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Abstract: Modern data center power distribution networks place greater demands on the stability
and reliability of power supply. Growing network computing demands and complex network envi-
ronments can cause network congestion, which in turn leads to network traffic overload and power
supply equipment overload. Therefore, network congestion is one of the most important problems
faced by data center power distribution networks. In this paper, we propose an approach called
ACC-RL based on reinforcement learning (RL), which can effectively avoid network congestion and
improve energy performance. ACC-RL models the congestion control task as a Partially Observable
Markov Decision Process (POMDP). It is independent of the estimated value function and supports
deterministic policies. It also sets the reward value function using real-time network information
such as the transmission rate, RTT, and switch queue length, with the target transmission rate as the
target equilibrium point. ACC-RL is highly general, can be trained on datasets running in different
network environments, and generates a robust congestion control policy. The experimental results
show that ACC-RL can solve the congestion problem without any predefined scenarios in different
network environments. It can control the network traffic well, thus ensuring the stability and reliabil-
ity of the power supply in the distribution network. We conduct network simulation experiments
through NS-3. We set up different scenarios for experiments and data analysis in many-to-one,
all-to-all, and long–short network environments. Compared with the popular rule-based congestion
control algorithms such as TIMELY, DCQCN, and HPCC, ACC-RL shows different degrees of energy
performance advantages in network metrics such as fairness, link utilization, and throughput.

Keywords: power distribution network; data centers; congestion control; reinforcement learning;
energy performance

1. Introduction

The data center power distribution network is a system designed to efficiently dis-
tribute and manage the power within a data center facility. It consists of various components
and infrastructures that work together to provide reliable power to servers, network equip-
ment, and other devices in the data center. When the network traffic in a data center is
too heavy or uneven, it may result in excessive load pressure on the power distribution
network. This can lead to the overloading of power supply devices, which can affect the
stability and reliability of the power supply. The root cause of unbalanced and overloaded
network traffic is network congestion. It is a situation where network traffic exceeds the
processing capacity of network devices or the bandwidth capacity of network links, result-
ing in increased data transmission delays, increased packet loss, and degraded network
performance. Therefore, the resolution of network congestion is one of the top issues to be
addressed in data center power distribution networks [1].

The operation of data centers typically involves high energy consumption, including
the energy required for processing equipment and the energy consumed by cooling systems.
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Recent studies have improved the energy efficiency and overall performance of data centers
from several perspectives. Salamai et al. [2] propose a dynamic voting classifier for identi-
fying risks in Supply Chain 4.0. Since the classifier may require processing large amounts
of data and performing complex computations, it requires high-performance computing
power and storage capacity provided by data centers. Ibrahim et al. [3] discuss the use of
deep learning and adaptive dynamic optimization algorithms for wind speed ensemble
prediction. Data centers can use such wind speed prediction models to optimize their own
wind energy utilization strategies, reduce reliance on the conventional grid, and improve
energy efficiency. El-kenawy et al. [4] investigate the use of advanced artificial intelligence
techniques to design dual T-shaped monopole antennas. Data centers can improve the
overall performance of data centers by increasing the effectiveness and efficiency of wireless
communications using this advanced antenna design.

Most of the current congestion control methods are designed with rule-based heuristics,
such as TIMELY [5], Data Center Quantified Congestion Notification (DCQCN) [6], and
High-Precision Congestion Control (HPCC) [7]. However, these algorithms cannot meet the
demand for congestion control in complex and changing network environments. Therefore,
Jiang [8] and Lei et al. [9] proposed a congestion control algorithm based on reinforcement
learning (RL) [10,11]. It uses the real-time network environment and the amount of data
to generate the best control policy to cope with the changing network environment by
learning and generalizing the data. Most of the algorithms for RL can be modified by the
Markov Decision Process (MDP) [12]. However, in practical data center congestion control,
it cannot be constructed as a standard MDP due to security and partial observability, such
as Aurora [13], REINFORCE [14], PPO [15], etc. This is one of the main reasons why RL
cannot be deployed at scale in data centers.

To solve the above problem, we propose an approach called Adaptive Congestion Con-
trol based on Reinforcement Learning (ACC-RL). It is a stable congestion control method
generated based on the deterministic policy gradient (DPG) model [16]. It is independent
of the estimated value function and supports deterministic policies. We perform task
modeling through a Partially Observable Markov Decision Process (POMDP). We set the
reward value function using real-time network information such as the transmission rate
of the flow, RTT, and switch queue length, with the target transmission rate as the target
equilibrium point. In our design, the reward function is able to obtain the superior value.
Moreover, our method is able to guarantee the optimal transmission rate without packet
loss. ACC-RL can perform the network congestion task well, control the network traffic,
and balance the load of the distribution network. Therefore, it can achieve a stable and
reliable power supply while ensuring that power devices are not overloaded. We perform
extensive simulation experiments based on NS-3 [17]. We use many-to-one, all-to-all, and
long–short as the experimental network environments. In each environment, we set up
different scenarios for experiments and data analysis. Simulation experiments show that
ACC-RL provides a stable congestion control strategy that is competitive in all network
environments. Our contributions are summarized as follows.

(1) We design ACC-RL, which is a congestion control algorithm based on reinforcement
learning. It can use real-time network data for model training and online decision in
different network environments, and generate robust congestion control policies. It can
perform congestion tasks and control network traffic in multiple scenarios, thus ensuring
the stability and reliability of power supply in distribution networks with high generality.

(2) We optimize the reward function. We choose transmission rate, RTT, and queue
length as reward parameters to find a single equilibrium point. It has high convergence
and can obtain the superior reward value accurately. It ensures that the transmission rate is
kept at the best possible level.

(3) We compare ACC-RL with currently popular congestion control algorithms under
different environments through simulation experiments on the NS-3 simulation platform.
The results show that ACC-RL demonstrates its unique superiority in several metrics under
different scenarios.
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2. Backgrounds

In this section, we present the current research status in terms of both congestion
control and RL, respectively.

2.1. Congestion Control Algorithms

In this subsection, we discuss several rule-based congestion control strategies and
briefly analyze their principles and advantages and disadvantages.

TIMELY: It monitors the congestion in the network by measuring the RTT and uses
a computational engine to convert the RTT signal into a target rate, and inserts delays
between segments to achieve the target rate. TIMELY uses RTT as the congestion signal
and is able to directly measure the delay due to network queuing. However, the latency
problem will become more severe during its queue build-up. In addition, it is unable to
handle lost messages and needs to rely on PFC [18] to avert message loss.

DCQCN: It combines Quantized Congestion Notification (QCN) [19] and Data Center
TCP (DCTCP) [20]. It prevents packet loss by PFC and adjusts the transmission rate by
Explicit Congestion Notification [21]. However, in some specific network environments,
such as the long–short, DCQCN will trigger PFC frequently, which leads to problems such
as low link utilization.

HPCC: It obtains link load information and controls traffic via In-band Network
Telemetry [22]. It can make full use of free bandwidth to obtain a very low queue length
and thus avoid congestion. However, in a many-to-one environment, when the number of
senders keeps increasing, the link load increases. HPCC will experience severe packet loss
and cannot guarantee normal communication.

These rule-based algorithms are able to demonstrate their advantages well in specific
network environments but are unable to apply them to all domains for congestion control
tasks under various scenarios.

2.2. RL Algorithms

In this subsection, we present several classical RL algorithms and analyze the problems
that arise in their congestion control tasks.

Aurora: It generates a policy based on the deep RL [11] and controls the transmission
rate by observing the collected network performance data such as latency, etc. Aurora
can generate good congestion control policies in simple network simulation environments
and exhibits good network performance, even exceeding general rule-based control poli-
cies. However, it is not capable of performing communication tasks in complex network
environments or environments with large data volumes.

REINFORCE: It designs statistical gradient tracking algorithms that can compute
RL networks with random output units in essentially any arbitrary way. REINFORCE
is a gradient-based method that works well with other gradient computation techniques
such as Stochastic Gradient Descent [23]. However, the algorithm lacks a suitable conver-
gence theory and is prone to the pseudo-optimal convergence state common in gradient
algorithms.

PPO: It is an RL-based policy gradient method that collects data and performs stochas-
tic gradient ascent optimization while interacting with the environment. PPO inherits
some of the advantages of trust region policy optimization [24]. It is optimized for easier
implementation and greater versatility. However, the application of PPO to the congestion
control environment leads to problems such as decreased stability and convergence speed,
which cannot accomplish the congestion control task.

It can be seen that these classical RL algorithms are prone to problems in terms
of stability and convergence, and thus cannot accomplish the congestion control task.
Therefore, we should fully consider these factors when designing the relevant algorithms.

We show a comparison of whether the above algorithms can complete congestion
control under different scenarios, as shown in Table 1. A (X) indicates that the congestion
control task has been completed in this experimental setting, whereas a cross mark (×)
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indicates that it has not been completed. TIMELY, DCQCN, and HPCC can only complete
the congestion control task in some of the scenarios, whereas Aurora, REINFORCE, and
PPO end up with failure in congestion control tasks under all scenarios.

Table 1. Analysis of different congestion control algorithms.

Many-to-One All-to-All Long–Short

Aurora/REINFORCE/PPO × × ×

TIMELY × X ×

DCQCN X X ×

HPCC × X X

ACC-RL (ours) X X X

3. Our Approach: ACC-RL

In this section, we present the ACC-RL. It is designed based on DPG. We illustrate the
architecture of the intelligence and the design of the framework.

3.1. The Architecture of the Intelligence in ACC-RL

In this subsection, we show the architecture of intelligence in ACC-RL. We model the
congestion control task as a POMDP. The model is based on a multi-intelligence implemen-
tation with multiple objectives and continuous actions.

The POMDP simulates the decision-making process of an intelligence supposing that
the system dynamics are dictated by the MDP, but the intelligence cannot directly observe
the state. Conversely, it must deduce the allocation of states based on whole area and
fractional area observations of the model. The POMDP is composed of a five-tuple of
(O, S, A, T, R). The environment is in state s ∈ S for a certain period of time. It represents
information about the network state in the current environment, including transmission rate
and switch queue length, etc. After receiving an observation o ∈ O, the intelligence selects
an action a ∈ A. This results in an environmental probability of T(s′|s, a) of switching
to another state s′. Meanwhile, the intelligence accepts another observation o ∈ O with
probability O(o|s′, a) according to the new environmental state. Eventually, the intelligence
accepts reward r ∈ R(s, a).

In this paper, the intelligence is used to complete the congestion control task to adjust
the sending rate, running in the network interface card. To meet the demands of data center
power distribution networks with zero packet loss, high throughput, etc., the intelligence
observes the statistics of the flows it controls at each decision point and performs actions,
rewards, and rate transformations according to our design. Thus, we define the quadruplet
(O, A, T, R).

Observations: The intelligence observes the statistics of the flows. In our method, we
specify the transmission rate of the flows, RTT, and switch queue length.

Actions: The optimal aim of our designed algorithm is to make the transmission
rate optimal, but this depends on the network environment itself (network topology,
experimental scenarios, etc.). In different network environments, the optimal transmission
rate can vary significantly. Therefore, we start from the Markov property, so as to make
the changing transmission rate correlate with the current transmission rate (defined as E).
The action represents a change in the transmission rate, defined as Et+1 = atEt. We refer to
the parameter design in the experiments of Silver et al. [16]. Therefore, in our experiments,
at ∈ [0.8, 1.2] will obtain the best results.

Transitions: The frequency of the state st → s′t is determined by a combination of the
status of the decision circumstance and the action executed by the intelligence. When the
intelligence receives an RTT message, it performs the corresponding action to change the
transmission rate. In PCC [25], they are transformed by a fixed time interval. In contrast,
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we use the network real-time information such as RTT for detection, which is more accurate
and efficient.

Rewards: In pursuit of the observability task for the multi-intelligence part, when
designing the reward, we want to ensure the existence of a stable equilibrium point. After
research, we chose the transmission rate in the network data as the target equilibrium point.
The network utilization reaches optimal saturation when the aggregate of transmission
rates of each flow continuously converges to target rate. We define the reward function as

rt = −[G− (
N

∑
i=1

Et,i +
U
I
)]2, (1)

where G is a static value representing the desired target rate of all flows. Et,i, U, and
I represent the transmission rate of the i flow at time t, the switch queue length, and
minimum RTT, respectively. In a typical network environment, the transmission rate will
be as close to the target rate as possible. However, when the transmission rate exceeds the
G, it will cause the switch queue to grow, which results in problems such as packet loss.
Therefore, in our algorithm, U

I is used as the network tolerance to adjust the rate in time.
The optimal transmission rate is guaranteed while no packet loss occurs.

To better explain the reward function we designed, we introduce the Bandwidth Delay
Product (BDP), defined as B. BDP uses the volume of the datalink (bits per second) and the
multiplication of RTT (in seconds) as the performance criteria. We derive Equation (1) to
conclude that

rt = −[D− (
N

∑
i=1

Bt,i + U)]2, (2)

where D is used to express the target BDP.
When ∑N

i=1 Et, i is larger equal to G and U is smaller equal to 0, the intelligence will
obtain the optimal reward 0. In other cases, where the rate is too low to reach the G, or
too high to cause queue growth, the appropriate action is taken for rate control. The RTT
of each sender we observe through the intelligence is approximately the same, so it is a
fair solution that can guarantee a maximum rate of X

N for N flows, where X stands for the
max rate.

We extend the Actor–Critic algorithm of DPG. It replaces the true action value function
Qµ(s, a) with the differentiable action value function Qw(s, a). δt exists as a time error.
Critics estimate the action value function Qw(s, a) ≈ Qµ(s, a) using the appropriate strategy
evaluation algorithm. γ represents the withholding factor, which is used to measure the
importance of current rewards versus future rewards. µθ is a parameter of the strategy
network, which represents the weight parameter of the strategy network. The goal of the
policy network is to output a deterministic action that results in the maximum reward
in the current state. µθ formats the policy network and controls how the policy network
selects an action based on the input state. w is a parameter of the value function network
and denotes the weight parameter of the value function network. The goal of the value
function network is to estimate the state value or the state–action value function. w formats
the value function network for computing the state value or the state–action value estimate.
We use

δt = rt + γQw(st+1, at+1)−Qw(st, at) (3)

to calculate the Temporal Difference Error (TDE) for time step t, which is used to measure
the difference between the reward of the current state action pair and the reward of the
next state action pair. The equation

wt+1 = wt + awδt∇wQw(st, at) (4)
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is used to update the parameters of the value function network. It indicates that the update
of the weight value is the product of the current weight plus the learning rate multiplied
by the gradient of the residual sum value function over the weights. The equation

θt+1 = θt + aθ∇θµθ(st)∇aQw(st, at)|a=µθ(s) (5)

is used to update the parameters of the policy network. It indicates that the update of
the policy parameters is the product of the current parameters plus the learning rate
multiplied by the gradient of the policy gradient and the gradient of the value function
over the actions.

3.2. The ACC-RL Framework

Our proposed ACC-RL framework is shown in Figure 1. We corroborate our design
by analyzing the reasons for the failure of existing methods in performing congestion
control tasks.

Figure 1. The framework of ACC-RL.

When multiple intelligences are trained in the same environment, non-stationarity
can occur due to the constantly changing activities of other intelligences. Therefore, a
non-policy approach cannot be used, but only a policy approach that ensures that each
intelligence receives the trained data. Second, partial observability has an impact on the
estimation of the value function. Generating correct gradient estimates via policy gradient
methods for value functions requires straightforward visits to the state, as opposed to using
observations [26]. Therefore, we refer to the situational reward trajectories in REINFORCE
for the design. However, although REINFORCE solves the problem of value function
estimation, it requires stochastic policies [14]. Stochastic policies lead to a highly unstable
state during the intelligence’s operation, so stability can only be satisfied by deterministic
policies. From a comprehensive analysis of these problems, DPG as a policy-based method
can solve these problems well. Therefore, our ACC-RL is designed based on DPG. We
estimate the gradient directly by deriving the reward function to produce a deterministic
policy gradient. It is a policy-based algorithm that is not dependent on the estimated value
function and supports deterministic policies. For s ∈ S, Azizzadenesheli et al. [26] show
that the gradient estimation is unbiased, despite the presence of partial observability in the
policy. The deterministic gradient analysis approximation we obtained by optimizing the
derivation and variant analysis of the gradient function is defined as

∇θρπθ(s) ≈ [ lim
T→∞

1
T

T

∑
t=0

(G− (
N

∑
i=1

Et,i +
U
I
))]∇θπθ(o(s)). (6)
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When G − (∑N
i=1 Et,i +

U
I ) < 0, the gradient of the policy receives a negative weight,

effectively reducing the transmission rate in the current state, and vice versa for G −
(∑N

i=1 Et,i +
U
I ) > 0.

Model training: We perform model training by collecting information about the cur-
rent state of each flow. Then, the local collector starts collecting current network information
and saving it in the data pool during online decision-making and environmental interaction
operations. The collected network information can reflect whether the network communi-
cation state is good or not. Therefore, the server decides the model training process based
on the collected network information as a way to guarantee that the model can make an
adaptation to the dynamic network.

Online decision: ACC-RL takes the active network status as input and computes
the optimized sending rate in real time. The decision procedure is as shown below; in
state s, the dispatcher performs the optimum action a and adjusts the transmission rate by
calculation. Afterward, we can obtain another reward r and network state s′.

For the algorithm complexity analysis, we focus on two aspects: time complexity and
space complexity. For the time complexity, the main overhead comes from the training
of the strategy network and the gradient values. For each iteration, it needs to update
the policy network and the gradient values at each time step. This means that its time
complexity is O(T), where T is the number of iterations. For the space complexity, it needs
to store the parameters of the policy network and the gradient, so its space complexity is
proportional to the number of parameters of these networks.

Overall, in our framework, the network parameters used for online decision are
updated in parallel to adapt to changes in networks so that results in three different
instances indicate a better performance than other methods (details in Section 4). Moreover,
the model is positioned on the servers without any influence on a client’s resources. These
details are described in Algorithm 1.

Algorithm 1: ACC-RL
Input: transmission rate of the flows, RTT, and switch queue length
Output: reward r
Initialize O according to probability O(o|s′, a)
for each flow i do

Initialize state st according to an environmental probability of T(s′|s, a)
Model training by current state to obtain factor at:

at ∈ [0.8, 1.2]
Update network transmission rate based on factor at:

Et+1 = atEt
Store new transition (Ot, At, Tt, Rt)
Set δt = rt + γQw(st+1, at+1)−Qw(st, at)
Update the reward rt according to the function:

rt = −[G− (∑N
i=1 Bt,i + U)]2

Update actor policy by the policy gradient:
∇θρπθ(s) ≈ [limT→∞

1
T ∑T

t=0(G− (∑N
i=1 Et,i +

U
I ))]∇θπθ(o(s))

Update the parameter vector θ:
θt+1 = θt + aθ∇θµθ(st)∇aQw(st, at)|a=µθ(s)

end

4. Experiments

In this section, we simulate the network structure as well as the data communication
behavior by conducting network simulation in NS-3. We validate the superiority of our
proposal and algorithm.
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4.1. Experiment Settings

In this subsection, we describe the scenarios used in the experiments. We set the
bottleneck link in the experimental scenario to 40 Gbps and the link latency to 5 µs. We
focus on the following three environments, as shown in Figure 2.

Figure 2. The three environments tested in the experiment are many-to-one, all-to-all, and long–short.
The red and blue arrow lines all represent the flow of data. The blue dashed arrows indicate the
direction of the short flow in the long–short environment.

(1) Many-to-one: In this environment, multiple nodes send data to a single target
node simultaneously, i.e., N to 1. This scenario simulates multiple users sending data
to a central node at the same time. In our experiments, we can set up multiple source
nodes to send data to a single target node at the same time and observe the performance
of the proposed algorithm in handling multiple data flows. In this case, the switch’s data-
processing capabilities are greatly tested. Since multiple flows share the same egress, traffic
fairness becomes the primary performance metric to consider. We use the Jain Fairness
Index to calculate fairness, which is a common metric used to calculate fairness. The
function is defined as

FI =
(∑N

i=1
Ti
Oi
)2

n ∑N
i=1(

Ti
Oi
)2

(7)

where FI is the fairness index and Oi is the actual throughput when all links in the link are
performing data transmission. Ti is the transmission capacity of the ith link in the network.

(2) All-to-all: In this environment, all nodes communicate with each other, i.e., N to N.
This scenario simulates a large-scale data exchange between all nodes. In the experiment,
we can connect all nodes together so that they can communicate with each other and observe
the performance of the proposed algorithm in an all-to-all communication environment.
This approach can lead to overloading or underutilization of some switches due to the
increased amount of synchronization signals. Therefore, in this case, the main performance
metric we observe is switch utilization, defined as real_throughput

max_throughput .
(3) Long–short: In this environment, the streams are sent sequentially and with

different lengths. In our experiments, we can set the sending time and length of the streams
between nodes and observe the performance of the proposed algorithm in the long- and
short-distance environment. Therefore, we focus on evaluating the performance of our
algorithm in the case of burst short flows. Each sender dispatches a continuous flow of the
same length from the start moment. During the transmission process, we randomly add
short flows to each sender to transmit data. Thus, we test the throughput variation in the
continuous flow. When the short flow completes data transfer, the continuous flow should
quickly return to its peak throughput.

4.2. Experiment Results

In this subsection, we collect and analyze the experimental data under three envi-
ronments and compare them with other algorithms on different metrics to illustrate the
superiority of our algorithm.

Figure 3 gives the experimental results in a many-to-one environment. We collect
data in three scenarios: 128 to 11,024 to 1 and 4096 to 1. We find that multiple methods
exhibit their competitiveness when the number of senders is small and the traffic is low.
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We analyze whether the proposed algorithm can fairly allocate bandwidth to each source
node by using the Jain Fairness Index. At the 128 to 1 scenario, REINFORCE, HPCC, and
ACC-RL show their strong superiority with 99%, 97%, and 97% fairness data, respectively.
As the number of senders increases to 1024, REINFORCE and HPCC’s fairness metrics drop
to 70% and 48%, respectively. Furthermore, when the number of senders increases to 4096,
both methods exhibit varying degrees of packet loss, resulting in unguaranteed fairness.

Figure 3. Comparison of fairness between different approaches in many-to-one environment, with
data in percentages.

Meanwhile, we found that the other RL methods (Aurora and PPO) exhibit packet
loss for all three scenarios in a many-to-one environment. This confirms our previous
view that they are unable to perform the congestion control task. Among the rule-based
congestion control algorithms, TIMELY is unable to accomplish the congestion control task
in the many-to-one environment. Furthermore, although DCQCN can perform the task
well, its fairness is uniformly distributed with 56%, 50%, and 62% results under three test
scenarios, which cannot achieve the optimal solution and thus is not the best metric we
expect. In contrast, our ACC-RL algorithm, with 97%, 70%, and 49% results under three
scenarios presents the expected stepped data performance, keeping the best fairness as
much as possible within a manageable range.

Table 2 illustrates the average memory usage percentages for the three scenarios. The
optimal memory utilization interval should be one that makes full use of memory resources
as much as possible while satisfying system stability and avoiding too high or too low uti-
lization. Lower memory utilization may indicate underutilized memory resources, whereas
higher memory utilization may take up more system resources. Since TIMELY, DCQCN,
and HPCC focus mainly on real-time network congestion control, the memory usage is rela-
tively small in the 128 to 1 scenario. As the number of senders increases, memory usage will
gradually rise. Reinforcement learning-based algorithms like REINFORCE and ACC-RL
may generate some intermediate data for calculating gradients, updating parameters and
other operations during the training process, and these intermediate data will also occupy a
certain amount of memory space. Therefore, in general, they have a higher memory usage
than other rule-based algorithms. REINFORCE shows higher memory usage of 71% and
89% for 128 to 1 and 1024 to 1 scenarios. ACC-RL shows moderate and stable memory
usage with 49%, 59%, and 67% for three scenarios.

In an all-to-all environment, RL algorithms (Aurora, PPO, REINFORCE) also suffer
from packet loss and fail to complete their tasks. Therefore, in this section, we investigate
rule-based data comparison congestion control algorithms. We chose two experimental
scenarios: four hosts and eight hosts. The data plots we obtained after analyzing the
performance metrics switch utilization and fairness are shown in Figure 4.
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Table 2. Average memory usage percentages (%) for three scenarios in many-to-one environment.

128 to 1 1024 to 1 4096 to 1

Aurora Packet loss Packet loss Packet loss

REINFORCE 71% 89% Packet loss

PPO Packet loss Packet loss Packet loss

TIMELY 21% 43% 59%

DCQCN 32% 48% 63%

HPCC 45% 68% 76%

ACC-RL (ours) 49% 59% 67%

(a) Switch Utilization (b) Fairness

Figure 4. Comparison of switch utilization and fairness between different approaches in all-to-all
environment, with data in percentages.

As we mentioned earlier, in an all-to-all environment, the metric we focus on is switch
utilization. From the results, we can visually see that ACC-RL’s switch utilization of 94% is
significantly better than TIMELY’s 76%, DCQCN’s 89%, and HPCC’s 71% for the four-host
scenario. Meanwhile, for the eight-host scenario, ACC-RL’s switch utilization is 95% ahead
of TIMELY’s 72%, DCQCN’s 87%, and HPCC’s 69%. For fairness, TIMELY and DCQCN
outperformed HPCC’s 18% and ACC-RL’s 79% with 89% and 93%, respectively, for the
four-host scenario. However, when the number of hosts increases and the amount of
synchronization signals rises, the fairness of TIMELY and DCQCN drops significantly to
70% and 66% under the eight-host scenario. On the contrary, ACC-RL is unaffected by it
and even the fairness improves to 92%. This demonstrates the superiority of our algorithm
in a large-scale network environment.

In the long–short environment, our setting is such that each sender sends a long flow
from the starting time 0 and sends a short flow at time 40. The simultaneous transmission
of the two flows causes congestion to occur. We analyze the experimental results and focus
on observing the throughput variation in each congestion control algorithm from time
40 onwards. This is shown in Figure 5.

As can be observed from the results, TIMELY and DCQCN largely affect the overall
throughput when short flows are sent due to the long flow pauses caused by the PFC
mechanism that comes with their algorithms. Moreover, we can intuitively see that the
recovery speed of these two algorithms is slow and cannot reach the fast convergence to
allow the throughput to reach the peak level as soon as possible. In addition, HPCC is more
responsive, as it is specifically designed for long–short scenarios, so this is as expected.
However, it is remarkable that the long-flow throughput cannot peak in HPCC even if
no short-flow is present. In contrast to these algorithms, ACC-RL is equally capable of
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guaranteeing partial long-flow communication when it is affected by short flows. Fur-
thermore, it can converge to the peak throughput as fast as possible after the short flows
end their transmission. Therefore, ACC-RL clearly outperforms other algorithms in this
environment.

(a) TIMELY (b) DCQCN

(c) HPCC (d) ACC-RL

Figure 5. Comparison of throughput between different approaches in long–short environment, with
data in Gbps.

We analyze data on the flow completion time (FCT) of each algorithm in this envi-
ronment. ACC-RL is based on RL, which generates a certain amount of training time
and decision time. To ensure the accuracy of the comparison experiments with TIMELY,
DCQCN, and HPCC, we only consider the communication time of the data in the network
when counting the FCT. Table 3 illustrates that the FCTs of TIMELY, DCQCN, and HPCC
are 100,012 ms, 100,018 ms, and 100,019 ms, respectively, whereas the FCT of ACC-RL is
100,002 ms. It can be seen that our algorithm outperforms the other algorithms in terms
of runtime.

Table 3. FCT (time in ms) for each algorithm in the long–short environment.

Start Time Burst Time Completion Time

TIMELY 0 40 100,012

DCQCN 0 40 100,018

HPCC 0 40 100,019

ACC-RL (ours) 0 40 100,002
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Overall, it is shown through our experiments that ACC-RL is able to autonomously
learn a robust approach to congestion control tasks under different scenarios in different
environments. The results demonstrate that ACC-RL is capable of meeting the performance
demands of data center power distribution networks for a zero packet loss, high-throughput
network environment. It outperforms other rule-based CC or RL algorithms in several im-
portant network performance metrics, such as fairness, switch utilization, and throughput,
respectively. This is a major breakthrough compared to other algorithms that only optimize
for a single environment.

5. Related Work

As data center networks (DCNs) are developing rapidly, both domestic and foreign
scholars have undertaken many studies on the congestion control mechanism of DCNs.
Among them, the core constructions can be divided into two categories. One is to optimize
the rule-based congestion control method to enhance the capabilities of the network in a
single environment. The second is to continuously optimize its core algorithms and models
based on RL and apply them to congestion control tasks.

For rule-based approaches, most of them guarantee packet loss-free through the PFC
mechanism and achieve lower latency and higher throughput by reducing PFC and the
congestion queue. Recent studies such as Ternary Congestion Detection [27] perform
inter-state transitions by dividing the port state into three, using features such as switch
send mode and queue length changes, and combining congestion control mechanisms such
as TIMELY and DCQCN for congestion regulation. Photonic Congestion Notification [28]
provides congestion signals for rate-regulation purposes by detecting congestion on the
switch and monitoring the internal state of the network for traffic identification. The
congestion control mechanism of Backpressure Flow Control [29] is per-hop per-flow
control, and although it should be used with caution in the presence of bounded states,
constant-time switching operations, and buffers, it enables high bandwidth links, shortens
tail delays in burst network environments, and improves network utilization.

For RL-based algorithms, optimizing the training model to adapt it to the congestion
control network environment is a problem that must be addressed. We also observe relevant
research advances in this area, such as the development of a new artificial intelligence in
Deep Q-network [30] with the use of trained deep neural networks. It can directly acquire
strategies for success from highly-dimensional sensibility feeds via end-to-end RL, but its
application in the congestion control domain is not ideal. Analytic Deterministic Policy
Gradient (ADPG) [31] is able to improve stability by approximating its inverse through
the analysis architecture of the reward function to accomplish the congestion control task.
Based on ADPG, Tessler et al. refine the model to justify a tree-based policy and apply the
algorithm to a real network environment to accomplish the congestion control task and
obtain positive performance metrics.

All of the above efforts exist to solve network congestion problems and improve the
performance of data center networks. They all have their own characteristics and superi-
ority. However, network renewal will gradually accelerate in the future, and the network
congestion problem is unpredictable. Therefore, the method of solving network congestion
through RL will gradually become prevalent and adaptable to any network environment.

6. Conclusions

In this paper, we propose a congestion control method based on reinforcement learning
called ACC-RL in order to solve the network congestion of data center distribution networks
and improve energy efficiency. It is independent of the estimated value function and
supports deterministic policies. ACC-RL performs task modeling by a Partially Observable
Markov Decision Process (POMDP) and designs superior reward value functions using
real-time network information. ACC-RL is highly versatile in the face of variable network
environments, supporting network testing with multiple scenarios. It also generates
a robust strategy to converge the data transmission rate to the optimal value quickly
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and maintain zero data buildup in the network link at all times. We evaluate ACC-RL
performance with the NS-3 network simulation platform. The results indicate that ACC-
RL shows superiority in terms of fairness, switch utilization, and throughput compared
to other algorithms in complex network scenarios such as many-to-one, all-to-all, and
long–short. It can achieve energy-efficient goals for power distribution networks with data
centers. In our future work, we will integrate ACC-RL with real hardware and apply it to
practical engineering applications.
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