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Abstract: With the large-scale access of renewable energy, the randomness, fluctuation and intermit-
tency of renewable energy have great influence on the stable operation of a power system. Energy
storage is considered to be an important flexible resource to enhance the flexibility of the power
grid, absorb a high proportion of new energy and satisfy the dynamic balance between the supply
and demand of a system. At present, the cost of energy storage is still high, and how to achieve the
optimal energy storage configuration is the primary problem to be solved. Therefore, the current re-
search progress in energy storage application scenarios, modeling method and optimal configuration
strategies on the power generation side, grid side and user side are summarized in this paper. On
this basis, the shortcomings that still exist of energy storage configuration research are summarized,
and the future research direction for energy storage configuration is prospected. This review can
provide reference for the latest development and future research and innovation direction for energy
storage configuration.

Keywords: renewable energy; energy storage; optimal configuration; latest research status; future
research direction

1. Introduction

With the great efforts to combat climate change and a growing consensus for low-
carbon energy, more and more countries are actively introducing policies and measurements
to promote the development of renewable energy. This renewable energy industry with
wind and photovoltaic power generation as major growth drivers is growing rapidly,
playing an important role in satisfying the energy demand, improving the energy structure,
reducing environmental pollution and promoting economic development [1,2]. However,
with the increasing permeability of renewable energy in the modern power system, the
inevitable and strong intermittency, volatility and randomness of renewable energy require
higher requirements on safe, stable, reliable, efficient and economical operation for a power
system [3,4].

To properly address these challenges, energy storage is increasingly seen as an ideal
technical and economic solution. Generally, distributed energy storage is equivalent to load
and power through charge and discharge, enabling scheduling of electric energy in time and
space [5]. Distributed energy storage with the characteristics of fast response, easy control
and bidirectional regulation is becoming an important part of improving the flexibility of a
power system, absorbing a high proportion of renewable energy and satisfying the dynamic
balance between supply and demand of a power system [6,7]. Moreover, distributed energy
storage is also a solution to the costly infrastructure construction of delayed power systems,
and it plays a key role in improving energy efficiency and reducing carbon emissions,
gradually becoming an important mainstay for the development of distributed generation,
smart grid and microgrid [8–10]. Therefore, it is clear that distributed energy storage has
become an indispensable part of all aspects of a power system, as shown in Figure 1.

Energies 2023, 16, 5426. https://doi.org/10.3390/en16145426 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16145426
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-7773-3961
https://doi.org/10.3390/en16145426
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16145426?type=check_update&version=1


Energies 2023, 16, 5426 2 of 17

Energies 2023, 16, x FOR PEER REVIEW 2 of 19 
 

 

is clear that distributed energy storage has become an indispensable part of all aspects of 
a power system, as shown in Figure 1. 

 
Figure 1. A power system with distributed energy storage. 

However, there are still some problems in distributed energy storage while 
improving the connectivity of renewable energy grids and improving the stability and 
economy of a power system operation. Energy storage is usually too decentralized to be 
controlled, and it is difficult to coordinate with conventional devices and complicated to 
smoothly switch its control strategies. As an important early stage of energy storage 
application research, the study of optimal configuration of distributed energy storage in 
different application scenarios is crucial to its efficient and economical application in 
power systems. The rational planning of an energy storage system can realize full 
utilization of energy and reduce the reserve capacity of a distribution network, bringing 
the large-scale convergence effect of distributed energy storage and improving the power 
supply security and operation efficiency of a renewable energy power system [11–13]. The 
key issues in the optimal configuration of distributed energy storage are the selection of 
location, capacity allocation and operation strategy. On this basis, the corresponding 
optimization objective and configuration algorithm are generally selected according to the 
requirements of different application scenarios, comprehensively considering both the 
economic and technical indicators [14,15]. At present, the cost of energy storage is still 
high, and how to achieve optimal energy storage configuration is the primary problem to 
be solved. However, considering technical performance and economic performance 
comprehensively, the research summary and prospect of the optimization method of an 
energy storage system configuration to achieve a self-balancing ability of the power 
system through energy storage optimization configuration are still incomplete. 

The rest of this paper is organized as follows: the development status and application 
of distributed energy storage technology for the DG side, grid side and user side are 
briefly reviewed, the various application scenarios of distributed energy storage in a 
power system are summarized in Section 2, and the application and development 
direction of current mainstream technologies are analyzed. On this basis, modeling 
methods and solving algorithms of energy storage optimization configuration are 
compared and analyzed in Section 3. Finally, in Section 4, the main contents of this paper 
are summarized. 

Figure 1. A power system with distributed energy storage.

However, there are still some problems in distributed energy storage while improving
the connectivity of renewable energy grids and improving the stability and economy of a
power system operation. Energy storage is usually too decentralized to be controlled, and
it is difficult to coordinate with conventional devices and complicated to smoothly switch
its control strategies. As an important early stage of energy storage application research,
the study of optimal configuration of distributed energy storage in different application
scenarios is crucial to its efficient and economical application in power systems. The ratio-
nal planning of an energy storage system can realize full utilization of energy and reduce
the reserve capacity of a distribution network, bringing the large-scale convergence effect
of distributed energy storage and improving the power supply security and operation
efficiency of a renewable energy power system [11–13]. The key issues in the optimal
configuration of distributed energy storage are the selection of location, capacity alloca-
tion and operation strategy. On this basis, the corresponding optimization objective and
configuration algorithm are generally selected according to the requirements of different
application scenarios, comprehensively considering both the economic and technical indica-
tors [14,15]. At present, the cost of energy storage is still high, and how to achieve optimal
energy storage configuration is the primary problem to be solved. However, considering
technical performance and economic performance comprehensively, the research summary
and prospect of the optimization method of an energy storage system configuration to
achieve a self-balancing ability of the power system through energy storage optimization
configuration are still incomplete.

The rest of this paper is organized as follows: the development status and application
of distributed energy storage technology for the DG side, grid side and user side are briefly
reviewed, the various application scenarios of distributed energy storage in a power system
are summarized in Section 2, and the application and development direction of current
mainstream technologies are analyzed. On this basis, modeling methods and solving
algorithms of energy storage optimization configuration are compared and analyzed in
Section 3. Finally, in Section 4, the main contents of this paper are summarized.
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2. Application Status of Distributed Energy Storage

With energy storage technology advances, cost reduction and demand side evolving,
the widespread application of distributed energy storage in a power system is an inevitable
trend in the future power grid and also an important path to break through traditional
distribution network planning and operation patterns. Distributed energy storage typically
has a power range of kilowatts to megawatts; a short, continuous discharge time; and
flexible installation locations compared to centralized energy storage, reducing the line
losses and investment pressure of centralized energy storage power stations [16]. Currently,
the forms of distributed energy storage are diverse, including energy storage for a new
energy power plant, community, electric vehicle, data center, home, mobile, etc. In gen-
eral, their forms can be classified into electrochemical and physical storage, and various
distributed energy storage technologies have been developed with the goal of increasing
conversion efficiency, increasing power and energy density and reducing costs. There are
substantial developments and progress in energy storage, with cost reduction achieved
in electrochemical energy storage, material improvement in physical energy storage and
new energy storage technologies updates. From the perspective of the whole-application
scale of energy storage, physical energy storage technology is mature in modern energy
storage technology, with the largest scale, while electrochemical energy storage technology
is the most widely used and has the best development prospects, which is the core content
of future global energy storage development [17–19]. With the continuous updating of
energy storage technology, the application of energy storage in various aspects of the
power system has reached a mature stage of development, with commercial demonstration
projects around the world.

Distributed energy storage has corresponding application scenarios in all aspects
of the power system, which can effectively eliminate a peak–valley difference, enhance
equipment utilization efficiency, promote new energy consumption, regulate voltage and
frequency, smooth new energy power fluctuation and participate in demand-side response,
etc. [20]. Its main objectives are to support DG grid connectivity, increase the level of DG
consumption in load centers and maintain the safe and stable operation of the smart grid
and microgrid. In China, energy storage has been used as an important technical support
in integrated energy demonstration projects. In the case of PV-storage systems, user-side
PV-storage systems are growing rapidly, with massive government subsidies during the
early rollout period. In addition, grid-side energy storage continues to evolve from the
operational mode, function localization and investment discipline, and gradually matures.
Nowadays, a number of battery-energy-storage power stations have been built around the
world, as presented in Table 1. From these projects, the key to further development of energy
storage technology is how to summarize the experience and make new breakthroughs.

Table 1. Typical MW-level battery-energy-storage power station.

Project Battery Type Scale Application Function

Zhangbei wind–solar energy storage
demonstration project in China Lithium-ion battery 14 MW × 4.5 h Smooth output fluctuation and correct

prediction error

Jiangsu Zhenjiang energy storage
power station project in China Lithium-ion battery 101 MW/202 MW·h Peak regulation, frequency modulation and

emergency power support

Hawaii wind energy storage project in
the United States Lead–acid battery 15 MW/10 MW·h Frequency modulation and output climb

control of wind farm

Primus energy storage power plant
project in the United States Zinc oxide flow battery 25 MW × 3 h Peak cutting and valley filling for wind farm

and photovoltaic power station

Angamos battery energy storage
station in Chile Lithium-ion battery 20 MW × 0.33 h Frequency modulation and backup power

Sendai substation battery pilot project
in Japan Lithium-ion battery 40 MW/200 MW·h Improve the power quality of renewable energy

Therefore, different energy storage technologies have different applications and respec-
tive roles in various application scenarios. Rational allocation of energy storage in different
application scenarios can maximize its technical role, and it is also the most efficient and
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economical solution. The running state of distributed energy storage is closely related to its
application scenario, and current research on the application scenario is mostly combined
with optimal configuration modeling of energy storage. The application scenarios of energy
storage are distinguished based on environmental conditions, output characteristics of
energy storage and configuration methods [21]. However, in this mode, it is difficult to
form a systematic understanding of the energy storage configuration of a new power
system. Actually, according to the different access locations of energy storage in the power
system, the corresponding power levels and application functions are often different, and
the selection of location, capacity and operation strategy for optimal configuration of energy
storage also needs to be adapted to local conditions. Therefore, according to the access
position of distributed energy storage in the power system, this paper mainly divides
its application scenarios into the DG side, the grid side and the user side, as shown in
Figure 2, and the following contents of this section will analyze the application scenarios of
distributed energy storage from the above three perspectives.
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2.1. DG Side
2.1.1. Improve DG Output for Grid Connection

Most of the demand for energy storage technology on the new energy side comes from
the relevant management regulations, such as the grid-connected operation regulations of
new energy power stations and the safety and stability guidelines of power systems [22,23].
The allocation of energy storage based on new energy power stations or bases is the main
application scenario to facilitate the consumption of new energy connected to the grid at
the DG side. The friendliness of new energy connected to the grid is improved mainly
through applications that stabilize the output fluctuations of the new energy, compensate
the power prediction errors and reduce the power abandonment rate. By integrating the
energy storage characteristics with the self-regulating characteristics of DG, distributed
energy storage and DG constitute a set of devices for grid connection, which can restrain
the power fluctuation of DG, reduce the impact of DG on the distribution network, improve
the controllability and grid-connection ability of DG from the source and also realize the
tracking of a production plan. The basic principle of this application mode is that the
distributed energy storage must track the output of DG. During the peak or trough period
of DG output power, the energy storage stores or releases the electric energy respectively to
meet the requirements related to power fluctuation of the connecting point, and the power
incorporated into the grid is the sum of DG output and energy storage power [24].
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A large number of scholars have carried out research on energy storage configuration
to smooth out output fluctuation of new energy power stations, and they proposed to
analyze historical data by discrete Fourier transform, first-order low-pass filtering, Kalman
filtering and other algorithms, and calculate energy storage capacity combined with tech-
nical indicators such as output fluctuation rate, fluctuation frequency band and climbing
ability [25–29]. On this basis, some scholars began to comprehensively consider the new en-
ergy fluctuation stabilization effect and power prediction error compensation and adopted
a multidimensional analysis method to carry out energy storage capacity optimization
allocation [30–32]. In addition to technical indicators, economic factors are also gradually
taken into consideration in the optimization of multi-objective energy storage allocation.
Considering battery energy storage, the economic analysis models are established based
on the life loss of energy storage system, the whole life cycle cost and the annual com-
prehensive cost of energy storage [33–37]. However, different from the relatively fixed
service life of conventional power equipment, the service life of battery energy storage
is closely related to its charging and discharging depth, frequency and other working
conditions. Therefore, when the energy storage scheme is configured, some scholars begin
to consider the investment evaluation of energy storage within the whole life cycle, based
on the probability and statistical results of charging and discharging depth and charging
and discharging frequency of energy storage under specific application conditions [38].
In addition, it is also a relatively new research direction to take into account the multiple
cost composition, such as the power abandonment cost of new energy, or to improve the
economy of energy storage investment by hybrid energy storage [39–42].

However, in terms of distributed energy storage to improve the power output of DG,
the energy storage capacity utilization rate obtained by existing studies is low, and most of
the energy storage models are simplified, which is quite different from the reality. There-
fore, further research should be carried out on the real-time management of distributed
energy storage and the improvement of ultra-short-term prediction accuracy. Moreover,
when designing the smooth power fluctuation control algorithm, the correlation between
distributed energy storage characteristic parameters should be considered to establish a
more scientific large-scale grid-connected model of DG and energy storage, so as to better
improve the power output of DG and prolong the energy storage life.

2.1.2. Improve the Active Support Ability of DG for a Power Grid

With the increasing proportion of new energy units with low inertia and weak support
in the power grid, the moment of inertia of a power system is greatly reduced, and the
supporting and adjusting abilities of key operation indicators are gradually decreased,
which means that the safe and stable operation of the system faces great risks. Domestic
and foreign scholars use capacity credit to evaluate DG’s contribution to system capacity
sufficiency, and rational configuration of an energy storage device in DG can effectively
increase its capacity credit and enhance its ability to support the capacity margin of a power
system [43,44]. Some scholars determine the capacity configuration of energy storage
by setting credit level according to the historical output power data of DG, while some
others analyzed the effect of improving the capacity credit of DG by adjusting the capacity
configuration of energy storage through a posteriori capacity credit evaluation method,
so as to find a reasonable energy storage configuration scheme [45–47]. In addition, many
scholars have carried out research on the energy storage capacity configuration involved in
system inertia support, mainly optimizing the energy storage capacity configuration based
on the system frequency response model [48–50]. Some scholars have also proposed a
method to configure energy storage according to the ideal dynamic frequency characteristics
of the system, such as the inertia coefficient and sagging coefficient [51,52]. The study of
energy storage systems in terms of enhancing the active support capability of DG focused on
improving capacity credits and participation in inertia support and frequency modulation.

However, most of these studies only focus on DG itself and do not consider the
tracking grid scheduling problem, so the active support ability to the power grid is still



Energies 2023, 16, 5426 6 of 17

limited. Besides, since energy storage is not the only means to achieve the active support
capacity of DG, the technical effects and economy are still important factors to consider in
energy storage configuration.

2.1.3. Improve the Fault Ride-through Capability of DG

The DG provides active support for the power grid, and it is also inevitably affected
by the impact of grid-side faults, which brings challenges to the grid-connected operation
of DG. The energy storage system as a fault ride-through technology on the DG side
often uses SCES or SMES to take advantage of its high power density and fast discharge
characteristics. During normal operation, energy storage is used to smooth the power
fluctuations of the DG. When a fault occurs in the grid, it is then used to store the power
generated by the DG and help to ride through the fault by providing suitable active and
reactive power [53]. The supercapacitor energy storage system can maintain the voltage
of the DC bus power to achieve LVRT, without affecting the efficiency of the photovoltaic
system, but also by sending active power during faults to support the grid [54]. Some
scholars have proposed a hybrid energy storage system based on SMES-battery, which can
respond more quickly to transient faults, effectively reduce fault current to avoid off-grid
and reduce AC power loss [55]. For energy storage configuration, some scholars analyzed
the feasibility of an energy storage system configuration based on power constraints and
the use of optimization algorithms, aiming at the power and capacity required to configure
the energy storage system during the fault period [56,57].

However, although the flexibility of energy storage allows it to improve the desired
performance for fault ride-through on the DG side, it requires complex control systems,
high investment and maintenance costs, which makes it still not mature for commercial
applications. Therefore, it is theoretical and applied value to determine how to find the
balance between flexibility and simplicity of energy storage control strategies, and take
into account the requirements of technical specifications and investment costs, which are
key to the development of energy storage as a fault ride-through technology on DG side.

2.2. Grid Side
2.2.1. Participate in System Peak Regulation

Since the output peak of DG does not coincide with the load peak, the load peak–valley
difference increases from year to year, but at the same time, the user’s demand for electricity
supply reliability gradually increases. When the high-permeability DG is connected to the
distribution network, the excess electric energy often cannot be absorbed in time, and some
of the DG can only abandon the operation mode of unit power factor or even shut down,
which results in serious resource waste such as light abandonment and wind abandonment.
By making use of the time–space translation characteristics of an energy storage system
to participate in peak regulation, this enables cutting the peak and filling the valley of the
load curve, which can effectively optimize the power flow distribution of the distribution
network, reduce network loss, alleviate power congestion and slow down the upgrade
of transmission and distribution facilities. At present, the commonly used optimization
strategy of peak cutting and valley filling is to control load variance [58,59]. Besides, to
enable distributed energy storage to better participate in the peak regulation of a system,
factors such as the seasonal characteristics, load curve and peak regulation demand of
the DG should be considered in modeling, and the appropriate charging and discharging
strategies should be adopted to rationally distribute the location and capacity of energy
storage units [60,61]. Based on the relationship between capacity and the confidence in
meeting demand, some scholars have proposed an exact method to determine the system’s
energy storage capacity demand. For a power system with high penetration of DG, this
clarifies the need for energy storage capacity to improve its peak regulation capability [62].

However, most of the existing research on peak regulation of energy storage partici-
pating systems comes from energy storage technology and rarely involves the evaluation
model of a peak regulation benefit. To enhance the practicability of energy storage at this
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stage, it is necessary to investigate how the distributed energy storage can be better com-
bined with the existing peak regulation approaches and also further refine the evaluation
models of peak regulation benefits and energy storage capacity demand.

2.2.2. Participate in System Voltage Regulation

When a large number of DG are connected to the power grid, the power flow dis-
tribution of the system changes. Meanwhile, due to the uncertainty of DG output, the
voltage of some nodes will exceed the limit, which may lead to voltage collapse in severe
cases. The coupling degree of active power and voltage in a distribution network is very
high, so the influence of this kind of problem on a distribution network is prominent with
a domestic distribution network starting late and the regulation capacity of a traditional
voltage regulator being limited. The rise of distributed energy storage has gradually be-
come one of the important means of voltage regulation in a distribution network. Energy
storage participating in a voltage regulation system can make up for traditional voltage
regulation equipment limited by the number of operations and slow response and other
problems, which can effectively improve the voltage level of the system. At present, it is
the most economical and flexible means to coordinate voltage control with DG and energy
storage by fully combining existing reactive compensation equipment, such as an on-load
regulating transformer and static reactive compensation device in the network. Traditional
voltage regulating equipment is usually used as the main control means, and distributed
energy storage and DG with a regulating ability are used as auxiliary measures to relieve
the pressure of traditional voltage regulating means and realize voltage regulation of local
and other key nodes [63–65].

In terms of coordinated control, voltage control strategies can be formulated according
to different time or space scales [66,67]. Since the operation time of different voltage
regulation equipment is not consistent, the voltage control strategy is divided into three
different coordination optimization modes according to the division principle of the time
scale: day-ahead optimization, intraday optimization. In addition, the voltage control
strategy can be divided according to different regions where the voltage regulator is located
or different feeder branches from the spatial scale. To improve the ability of energy storage
in participating in the voltage regulation of a system with large-scale grid-connected DG,
it is necessary to further study the problems of layered and zonated automatic voltage
regulation control, voltage coordination control between an energy storage system and other
reactive power compensation equipment, and smooth switching among control strategies.

2.2.3. Participate in System Frequency Modulation

Distributed energy storage has the characteristics of fast power regulation and high-
control precision. In order to ease the frequency modulation pressure of the system,
distributed energy storage can be used to assist in frequency modulation of the distribution
network. With the further increase of DG permeability, this frequency modulation mode
will become an important mode of power frequency modulation [68]. For example, the
cooperative frequency modulation mode of thermal power and energy storage has been
gradually commercialized, effectively solving the problems of slow climb rate and low
adjustment accuracy of thermal power units. In order to improve the frequency modulation
ability of DG and prevent the DG from being off-grid due to the unstable system frequency
caused by load changes, there are also studies that fully consider the energy storage regula-
tion ability and construct the control strategy of the optimal storage and the wind storage
participating in the system frequency modulation [69,70]. For example, the frequency mod-
ulation coefficient calculation method is proposed considering the regulation dead zone in
the frequency modulation model, so as to optimize the frequency modulation strategy [71].
In terms of the participation of energy storage in AGC, some scholars have established
corresponding economic models, including the life and capacity of energy storage, and
formulated control methods to help the system to perform frequency modulation, that
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meet the economic requirements of energy storage while improving the regulation ability
of AGC [72].

However, the existing studies have not analyzed the mechanism of large-scale DG
affecting the frequency fluctuation characteristics of a power grid or reflected on the
potential advantages of an energy storage participation system over traditional frequency
modulation power plants from a theoretical level. Therefore, it is necessary to further study
the coordination control strategy among various types of energy storage and also between
the energy storage and traditional frequency modulation power plants.

2.3. User and Microgrid Side

The forms of load on the user and microgrid side are very diverse, and distributed
energy storage with flexibility and distribution plays a variety of roles in this side, as shown
in Figure 3. Distributed energy storage connected to industrial and commercial users
can improve power quality, increase the permeability of new energy, act as an emergency
backup power supply, respond to various disturbances and ensure the safety and stability
of power supply for power users. Besides, energy storage is the key to improving the
characteristics of microgrid power supply and ensuring the quality of power supply. In
microgrid, distributed energy storage can also realize such functions as new energy self-use;
reduce electricity cost and local consumption of electric energy; reduce transmission line
losses; reduce capacity expansion costs; enhance the disaster resistance of the network as a
backup power supply and black start power supply; and supply power to remote areas
without power, military bases and other special places [73].
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2.3.1. Backup Power Supply

With the development of the social economy and the diversification of public activities,
on-site electricity preservation has become a special task of the power sector, and the de-
mand is increasing day by day. Mobile energy storage using electrochemical energy storage
is widely used in the backup power mode due to its advantages such as fast response, easy
installation, free from regional restrictions and low pollution [74]. Moreover, electrochemi-
cal energy storage can realize a millisecond response, and the response time from no load
to full load is only a second. When dealing with natural disasters, seasonal loads and other
problems, mobile energy storage can be used as a quick backup power supply to the load
to avoid major losses caused by power outage. This application mode has been applied
in important load users, especially in medicine, advanced electronic manufacturing, data
centers, chemical fiber production and other industries, with obvious benefits [75]. In order
to minimize load loss during a power outage and guarantee production, life safety and
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economic property, the joint operation method of mobile energy storage, distributed energy
storage resource aggregation technology and post-disaster recovery strategy using mobile
energy storage have become new mainstream research directions [76,77]. This also reflects
the demand of the current new power system to improve the resilience of the distribution
network, that is, the ability to prevent and recover from extreme events.

However, with the advancement of marketization, distributed energy storage belongs
to different entities. The traditional analysis methods such as robust and random are
difficult to achieve for the distribution of interests among different entities. Therefore, it
is necessary to carry out research on the emergency linkage of distributed energy storage
and a distribution system under extreme events, and explore the emergency linkage mech-
anism and multi-agent benefit distribution method, thus providing theoretical support for
resiliency improvement of a distribution network.

2.3.2. Improve Power Quality

Due to the application of a large number of power electronic devices in a microgrid,
problems such as voltage sag, waveform distortion, high harmonic injection and low power
factor will inevitably occur during its operation [78]. The quality of power supply can be
significantly improved by installing energy storage on the user and microgrid side. At
the same time, energy storage with a fast response speed can smooth the transition of a
microgrid in the process of switching operation modes, reduce the transient impact, and
maintain voltage stability in the isolated island operation mode, in which the seamless
switching control of the microgrid operation state is the difficulty [79]. In the context of the
demand for the development of a smart grid, electric vehicles, smart building microgrid
and other emerging industries, models will develop rapidly in the future. In order to reduce
the influence of new industry development on power supply quality, the flexibility of an
energy storage system and electric vehicles can be used to smooth the power fluctuation
of a building’s microgrid connection line, or the interconnection technology of a vehicle
and grid can be used to realize the two-way interaction between electric vehicles and the
power grid, so as to save charging costs, reduce power supply pressure of the grid and
improve power supply quality [80,81]. Microgrids are highlighted as the technology that
can help in providing sustainable and efficient electrical energy solutions. They employ
distributed energy resources to efficiently supply local load and increase the reliability of
the local network. At the same time, a microgrid is fragile and easy to receive external
impact, so there are multiple types of potential problems in power quality [82].

However, the existing research basically proposes corresponding strategies for a
single specific problem, and future research should focus on integrated power quality
management technology. Besides, the improvement of a grid-connected inverter, power
quality regulator topology and control mode should be concerned, and the goal of overall
management of various power quality of a microgrid needs to be ultimately achieved.

2.3.3. Participate in the Demand-Side Response

As an important part of a microgrid, demand-side resources can improve the economy
of energy storage configuration and increase the benefits of a microgrid by participating in
the response of a microgrid reasonably. Distributed energy storage can actively respond to a
power grid dispatching during peak load hours, relieve the power grid peak power supply
pressure, ensure the supply and demand balance between the power grid source and load to
obtain subsidies, and protect the safety and stability of the power system operation [83,84].
User-side energy storage can be charged and discharged in an orderly manner according
to the difference of electricity price at different times of the day, so as to gain profits from
the price difference. In order to improve the marketization benefits under this mode,
relevant studies analyzed the potential benefits of distributed energy storage in various
aspects from exploring the rational income mode of user-side energy storage [85,86]. In this
application mode, energy storage is generally used as a demand-side response resource to
participate in the capacity market. Charging and discharging strategies of energy storage
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are formulated according to real-time electricity prices, and energy storage power and
capacity are determined according to the maximization of economic benefits. On this basis,
some scholars innovatively proposed generalized demand-side resources combining the
demand response with an energy storage system and constructed a configuration model to
obtain scheduling plans [87]. Not only can this kind of research provide a new approach
for the formulation of incentive contracts, but they can also play an applicable role in the
actual planning and operation of distribution networks in the future.

However, distributed energy storage has the characteristics of scattered spatial distri-
bution and small capacity, so it is difficult to be directly used as a dispatching resource in
a power grid. In order to cope with the future participation of a large number of energy
storage systems in the power market, the research should focus on the aggregated man-
agement of distributed energy storage, the way to participate in peak scheduling and the
exploration of demand-side energy storage to participate in power grid operation.

3. Optimal Configuration of Distributed Energy Storage

As mentioned above, distributed energy storage has its corresponding application
scenarios in each part of a power system, including source, network and load. In different
application scenarios, the capacity determination, location selection and coordinated op-
eration of energy storage have different technical indicators or economic considerations.
Therefore, the optimal configuration of distributed energy storage is essentially a multi-
objective optimization problem. According to the requirements of different application
scenarios of energy storage, appropriate objective functions are selected, the operating
characteristics of the system and energy storage are taken as constraints and appropriate
algorithms are selected to solve the mathematical model. How to ensure the engineering
applicability of energy storage configuration results is a complex problem covering multiple
time scales, multiple objectives and multiple constraints. Therefore, the following contents
in this section will classify and analyze the configuration model and solving algorithm of
energy storage optimal configuration, as shown in Figure 4.
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3.1. Configuration Model
3.1.1. Optimization Objective

First of all, it is necessary to sort out and summarize the main optimization objectives
in each application scenario. The optimization objectives of the power-supply side mainly
consider the power comprehensive quality and fluctuation indexes, such as the minimum
wind and light discard rate, the ability to smooth the output power of DG, the generation ef-
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ficiency, the grid-connected voltage quality, the minimum prediction error, etc. [88]. On the
power-grid side, technical and economic indicators are mainly considered comprehensively,
such as the capacity of peak regulation, voltage regulation and frequency regulation, the
process of power grid upgrading and transformation, environmental benefits, the degree
of network congestion, network loss, the degree of new energy consumption, etc. [89]. On
the user and microgrid side, the main consideration is to improve power quality while
making profits for users, which is to mainly control power fluctuation of the link line,
reduce electricity cost, improve power supply reliability and participate in the demand-side
response [90]. In addition, in order to reduce the number of traditional energy storage
configurations and give play to the energy storage characteristics of demand-side resources,
some scholars have built a generalized energy storage capacity configuration model based
on electric vehicles and demand-side flexible loads that can be reduced or transferred [91].
On this basis, joint planning of distributed power supply and generalized energy storage
can be carried out. Based on the operation characteristics of generalized energy storage, the
regulation ability of flexible load can be fully explored, and combined with demand-side
response, a comprehensive model of power grid operation and energy storage capacity
determination and location selection can be built.

However, the existing energy storage configuration methods cannot effectively balance
technical and economic indicators, especially for comprehensive optimization considering
the power source, grid, load and storage links, and the demand constraints for energy
storage configuration under multiple operation scenarios have not been established yet.
In addition, existing research on energy storage configuration optimization focuses on
a single objective, which cannot effectively take into account technical and economic
requirements; thus, the multi-objective optimization and the overall improvement of
an energy storage system cannot be achieved. Therefore, it is of great theoretical and
engineering significance to construct a multi-objective optimization method of energy
storage configuration that comprehensively considers technology and economy for efficient
utilization and performance improvement of energy storage in new power systems.

In a comprehensive optimization configuration, multiple objectives often restrict each
other, so some scholars choose to distinguish the primary goal and secondary goal and
try to optimize the overall objective function under this premise. In order to simplify the
calculation process of multi-objective problems, the existing research mostly adopts the
linear weighting method or selects one of the multiple objective functions for optimization,
and the rest of the objectives are converted into constraints by adding limits. Finally, after
simplification, it is still similar to the single-objective optimization to some extent [92].
Thus, this kind of method has some shortcomings, such as the boundary between single
objective weight and objective function being difficult to determine, the dimensional
disunity between each objective may lead to poor robustness and so on. Therefore, further
research on optimization objectives can mainly consider putting forward new technical
and economic indicators for the operation mechanism and operation mode of a new power
system, as well as improving the multi-objective algorithm in the aspects of a multi-objective
number, high dimension and dynamic optimization.

3.1.2. Configuration Method

With the application of energy storage devices becoming more and more extensive, a
variety of planning theories and methods have been applied to energy storage configuration
in various application scenarios. Currently, the mainstream energy storage configuration
methods can be divided into the sequential operation simulation-based configuration
method, certainty configuration method and uncertainty configuration method.

The configuration method based on sequential operation simulation is mainly used
for single-objective configuration in pursuit of technical objectives. In this method, the
historical operation data of the application target should be obtained at first. In addition,
according to the different optimization objectives of the energy storage, for example, the
prediction data of the corresponding time period should be required to compensate the
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prediction error as the objective, so as to clarify the technical indicators of the combined
output of the optimization target and the energy storage, and formulate the charge and
discharge control strategy of the energy storage system. Under the constraint conditions
such as charging and discharging efficiency, SOC operating range and power balance, the
temporal power demand data of the energy storage system are calculated by simulation.
After considering confidence intervals or weighing energy storage investment and applica-
tion effect, the rated power and capacity of the energy storage system are calculated based
on the temporal power demand data samples [84–86].

The application of certainty allocation method is based on the certainty assumption of
data samples. Based on the historical operation data and scheduling data of typical periods,
etc., and the rated power, rated capacity and access location of energy storage, devices
are taken as decision variables to establish a technical or joint technological and economic
optimization model. Then, the appropriate intelligent solution algorithm to calculate the
energy storage optimal configuration scheme is selected [69,70].

The uncertain allocation method is mainly based on uncertain programming theory,
including stochastic programming, fuzzy programming, robust optimization, etc. Guided
by these theories, a number of specific analytical methods have been developed for en-
ergy storage configurations. The scenario analysis method is to transform the probability
distribution model of continuous random variables into a set of discrete scenarios, approxi-
mate the distribution of original random variables with as few scenarios as possible and
solve the original problem under each scenario, so as to transform the stochastic optimiza-
tion problem into a deterministic optimization problem [31,52,79]. Based on the robust
optimization theory, uncertainty can be depicted through the deterministic variation of
problem parameters or solutions, and the uncertain scenario set of a model input can be
constructed, so as to seek the solution immune to uncertainty, that is, the optimal solution
in the system fluctuation [32,39,64]. On the basis of obtaining a large number of data
samples, the clustering algorithm is used to extract the typical scene set, which is a common
method to improve the computing speed and ensure that the energy storage configuration
covers sufficient uncertainty features [93]. In addition, some scholars have proposed the
application of chance-constrained programming in this field, that is, transforming the
traditional optimization into an optimization method where the probability of meeting
the constraints is higher than a certain confidence level [94]. As it is neither economical
nor practical to control the optimization objective with complete precision through energy
storage configuration, this method reflects the minimum probability of meeting the chance
constraints and the level of risk taking of the manager, which illustrates the nature of the
uncertainty configuration method from another perspective.

The above-mentioned configuration methods can not only be used alone, but also can
be combined to establish a more complete model to describe the energy storage configura-
tion problem [62,77,81,87]. In conclusion, no matter what configuration method is used, the
key is to combine the application scenario of energy storage and its optimization objectives
for a comprehensive analysis of the problem.

3.2. Solving Algorithm

According to the mathematical model established for optimal configuration of energy
storage, the solving algorithms can be divided into traditional optimization algorithm
and intelligent optimization algorithm. Traditional optimization algorithms are generally
designed for structural problems, with specific descriptions of problems and conditions,
such as linear programming, quadratic programming, integer programming, mixed pro-
gramming, with and without constraints, etc. [42,44,53]. According to the above method,
because of its clear structural information and relatively fixed parameters, the computa-
tional complexity and convergence can be analyzed theoretically. Many traditional opti-
mization algorithms belong to the category of convex optimization and have the unique
global optimal advantage, which is very simple and reliable when dealing with small-scale
single-objective problems.
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However, the decision variables of optimal allocation of energy storage are often
continuous variables, pursuing single or multiple objectives, and the constraints generally
include linear constraints, nonlinear constraints, equality constraints, inequality constraints,
etc., so the configuration models are often multi-objective and nonlinear mathematical
models. In this case, the calculation of the traditional optimization algorithm is extremely
complex, and the calculation speed and convergence are often not up to the requirements.

Therefore, intelligent algorithms such as GA [8], PSO [34], SA [40] and their improved
algorithms have been rapidly applied and developed in the field of energy storage configu-
ration. Generally, the intelligent optimization algorithm aims at the universal description
of the problem and usually pays little attention to the structure information. For the multi-
extremum problem, the intelligent optimization algorithm can achieve a good balance
between jumping out of the local optimal and converging to a point through the effective
design of its parameters, so as to find the global optimal. In addition, in order to obtain the
global optimal solution and ensure the results within an acceptable time, after the energy
storage configuration model is built, it is necessary to first test whether the model is a
convex function. If not, it can be converted into a convex function by various approximation
and relaxation means and then further call the commercial solver for solving [59].

However, most intelligent optimization algorithms are heuristic algorithms, which
can be qualitatively analyzed but are difficult to prove quantitatively. Moreover, most algo-
rithms are based on random characteristics, and their convergence is generally probabilistic,
so the actual performance is not controllable. At the same time, there may be shortcomings
such as single individual, precocious or local optimum, and if the data sample is too large,
the solution may be too time-consuming or difficult to solve. Therefore, it is still the focus
of current research to improve this kind of algorithm and make it have better convergence
and efficiency in energy storage optimization allocation. In view of the existing prob-
lems, linearization of objective function and constraint conditions and transformation of
multi-objective problems into single-objective problems are effective solutions.

There must be differences in the complexity and application fields of various algo-
rithms. Corresponding algorithms should be designed for specific problems, and various
algorithms should be improved or combined to better balance the local and global search
ability when solving the corresponding problems [31,47,76]. Therefore, how to improve
the computational efficiency of the algorithm, achieve large-scale, multi-objective and
high-dimension optimization and how to seek and measure the global optimal solution are
still the aspects of algorithm optimization that need further research.

4. Conclusions

In this paper, the state-of-the-art research progress in energy storage application sce-
narios, modeling method and optimal configuration strategies on power-generation side,
grid side and user side are summarized according to the latest published literature. The
mathematical models and optimization algorithm on the energy storage configuration for
various application scenarios are comparatively analyzed and summarized. On this basis,
the shortcomings that still exist in energy storage configuration research are summarized,
and the future research directions and innovation points for energy storage configuration
are prospected. This review can provide a reference value for the state-of the-art devel-
opment and future research and innovation direction for energy storage configuration,
expanding the application scenarios of distributed energy storage and optimizing the
application effect of distributed energy storage in the power system.
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Nomenclature

DG Distributed generation LVRT Low voltage ride-through
PV Photovoltaic AGC Automatic generation control
SCES Supercapacitor energy storage SOC State of Charge
SMES Superconducting magnetic energy storage GA Genetic algorithm
AC Alternating Current PSO Particle swarm optimization algorithm
DC Direct Current SA simulated annealing algorithm
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