of Energy Transformation. Energies 2023, 16, 1843. [Google Scholar] [CrossRef]
- Lahouar, A.; Ben Hadj Slama, J. Day-Ahead Load Forecast Using Random Forest and Expert Input Selection. Energy Convers. Manag. 2015, 103, 1040–1051. [Google Scholar] [CrossRef]
- Li, C.; Hu, R.; Hsu, C.Y.; Han, Y. Short-Term Power Load Forecasting Based on Feature Fusion of Parallel LSTM-CNN. In Proceedings of the 2022 IEEE 4th International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 29–31 July 2022; pp. 448–452. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, J.; Infield, D.; Liu, Y.; Lien, F. sang Short-Term Forecasting and Uncertainty Analysis of Wind Turbine Power Based on Long Short-Term Memory Network and Gaussian Mixture Model. Appl. Energy 2019, 241, 229–244. [Google Scholar] [CrossRef] [Green Version]
- Tarmanini, C.; Sarma, N.; Gezegin, C.; Ozgonenel, O. Short Term Load Forecasting Based on ARIMA and ANN Approaches. Energy Rep. 2023, 9, 550–557. [Google Scholar] [CrossRef]
- Aggarwal, C.C. Neural Networks and Deep Learning; Determination Press: San Francisco, CA, USA, 2018; ISBN 9783319944623. [Google Scholar]
- Kubat, M. Neural Networks: A Comprehensive Foundation by Simon Haykin, Macmillan, 1994, ISBN 0-02-352781-7. Knowl. Eng. Rev. 1999, 13, 409–412. [Google Scholar] [CrossRef]
- Yu, C.; Li, Y.; Bao, Y.; Tang, H.; Zhai, G. A Novel Framework for Wind Speed Prediction Based on Recurrent Neural Networks and Support Vector Machine. Energy Convers. Manag. 2018, 178, 137–145. [Google Scholar] [CrossRef]
- Aslam, M.; Lee, J.M.; Kim, H.S.; Lee, S.J.; Hong, S. Deep Learning Models for Long-Term Solar Radiation Forecasting Considering Microgrid Installation: A Comparative Study. Energies 2019, 13, 147. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Wang, J.; Zhang, C.; Wu, T.; Wang, H.; Wang, Y. LS-LSTM-AE: Power Load Forecasting via Long-Short Series Features and LSTM-Autoencoder. Energy Rep. 2022, 8, 596–603. [Google Scholar] [CrossRef]
- Cecaj, A.; Lippi, M.; Mamei, M.; Zambonelli, F. Comparing Deep Learning and Statistical Methods in Forecasting Crowd Distribution from Aggregated Mobile Phone Data. Appl. Sci. 2020, 10, 6580. [Google Scholar] [CrossRef]
- Aksan, F.; Li, Y.; Suresh, V.; Janik, P. CNN-LSTM vs. LSTM-CNN to Predict Power Flow Direction: A Case Study of the High-Voltage Subnet of Northeast Germany. Sensors 2023, 23, 901. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Lee, B.S.; Kim, C.H. A Study on the Development of Long-Term Hybrid Electrical Load Forecasting Model Based on MLP and Statistics Using Massive Actual Data Considering Field Applications. Electr. Power Syst. Res. 2023, 221, 109415. [Google Scholar] [CrossRef]
- Saad, Z.; Hazirah, A.J.N.; Suziana, A.; Azhar, M.A.A.; Yaacob, Z.; Ahmad, F.; Yusnita, M.A. Short-Term Load Forecasting of 415V, 11kV and 33kV Electrical Systems Using MLP Network. In Proceedings of the 2017 International Conference on Robotics, Automation and Sciences (ICORAS), Melaka, Malaysia, 27–29 November 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Fekri, M.N.; Patel, H.; Grolinger, K.; Sharma, V. Deep Learning for Load Forecasting with Smart Meter Data: Online Adaptive Recurrent Neural Network. Appl. Energy 2021, 282, 116177. [Google Scholar] [CrossRef]
- Yahya, M.A.; Hadi, S.P.; Putranto, L.M. Short-Term Electric Load Forecasting Using Recurrent Neural Network. In Proceedings of the 2018 4th International Conference on Science and Technology (ICST), Yogyakarta, Indonesia, 7–8 August 2018; Volume 1, pp. 1–6. [Google Scholar]
- Mujeeb, S.; Javaid, N.; Akbar, M.; Khalid, R.; Nazeer, O.; Khan, M. Big Data Analytics for Price and Load Forecasting in Smart Grids; Springer International Publishing: Cham, Switzerland, 2019; Volume 25, ISBN 9783030026134. [Google Scholar]
- Bashir, T.; Haoyong, C.; Tahir, M.F.; Liqiang, Z. Short Term Electricity Load Forecasting Using Hybrid Prophet-LSTM Model Optimized by BPNN. Energy Rep. 2022, 8, 1678–1686. [Google Scholar] [CrossRef]
- Li, D.; Sun, G.; Miao, S.; Gu, Y.; Zhang, Y.; He, S. A Short-Term Electric Load Forecast Method Based on Improved Sequence-to-Sequence GRU with Adaptive Temporal Dependence. Int. J. Electr. Power Energy Syst. 2022, 137, 107627. [Google Scholar] [CrossRef]
- Inteha, A.; Nahid-Al-Masood. A GRU-GA Hybrid Model Based Technique for Short Term Electrical Load Forecasting. In Proceedings of the 2021 2nd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), Dhaka, Bangladesh, 5–7 January 2021; pp. 515–519. [Google Scholar] [CrossRef]
- Kaligambe, A.; Fujita, G. Short-Term Load Forecasting for Commercial Buildings Using 1D Convolutional Neural Networks. In Proceedings of the 2020 IEEE PES/IAS PowerAfrica, Nairobi, Kenya, 25–28 August 2020; pp. 20–24. [Google Scholar] [CrossRef]
- Zhang, G.; Bai, X.; Wang, Y. Short-Time Multi-Energy Load Forecasting Method Based on CNN-Seq2Seq Model with Attention Mechanism. Mach. Learn. Appl. 2021, 5, 100064. [Google Scholar] [CrossRef]
- Rafi, S.H.; Al-Masood, N.; Deeba, S.R.; Hossain, E. A Short-Term Load Forecasting Method Using Integrated CNN and LSTM Network. IEEE Access 2021, 9, 32436–32448. [Google Scholar] [CrossRef]
- Sajjad, M.; Khan, Z.A.; Ullah, A.; Hussain, T.; Ullah, W.; Lee, M.Y.; Baik, S.W. A Novel CNN-GRU-Based Hybrid Approach for Short-Term Residential Load Forecasting. IEEE Access 2020, 8, 143759–143768. [Google Scholar] [CrossRef]
- Wilde, P.D. Neural Network Models; Springer: London, UK, 1997; ISBN 978-1-84628-614-8. [Google Scholar]
- Haykin, S. Neural Networks and Learning Machines, 3rd ed.; Pearson: London, UK, 2008; ISBN 978-0131471399. [Google Scholar]
- Haykin, S. Neural Network a Comprehensive Foundation; Macmillan: New York, NY, USA, 1994; Volume 2, ISBN 9780132265560. [Google Scholar]
- Fine, T.L. Feedforward Neural Network Methodology, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1999; ISBN 978-0-387-98745-3. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: www.deeplearningbook.org (accessed on 8 July 2023).
- Géron, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow, 1st ed.; Nicole, T., Ed.; O’Reilly Media, Inc.: Sevastopol, CA, USA, 2017. [Google Scholar]
- Wang, Y.; Zou, R.; Liu, F.; Zhang, L.; Liu, Q. A Review of Wind Speed and Wind Power Forecasting with Deep Neural Networks. Appl. Energy 2021, 304, 117766. [Google Scholar] [CrossRef]
- Hochreiter, S. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Kumari, P.; Toshniwal, D. Deep Learning Models for Solar Irradiance Forecasting: A Comprehensive Review. J. Clean. Prod. 2021, 318, 128566. [Google Scholar] [CrossRef]
- Aslam, S.; Herodotou, H.; Mohsin, S.M.; Javaid, N.; Ashraf, N.; Aslam, S. A Survey on Deep Learning Methods for Power Load and Renewable Energy Forecasting in Smart Microgrids. Renew. Sustain. Energy Rev. 2021, 144, 110992. [Google Scholar] [CrossRef]
- Ghosh, A.; Sufian, A.; Sultana, F.; Chakrabarti, A.; De, D. Fundamental Concepts of Convolutional Neural Network; Springer: Berlin/Heidelberg, Germany, 2019; Volume 172, ISBN 9783030326449. [Google Scholar]
- Suresh, V.; Janik, P.; Rezmer, J.; Leonowicz, Z. Forecasting Solar PV Output Using Convolutional Neural Networks with a Sliding Window Algorithm. Energies 2020, 13, 723. [Google Scholar] [CrossRef] [Green Version]
- Bhanja, S.; Das, A. Impact of Data Normalization on Deep Neural Network for Time Series Forecasting. arXiv 2018, arXiv:1812.05519. [Google Scholar]
- Aksan, F.; Li, Y.; Suresh, V. Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal. Energies 2023, 16, 5014. [Google Scholar] [CrossRef]
- Wang, K.; Qi, X.; Liu, H. A Comparison of Day-Ahead Photovoltaic Power Forecasting Models Based on Deep Learning Neural Network. Appl. Energy 2019, 251, 113315. [Google Scholar] [CrossRef]
- Wang, K.; Qi, X.; Liu, H. Photovoltaic Power Forecasting Based LSTM-Convolutional Network. Energy 2019, 189, 116225. [Google Scholar] [CrossRef]
- Yu, P.; Fang, J.; Xu, Y.; Shi, Q. Application of Variational Mode Decomposition and Deep Learning in Short-Term Power Load Forecasting. J. Phys. Conf. Ser. 2021, 1883, 012128. [Google Scholar] [CrossRef]
- Dragomiretskiy, K.; Zosso, D. Variational Mode Decomposition. IEEE Trans. Signal Process. 2014, 62, 531–544. [Google Scholar] [CrossRef]
- Jing, X.; Luo, J.; Zhang, S.; Wei, N. Runoff Forecasting Model Based on Variational Mode Decomposition and Artificial Neural Networks. Math. Biosci. Eng. 2022, 19, 1633–1648. [Google Scholar] [CrossRef]
- Suresh, V.; Aksan, F.; Janik, P.; Sikorski, T.; Sri Revathi, B. Probabilistic LSTM-Autoencoder Based Hour-Ahead Solar Power Forecasting Model for Intra-Day Electricity Market Participation: A Polish Case Study. IEEE Access 2022, 10, 110628–110638. [Google Scholar] [CrossRef]
- Farsi, B.; Amayri, M.; Bouguila, N.; Eicker, U. On Short-Term Load Forecasting Using Machine Learning Techniques and a Novel Parallel Deep LSTM-CNN Approach. IEEE Access 2021, 9, 31191–31212. [Google Scholar] [CrossRef]
- Velasco, L.C.P.; Arnejo, K.A.S.; Macarat, J.S.S. Performance Analysis of Artificial Neural Network Models for Hour-Ahead Electric Load Forecasting. Procedia Comput. Sci. 2021, 197, 16–24. [Google Scholar] [CrossRef]
- Carvalho, V.R.; Moraes, M.F.D.; Braga, A.P.; Mendes, E.M.A.M. Evaluating Five Different Adaptive Decomposition Methods for EEG Signal Seizure Detection and Classification. Biomed. Signal Process. Control 2020, 62, 102073. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Q.; Zhu, J. Data-Driven Wind Speed Forecasting Using Deep Feature Extraction and LSTM. IET Renew. Power Gener. 2019, 13, 2062–2069. [Google Scholar] [CrossRef]
- Jahangir, H.; Aliakbar, M.; Alhameli, F.; Mazouz, A.; Ahmadian, A.; Elkamel, A. Short-Term Wind Speed Forecasting Framework Based on Stacked Denoising Auto-Encoders with Rough ANN. Sustain. Energy Technol. Assess. 2020, 38, 100601. [Google Scholar] [CrossRef]
- Wang, F.; Xuan, Z.; Zhen, Z.; Li, K.; Wang, T.; Shi, M. A Day-Ahead PV Power Forecasting Method Based on LSTM-RNN Model and Time Correlation Modification under Partial Daily Pattern Prediction Framework. Energy Convers. Manag. 2020, 212, 112766. [Google Scholar] [CrossRef]
- Fakhry, M. Variational Mode Decomposition and a Light CNN-LSTM Model for Classification of Heart Sound Signals. 2023. Available online: https://www.researchgate.net/profile/Mahmoud-Fakhry-2/publication/369439477_Variational_Mode_Decomposition_and_a_Light_CNN-LSTM_Model_for_Classification_of_Heart_Sound_Signals/links/641b355192cfd54f842063af/Variational-Mode-Decomposition-and-a-Light-CNN-LSTM-Model-for-Classification-of-Heart-Sound-Signals.pdf (accessed on 8 July 2023).
- Zhao, Z.; Yun, S.; Jia, L.; Guo, J.; Meng, Y.; He, N.; Li, X.; Shi, J.; Yang, L. Hybrid VMD-CNN-GRU-Based Model for Short-Term Forecasting of Wind Power Considering Spatio-Temporal Features. Eng. Appl. Artif. Intell. 2023, 121, 105982. [Google Scholar] [CrossRef]
- Liu, J.; Huang, X.; Li, Q.; Chen, Z.; Liu, G.; Tai, Y. Hourly Stepwise Forecasting for Solar Irradiance Using Integrated Hybrid Models CNN-LSTM-MLP Combined with Error Correction and VMD. Energy Convers. Manag. 2023, 280, 116804. [Google Scholar] [CrossRef]
- Gao, X.; Guo, W.; Mei, C.; Sha, J.; Guo, Y.; Sun, H. ScienceDirect Short-Term Wind Power Forecasting Based on SSA-VMD-LSTM. Energy Rep. 2023, 9, 335–344. [Google Scholar] [CrossRef]
Forecasting Models | Model Structure |
---|---|
MLP | FC layer(100 neurons, activation = ‘relu’) + FC layer(50 neurons, activation = ‘relu’) |
LSTM | 2 LSTM layers (15 neurons + activation = ‘relu’) + FC layer (50 neurons + activation = ‘relu’) |
GRU | 1 GRU layers (15 neurons) + 1 GRU layers (15 neurons, activation = ‘relu’) |
CNN | 2 Conv1D layers (32 filters + 3 filter size + activation = ‘relu’) + MaxPooling1D (2 pooling size) + Flatten layer |
CNN-LSTM | 2 Conv1D layers (32 filters + 3 filter size +activation = ‘relu’) + MaxPooling1D (2 pooling size) + Flatten layer + 1 LSTM layers (15 neurons + activation = ‘relu’) |
CNN-GRU | 2 Conv1D layers (32 filters + 3 filter size + activation = ‘relu’) + MaxPooling1D (2 pooling size) + Flatten layer + 1 GRU layers (15 neurons + activation = ‘relu’) |
Year | Condition | Number of Data Point | Min [kW] | Mean [kW] | Max [kW] |
---|---|---|---|---|---|
2019 | Winter | 2136 | 4.86 | 89.6 | 251.34 |
Spring | 2207 | 4.71 | 73.29 | 226.77 | |
Summer | 2208 | 4.5 | 67.06 | 184.62 | |
autumn | 2185 | 4.32 | 82.77 | 262.41 | |
Working day | 6240 | 4.86 | 90.70 | 262.41 | |
weekend | 2496 | 4.32 | 46.53 | 170.31 | |
2020 | Winter | 2160 | 8.07 | 113.61 | 364.89 |
Spring | 2207 | 4.32 | 79.16 | 255.39 | |
Summer | 2208 | 4.53 | 77.26 | 176.34 | |
autumn | 2185 | 6.57 | 101.07 | 339.24 | |
Working day | 6264 | 5.16 | 112.46 | 364.89 | |
weekend | 2496 | 4.32 | 42.91 | 273.15 | |
2021 | Winter | 2160 | 10.38 | 157.35 | 453.9 |
Spring | 2207 | 16.32 | 129.7 | 370.92 | |
Summer | 2208 | 19.08 | 116.31 | 285.69 | |
autumn | 2184 | 15.36 | 141.01 | 361.95 | |
Working day | 6264 | 17.22 | 159.92 | 453.9 | |
weekend | 2495 | 10.38 | 75.83 | 265.02 |
DL Models | Training Time [s] | |||||
---|---|---|---|---|---|---|
Winter | Spring | Summer | Autumn | Working Day | Weekend | |
MLP | 29.143 | 28.093 | 25.169 | 25.983 | 78.615 | 36.82 |
LSTM | 92.823 | 85.917 | 85.456 | 87.381 | 254.36 | 107.855 |
GRU | 108.459 | 99.565 | 98.665 | 102.724 | 319.193 | 135.598 |
CNN | 31.152 | 28.723 | 27.927 | 29.089 | 93.256 | 44.678 |
CNN-LSTM | 43.686 | 40.219 | 40.292 | 41.237 | 137.742 | 65.437 |
CNN-GRU | 38.539 | 41.394 | 40.32 | 42.14 | 203.916 | 83.274 |
VMD–CNN–LSTM | 77.465 | 84.121 | 84.269 | 84.12 | 204.108 | 68.36 |
VMD–CNN–GRU | 84.472 | 84.259 | 60.182 | 59.409 | 178.587 | 84.396 |
Season Condition | Metric Evaluation | Forecasting Model | |||||||
---|---|---|---|---|---|---|---|---|---|
Baseline | Proposed | ||||||||
MLP | LSTM | GRU | CNN | CNN-LSTM | CNN-GRU | VMD–CNN–LSTM | VMD–CNN–GRU | ||
Winter | RMSE | 54.194 | 53.71 | 50.229 | 52.069 | 54.978 | 51.63 | 16.805 | 21.787 |
MAE | 37.169 | 36.188 | 34.03 | 35.319 | 38.789 | 35.733 | 12.634 | 16.303 | |
MAPE | 0.285 | 0.273 | 0.287 | 0.285 | 0.31 | 0.307 | 0.12 | 0.153 | |
Spring | RMSE | 34.187 | 36.139 | 34.939 | 33.509 | 33.365 | 32.489 | 4.876 | 4.894 |
MAE | 22.771 | 23.737 | 22.502 | 22.482 | 21.575 | 21.428 | 3.824 | 3.826 | |
MAPE | 0.225 | 0.211 | 0.21 | 0.226 | 0.209 | 0.21 | 0.04 | 0.041 | |
Summer | RMSE | 39.063 | 39.106 | 37.62 | 38.285 | 40.215 | 39.054 | 14.607 | 14.389 |
MAE | 25.442 | 25.333 | 24.543 | 25.33 | 26.81 | 25.579 | 11.444 | 11.376 | |
MAPE | 0.198 | 0.197 | 0.202 | 0.207 | 0.209 | 0.203 | 0.116 | 0.116 | |
Autumn | RMSE | 47.122 | 48.504 | 45.608 | 46.376 | 46.97 | 48.372 | 12.574 | 12.598 |
MAE | 31.762 | 32.519 | 30.577 | 30.873 | 32.544 | 33.151 | 10.272 | 10.31 | |
MAPE | 0.257 | 0.239 | 0.264 | 0.245 | 0.268 | 0.26 | 0.105 | 0.105 | |
Working day | RMSE | 49.804 | 48.423 | 49.575 | 51.609 | 51.26 | 49.433 | 12.481 | 12.115 |
MAE | 35.007 | 33.324 | 34.247 | 37.037 | 35.597 | 34.881 | 9.987 | 9.818 | |
MAPE | 0.228 | 0.225 | 0.226 | 0.241 | 0.231 | 0.24 | 0.081 | 0.079 | |
Weekend | RMSE | 24.192 | 23.402 | 23.369 | 23.537 | 23.796 | 23.969 | 11.939 | 11.075 |
MAE | 15.179 | 14.507 | 14.406 | 14.811 | 14.919 | 15.429 | 9.107 | 8.367 | |
MAPE | 0.234 | 0.228 | 0.233 | 0.237 | 0.241 | 0.235 | 0.15 | 0.137 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksan, F.; Suresh, V.; Janik, P.; Sikorski, T. Load Forecasting for the Laser Metal Processing Industry Using VMD and Hybrid Deep Learning Models. Energies 2023, 16, 5381. https://doi.org/10.3390/en16145381
Aksan F, Suresh V, Janik P, Sikorski T. Load Forecasting for the Laser Metal Processing Industry Using VMD and Hybrid Deep Learning Models. Energies. 2023; 16(14):5381. https://doi.org/10.3390/en16145381
Chicago/Turabian StyleAksan, Fachrizal, Vishnu Suresh, Przemysław Janik, and Tomasz Sikorski. 2023. "Load Forecasting for the Laser Metal Processing Industry Using VMD and Hybrid Deep Learning Models" Energies 16, no. 14: 5381. https://doi.org/10.3390/en16145381
APA StyleAksan, F., Suresh, V., Janik, P., & Sikorski, T. (2023). Load Forecasting for the Laser Metal Processing Industry Using VMD and Hybrid Deep Learning Models. Energies, 16(14), 5381. https://doi.org/10.3390/en16145381