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Abstract: The electrical grid is gradually transitioning towards being an interconnected area of
the smart grid, where embedded devices operate in an autonomous manner without any human
intervention. An important element for this transition is the energy demand prediction, since the
needs for energy have substantially increased due to the introduction of new and heavy consumption
sources, such as electric vehicles. Accurate energy demand prediction, especially for short-term
durations (i.e., minutes to hours), allows grid operators to produce the substantial amount needed to
satisfy the demand–response equilibrium and avoid peak electricity load conditions that may also
lead to blackouts in densely populated areas. However, to achieve such an accuracy level, machine
learning (ML) models require extensive training with historical measurements, which is usually
resource intensive (e.g., in memory and processing power). Hence, deriving accurate predictions for
short-term energy demands is challenging due to the absence of external factors such as environmental
data from different regions and seasons and categorical values such as bank/bridging holidays in
the ML model. Additionally, existing work focuses on ML model execution on Cloud platforms,
which usually does not satisfy the real-time requirements of grid operators for short-term energy
demand predictions. To address these challenges, this article presents a new method that considers
environmental factors and categorical values to build an energy profile for each consumer in a
multi-access edge computing (MEC) framework. The method is also based on the Temporal Fusion
Transformer (TFT) ML model, which allows it to learn the temporal dependencies of the gathered
historical measurements and predict energy demands with satisfying accuracy. The method is applied
to a home energy management system testbed containing photovoltaic systems, smart meters, sensors
and actuators for detecting environmental factors (i.e., temperature, humidity and radiation) as well
as energy storage systems as an additional energy supply source. The MEC framework is deployed
in data concentrator devices where the TFT ML model is executed with low resource requirements,
ensuring additional security as the data do not leave the location where they are produced.

Keywords: energy forecasting; multi-access edge computing; Temporal Fusion Transformer; home
energy management system

1. Introduction

Internet of Things (IoT) technologies allow low-resource embedded devices to use
sensors, actuators and network interfaces for exchanging data and making decisions
autonomously based on embedded intelligence, hence avoiding any human intervention.
Recent developments in the Industrial Internet of Things [1] aim to enable automation [2] at
a large scale by combining processes, devices and supporting technologies with advanced
information and communication technology. The devices can vary from small wireless
devices to large systems, communicating locally among themselves or over networks to
cloud servers.

IoT technologies are applied in different domains, such as connected vehicles, health-
care and the electrical grid. Their application in the electrical grid aims to interconnect
the loosely connected grid segments, i.e., the power production, distribution, transmis-
sion and consumption in households. The interconnection aims to increase intelligence
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and gradually form a highly integrated and autonomous smart grid [3]. The smart grid
advances the traditional electrical grid by introducing IoT-based technologies, such as:
(1) advanced metering infrastructure, which is based on smart meters, (2) distribution
automation using sensors and remote switches to respond to power outages and optimize
load balancing, (3) renewable energy source integration, such as solar and wind, (4) energy
storage mechanisms to store excess energy during periods of low demand and release it
during peak demand, (5) demand response scenarios to optimize energy consumption
and reduce peak loads and finally, (6) the integration of electric vehicles and charging
infrastructure resources.

All the technologies that are forming the smart grid, though, have a common de-
nominator: the reduction in peak grid demands, which may lead to blackouts in entire
neighborhoods and areas. To achieve such a reduction, the electrical grid operators, espe-
cially in the production and distribution segments, should be aware of all the historical
consumption data from each area as well as the consumer behavioral patterns and char-
acteristics. Then, based on the environmental factors, i.e., weather conditions, algorithms
should be developed to forecast consumption in different periods. Specifically, electric
energy forecasting can be performed for short-term, middle-term or long-term periods.
These periods differ in terms of the planning potential, including the grid resources, that is
offered for the electrical grid operators, i.e., short-term periods predict minutes to hours,
medium-term periods usually predict days up to a couple of months and finally, the long
term predicts periods larger than 3 months and up to one or several years.

Nevertheless, the main challenge for achieving accuracy in energy demand forecasting
lies in the variation in meteorological conditions and the energy habits of consumers. To
this end, smart meter data combined with an even more diverse set of data inputs from
environmental sensors, including temperature, humidity and radiation measurements,
can provide an unprecedented holistic view to grid operators and simultaneously enable
better operational decisions, especially for areas with high energy demands, such as com-
mercial/industrial buildings or locations with electric vehicle chargers. The challenge
is augmented when other technologies of the smart grid are considered, such as solar
photovoltaic (PV) and wind turbine renewable energy systems combined with energy
storage systems [4]. These electricity production sources have a highly variable output that
complicates grid management in order to achieve the required overall grid stability.

Several methods have been proposed for addressing this challenge, including statistical
models such as the autoregressive integrated moving average (ARIMA) [5], ML models
such as support vector machines [6], and ensemble methods [7], which combine these
with environmental factor (e.g., weather) models. The accuracy of these models depends
on the quality and the availability of gathered data, as well as the specific environmental
conditions and consumer habits of the area to which these models are applied. Hence, the
models should be calibrated and executed close to the area where the data are gathered.
Additionally, forecasting models are currently trained and executed in centralized data
centers, which may increase the processing time and the real-time availability of the
forecasts for short-term periods. The recent adoption of multi-access edge computing
(MEC) technologies [8] allows us to perform data analysis and computations locally at the
edge level using dedicated embedded devices with processing, memory and storage layers.
Furthermore, existing frameworks are being developed to support technologies such as the
EdgeX Foundry [9].

In this article, a new prediction method is proposed to aid in the resolution of the
challenges of short-term energy demand prediction. The method is based on data col-
lected from different sources as well as their aggregation and forecasting analysis using
a prediction model based on the Temporal Fusion Transformer (TFT) [10] and deployed
in an edge device using an MEC architecture. The method is illustrated in a home energy
management system (HEMS) testbed where different sensors for temperature, humidity
and radiation, along with other smart grid components such as smart meters, a PV system
and a battery storage system, are deployed. The HEMS testbed is then used for short-term
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load and generation forecasting, and the data being used for future prediction are smart
meter and sensor measurements with a 10 min frequency interval, representing the result
of energy consumption data gathering in the testbed throughout an entire year. Concretely,
this article has the following contributions:

• A novel MEC-based framework for the automated collection of all the necessary
data, including historical electricity consumption, temperature and humidity of each
household, is used for training the prediction model.

• A prediction model for short-term energy demand prediction using as a basis the TFT
architecture and ML mechanisms and deployed in an edge device, which ensures
security as the data do not leave the location where they are produced.

• Validation of the proposed method by deploying the introduced framework and the
prediction model in a HEMS testbed.

The rest of the article is organized as follows. Section 2 provides an overview of the
energy forecasting methodology, including the forecasting categories and the forecasting
focus, and analyzes related work in the forecasting field. Then, Section 3 presents the
forecasting method by focusing on the developed framework as well as the prediction
model with TFT. The method is afterwards validated in a HEMS testbed in Section 4,
and a prediction of the electricity demand is derived through the conducted experiments.
The benefits of the method along with its limitations are then compared in Section 5
against similar work for short-term energy demand forecasting. Finally, Section 6 provides
conclusions and some perspectives for future work.

2. Background
2.1. Energy Forecasting Overview

Energy demand forecasting is an extremely important technology for electrical grid op-
erators, including power plant production personnel, distribution system operators (DSOs)
and further electricity market participants. Satisfying the demand–response equilibrium is
vital for avoiding electricity demand peaks that would require significant time and effort
to analyze and adequate electricity flexibility from the DSO’s side to avoid consequences
such as blackouts. Furthermore, in the current electrical grid state, existing battery stor-
age systems can only sustain energy for a limited timeframe and also cannot cope with
heavier load appliances, such as air conditioning systems, washing machines or electric
vehicles. Hence, the electricity demand has to be satisfied in real time for different types of
customers, including: (1) low-voltage households, (2) medium-voltage distribution areas
and (3) high-voltage commercial and industrial business areas (e.g., manufacturing systems
providers, hospitals and banks). For all consumer types, there are four main categories of
forecasts based on the time period that is predicted ahead:

• Very short-range (minutes to 1 h) forecasts are required in monitoring a system (load
or generation) to detect anomalies. The forecasting model is assumed to represent the
normal operation of the system, and large deviations from the predicted value can be
considered anomalies.

• Short-range forecasts (1 to 6 h) are useful in cases where the load is expected to
fluctuate and additional (distributed) generation capacity must be brought in in real
time. Additionally, a short-term load forecast (STLF) is very useful for energy retailers
and distribution system operators.

• Medium-range forecasts (a few days up to 1–2 months ahead) are useful for demand-
side management, where energy consumers are asked to modify their loads when
demand peaks or generation excesses are expected. Furthermore, with the advent of
energy auctions, predicting loads and generation capacities with a medium-term load
forecast (MTLF) helps actors make decisions to minimize their financial risk. This is
mainly useful for renewable sources that are highly variable.

• Long-range forecasts (longer than 3 months and up to years) are useful for grid
resource planning. Specifically, a long-term load forecast (LTLF) is generally used
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for planning and investment probability analysis, determining upcoming sites or
acquiring fuel sources for production plants.

Based on the business operation of electricity markets on a daily basis, the most
valuable category of electricity load forecasting is currently STLFs [11]. Figure 1 depicts a
reference smart grid architecture based on [12], focusing on the exchanged data as well as
illustrating where an STLF is positioned and applied in the architecture.
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Specifically, STLFs are performed in areas near distribution transformers using compo-
nents that are called data concentrators [13]. The concentrators gather energy consumption
data from smart meters (i.e., current, voltage, active and reactive power). Smart meters
are installed in each household within the neighborhood areas that are served by the
distribution transformers. Concentrators have an embedded architecture with resource
constraints on processing power and storage memory. Storage memory is used as a ded-
icated database for the pre-processing and analysis of the smart meter data. After an
initial analysis and STLF model training and execution for the prediction, the data, along
with the predictions, are forwarded to the utility data control center (Figure 1). In this
control center, utilities have adequate resources to allow the training and execution of
MTLFs and LTLFs, which require a considerably larger amount of historical data and hence
heavier processing power and memory resources. Moreover, in all forecasting time periods,
satisfactory prediction accuracy is achieved when the data are coupled with environmental
data related to temperature, radiation and humidity.

Even with the availability of such data, though, STLF is quite challenging due to:
(1) the variations in terms of the environmental conditions in the area where it is applied
and (2) the electricity usage profile of each consumer household. Hence, the electricity usage
is different for each working day of the week as well as during the weekend. Moreover, it
also varies during the day, i.e., some consumers may usually schedule the use of heavy-
load appliances such as electric vehicle chargers and washing machines during the night
(electricity load and price are lower), but on occasions when they need these devices, they
may also use them during the day. Furthermore, seasonal impacts also have a strong
influence on electricity demand. As an example, during extremely hot or cold conditions,
the heating or air conditioning are heavily used. Additionally, when household residents
are absent during bank/bridging holidays, energy consumption is much lower.

Finally, to measure the energy demand prediction performance in all forecasting
time periods, there are different metrics that are generally used for ML-based time series
forecasting [14]. Of these metrics for energy demand forecasting, the selection is based on
three criteria: (1) overall magnitude of the errors in the forecast (e.g., large errors have to
be considered and minimized), (2) weight of outliers should be minimized and (3) easy
interpretation of the metric results by the reader for the difference between actual and
forecasted values. Based on these criteria, two basic metrics are selected for measuring the
STLF prediction accuracy, which are presented in the following equations. Additionally, in



Energies 2023, 16, 5435 5 of 20

these equations, y is the observed variable and ŷ the corresponding predicted variable over
a set of samples of size N:

(1) The mean absolute error (MAE) = ∑N
1 |y−ŷ|

N , which is the average magnitude of the forecast
errors and is measured as the average of the absolute error values. Furthermore, the
MAE illustrates the inaccuracy that is expected from the forecast on average [15].
Specifically, the lower the MAE value, the better the model. Hence, a model with
MAE = 0 indicates that the forecast is error-free.

(2) The root mean squared error (RMSE) =
√

∑N
1 (y−ŷ)2

N , which is the square root of the mean
squared error (MSE), allowing us to measure the square root of the average of the
squared differences between the actual and predicted values [15]. RMSE is always
non-negative, and a value of 0 would indicate a perfect fit to the data. In general, the
lower the RMSE, the better the fit of the model.

(3) The mean absolute percentage error (MAPE) = 1
N ∑N

1
|y−ŷ|

y , which allows us to measure
the average percentage difference between the actual and predicted values in a time
series model [16]. Apart from considering this difference, it further divides it by the
actual value, allowing us to compare forecasts across different time series as well as
on different scales. Usually, the result of the division and the average computed value
are provided as a percentage; hence, they are multiplied by 100%.

The following section provides background work in the energy demand forecasting field.

2.2. Related Work

The energy demand forecasting field has been extensively investigated with differ-
ent ML-based methods in the literature over the last years. The related work in this
field is summarized in Table 1 and includes the domain to which the forecasting is ap-
plied, the method used to perform the forecasting and the data used to train the models
for forecasting.

Table 1. Summary of related work.

Paper Domain Method Dataset

S. S. Rangapuram et al. [17] Time series forecasting Deep neural networks Historical power consumption
and traffic samples

A. Alaa et al. [18] Time series forecasting Deep neural networks Healthcare samples

S. Makridakis et al. [19] Time series forecasting Deep neural networks Various including finance and
demographic

C. Fan et al. [20] Time series forecasting Recurrent neural networks
with attention-based methods Various including healthcare

S. Li et al. [21] Time series forecasting
Recurrent neural networks

with Transformer-based
models

Historical power consumption
and traffic samples

R. Wen et al. [22] Time series forecasting Ensemble methods Historical power consumption
and electricity price

J. Koutnik et al. [23] Time series forecasting Ensemble methods Audio samples

B. Bosco et al. [24] LTLF demand forecasting Regression models Historical power consumption
and electricity price

J. Janczura et al. [25] LTLF demand forecasting Regression models Historical power consumption
and electricity price
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Table 1. Cont.

Paper Domain Method Dataset

S. Trueck et al. [26] LTLF demand forecasting Regression models Historical power consumption
and electricity price

C. Sigauke et al. [27] MTLF demand forecasting Univariate methods Historical power consumption
and electricity price

F. Lisi et al. [28] LTLF demand forecasting Regression models Historical power consumption
and electricity price

J. Taylor et al. [29] MTLF demand forecasting Exponential smoothing Historical power consumption

J. Taylor et al. [30] STLF demand forecasting Exponential smoothing Historical power consumption

A. Clements et al. [31] MTLF demand forecasting ARIMA Historical power consumption

M. Ismail et al. [32] STLF demand forecasting ARIMA Historical power consumption

J. Hinman et al. [33] STLF demand forecasting ARIMA Historical power consumption,
weather conditions

Y. Feng et al. [34] MTLF demand forecasting ARIMA Historical power consumption,
weather conditions

R. M. A. Weron et al. [35] LTLF demand forecasting ARIMA Historical power consumption,
weather conditions

E. Yukseltan et al. [36] Energy demand forecasting Parametric regression Historical power consumption

Y. Yang et al. [37] STLF demand forecasting Ensemble methods Historical power consumption

Albahli, S. et al. [38] LTLF demand forecasting Extreme Gradient Boosting
(XGBoost) Historical power consumption

Li, D et al. [39] STLF demand forecasting Temporal Fusion Transformer Historical power consumption

The works that are presented in this table are also detailed in the following part. Specifi-
cally, deep neural networks (DNNs) exhibit considerably improved performance and accuracy
in time series forecasting in comparison with traditional time series models [17–19]. Moreover,
recurrent neural networks (RNNs) are enhanced with attention-based methods [20] and
transformer-based models [21] to improve the prediction based on a deeper analysis of
historical data over different time periods. Further improvements have been introduced
recently in time series forecasting models based on ensemble methods combining the exist-
ing models with techniques that provide performance improvements and faster training
times [22,23]. However, all these models do not consider the different types of external factors
such as environmental conditions that have a significant impact on forecasting accuracy.

By focusing on the energy demand forecasting challenge, significant literature work
has been performed for all the categories of forecasts using a variety of models [24–28].
Specifically, the authors in [29,30] have proposed exponential smoothing techniques that
capture dependencies in energy demand. STLF and MTLF demand forecasting models are
based on time series of historical data for energy consumption, where ARIMA models are
applicable. Different variations of ARIMA have been proposed in the literature for STLFs,
including the Double Seasonal ARIMA (DSARIMA) model, the Double Holt (Winters
(D-HW) model) and multiple equations time series (MET) [31,32]. Forecasting accuracy
and performance are very crucial criteria to ensure the effectiveness of these models; hence,
existing work focuses on external factors such as environmental conditions, which are
included in the ARIMA models to improve these criteria [33–35]. Apart from ARIMA,
though, regression models can also be used, such as the parametric regression model
proposed in [36] to forecast the energy in the Turkish market. Finally, ensemble methods
are very promising for energy demand forecasting in terms of accuracy and performance,
such as in [37], which introduces a combination of SARIMA and the back propagation
neural network (BPNN) model.
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Finally, related to the dataset availability for training ML-based models, there are
several electric energy datasets in the public domain. Unfortunately, most deal with long-
term, large aggregates of power demand or generation. For demand modeling, the available
datasets contain no other exogenous information (e.g., weather, user behavior, household
occupancy, etc.), therefore limiting the possible accuracy of the models.

3. Proposed Method for Energy Demand Forecasting

The main challenge that is faced in forecasting energy demand lies in the fact that
forecasting a future value is usually not enough. Specifically, actual values depend on
many environmental parameters that can be seasonal or stochastic. Since decisions on the
electrical grid operation have very high economic value and may impact a large percentage
of the population, we need to limit our risk. This can be accomplished by knowing the
prediction interval of the forecast. This interval allows quantification of the accuracy of
the prediction, including probabilistic upper and lower bounds for estimating the future
energy demand value as an output of the edge-based prediction model. Even though the
forecasting models that are also provided in the related work of Section 2.2 may have an
interval that is close to the future value, an STLF requires extremely high accuracy to be an
effective tool for grid operators. Hence, the challenges that are present in the development
of a forecasting model are:

• The energy demand is formed based on a multi-variate time series since, apart from
the historical energy consumption measurements, it depends on a variety of evolving
external factors (i.e., environmental values) such as temperature, humidity, radiation, etc.

• Categorical values should also be considered in the model, such as bank/bridging
holiday periods that influence the historical energy consumption.

• The prediction accuracy that the model should reach has to be high, but its specific
level must be carefully selected. In particular, even though the accuracy is increased
by incorporating external factors, it might not be adequate for an STLF utility oper-
ation tool, and hence the model might need to be retrained and executed with the
latest energy consumption measurements. However, very frequent model execution
may lead to exhaustion of available resources (e.g., memory and processing power),
especially at the data concentrator level.

Considering these challenges, we have developed a framework that can be deployed
at the data concentrator level and whose architecture is presented in Section 3.1. The
framework relies on an ML-based prediction model, which is detailed in Section 3.2.

3.1. Framework Architecture

The framework that was developed for providing a potential solution to the chal-
lenge of energy demand forecasting is based on a MEC-based architecture along with
the underlying technologies [8]. The reason for choosing such technologies is that the
data concentrators have resource constraints at the processing, storage and network data
exchange levels. MEC technologies provide a software architecture where the data gathered
from embedded devices (i.e., sensors/actuators) are processed and then actual verdicts are
reached. Such verdicts subsequently lead to autonomous actions, such as informing energy
utility operators about potential loads in certain areas and performing corrective actions to
avoid them. Moreover, by using the MEC architecture, data storage can be performed at
the data concentrator level, as only the necessary measurements for training the prediction
model (Section 3.2) are kept, thus avoiding memory or cache overflow issues. Overall, the
framework allows STLF applications to be built and deployed in data concentrators by
maintaining a real time and critical operations.

Furthermore, the presence of an edge platform ensures less communication latency
since the edge resources are closer to the embedded devices and the data are only exchanged
with them. Additionally, performance improvements are observed due to the reduced
processing actions for the embedded IoT devices. In this case, the processing is handled by
edge resources, and the processing result is returned to the embedded devices. Hence, in
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this work, the developed framework is based on an edge platform, where the forecasting
is performed using a prediction model (Section 3.2). The architecture of the developed
framework is based on three main layers (depicted in Figure 2):

(1) Device layer: This layer consists of smart meters and embedded devices that are
employed in order to gather data such as temperature and humidity, which aid in
training the prediction model. Specific data that are collected also include: (a) inside
and outside surface temperatures as well as indoor air temperature; (b) recorded
schedules of occupants, equipment and lighting; (c) recorded weather profiles and
household heating and cooling demands.

(2) Service layer: This layer is used to provide auxiliary services for the framework,
including the storage of the collected data. Specifically, the historical data from the
smart meters and the embedded devices of the device layer are stored in dedicated
storage databases for later processing, which enables the training of the prediction
model based on the occupants’ behavior. MQ Telemetry Transport (MQTT) topics are
used to subscribe in these databases and are implemented using the Mosquitto client
and server mechanisms [40]. Additionally, this layer is used to provide metadata
about the framework related to its capabilities (CPU, storage, networking, etc.) as
well as the framework registries and configurations.

(3) Application layer: This layer includes the prediction model, which uses dedicated
subscription topics to consume the data that are available in the service layer and then
initiate the training phase for energy demand predictions.
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Overall, the layers of the architecture are implemented using EdgeX Foundry [9],
an open-source framework from the Linux Foundation that enables the development
of interoperable edge computing solutions for the Internet of Things (IoT) ecosystem.
Furthermore, it provides a standardized platform for managing and orchestrating edge
devices, data and applications, allowing for seamless integration and interoperability across
different hardware and software components.

3.2. Prediction Model

The prediction model that is proposed in this article is based on the Temporal Fusion
Transformer (TFT), which is a prominent ML-based solution developed by Google for
energy demand forecasting [10]. The TFT is a deep learning model designed for time series
forecasting. It combines two powerful architectures: (1) Transformer and (2) Temporal
Fusion Decoder (TFD). Figure 3 shows the high-level architecture of the Temporal Fusion
Transformer (TFT), as presented in [10].
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Initially, the Transformer architecture can capture long-range dependencies in se-
quential data. It consists of an encoder–decoder structure with self-attention mechanisms,
which allow the model to focus on different parts of the input sequence when making
predictions. Then, the Temporal Fusion Decoder (TFD) is specifically designed for time
series forecasting. Hence, it incorporates several modules to handle the temporal na-
ture of the data, including autoregressive encoding, temporal convolutional layers and
gating mechanisms.

The TFD model can capture both short-term and long-term temporal dependencies
in the data, enabling accurate predictions. The TFT uses the Transformer to encode the
temporal features of the time series data and generate context vectors, which are then
fed into the TFD for forecasting. The TFD takes the context vectors as input and applies
temporal convolutions and gating mechanisms to generate the final predictions. Therefore,
by combining the Transformer and TFD architectures, the TFT prediction model can capture
both global and local temporal dependencies in the time series data, making it well-suited
for accurate forecasting tasks. Additionally, to ensure accuracy in forecasting the energy
demand, the model that is employed for the TFD is based on long short-term memory
network (LSTM) layers [41]. LSTM is chosen as the technique due to its capability of
learning long-term dependencies.

The TFD uses a series of layers for learning the temporal relationships of the input
data, including energy consumption measurements and environmental conditions from
temperature, humidity and radiation sensors/actuators. More specifically, utilizing local
contexts in time series data can enhance the identification of significant points, including
anomalies, change points and cyclical patterns, by considering their surrounding values.
By constructing features that incorporate pattern information along with individual data
points, attention-based architectures can achieve better performance improvements.

For instance, in [42], a sole convolutional layer is employed to enhance locality by
extracting local patterns using a consistent filter across the entire time span. Nevertheless,
this methodology may not be suitable when dealing with cases where the observed inputs
differ in terms of the number of past and future inputs, which is common for energy
consumption measurements as each household exhibits a different consumption pattern
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and this may also vary over time. To overcome this challenge, a sequence-to-sequence
model is utilized that inherently accommodates these variations by feeding data into both
the encoder and decoder components. Subsequently, a collection of uniform temporal
features is produced, which are then fed as inputs into the TFD. To ensure comparability
with widely employed sequence-to-sequence baselines, our method is based on the use
of an LSTM encoder–decoder, although alternative models could also be considered. This
approach also serves as a substitute for conventional positional encoding, offering a suitable
inductive bias to preserve the temporal order of the input measurements.

Following the linear transformation of the output obtained from the TFD, the genera-
tion of quantile forecasts takes place. These forecasts are designed as prediction intervals
that encompass future time intervals in addition to point forecasts. To achieve this, multiple
percentiles (such as the 10th, 50th and 90th) are simultaneously predicted at each time step.

4. Demand Forecasting in a Home Energy Management System

A home energy management system (HEMS) was set up for testing the proposed
method and the accuracy of the TFT prediction model presented in Section 3. The HEMS
system includes solar plants (photovoltaics), temperature and humidity sensors, as well
as energy storage batteries (lithium iron phosphate - LFP technology) with a battery
management system (BMS) as well as direct current/alternate current (DC/AC) inverters
for energy storage. The batteries were initially manufactured by the Sunlight Group
(https://www.the-sunlight-group.com/en/global/), a Renewable Energy Semiconductor
Manufacturing company industrial with factories in Athens and Xanthi, Greece.

A hybrid home resident scenario consisting of a real resident home as well as multiple
emulated ones is used to demonstrate a complete smart grid energy flow. Specifically, the
flow starts with energy production and continues with its allocation to the distribution
substations until it is finally consumed by scenario residents. Moreover, the BMS system
ensures that the energy equilibrium between demand and response is always sustained
and that the energy from batteries is not drained. Additionally, apart from storing the
energy, the batteries also allow the residents to use the energy in real time, for example,
when sunlight is present, and the photovoltaics are charging them. Moreover, the HEMS
testbed uses smart meters for measuring energy consumption and derives profiles for each
resident. On the production side, the HEMS system is fed loads from the electrical grid as
well as the home PV system. Furthermore, controllers are also used, such as programmable
logic controllers and a supervisory control and data acquisition (SCADA) system, for diag-
nostics and fault detection. The architectural overview of the HEMS testbed is illustrated
in Figure 4.

The EdgeX Foundry framework for the collection of sensor data from the temper-
ature and humidity sensors, as well as the prediction model for the HEMS testbed, is
deployed in the command and control (C&C) workstation (Figure 4). The HEMS system
allows monitoring of the building behavior (receiving information and statistics) for the
consumed/produced energy. Our target is to receive detailed knowledge about energy
consumption and production profiles and the smart control of the household via the pro-
posed method. Additionally, the deployment of the EdgeX Foundry framework enables
optimal scheduling over the appliances of the HEMS system. The dashboard interface of
the EdgeX Foundry framework is also depicted in Figure 5, which is setup to receive the
measurements from the temperature and humidity sensors of the HEMS testbed.

https://www.the-sunlight-group.com/en/global/
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The MEC framework was deployed in a data concentrator device in the HEMS
testbed, which included a 1.66 GHz dual core processor, 3 GB of RAM and 256 GB of SSD
storage memory.
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4.1. Dataset Preparation

This section describes how the input data for training the prediction model were first
gathered and then explains the pre-processing step that was followed in order to select the
parameters employed for training.

4.1.1. Input Data Collection

The input data gathered for training the prediction model are based on the energy
supply ID of each household over a period of the last four years. This selection was made
(1) to demonstrate the method’s scalability in terms of data storage within an edge device
(i.e., a data concentrator) and (2) to have sufficient measurements for training the TFT
model, which also allows better accuracy in the predictions. Moreover, they include all the
latest measurements from the HEMS testbed by using the MQTT subscription topics of
EdgeX Foundry. The gathered data are divided into three categories:

(1) Sensor data, gathered from the sensors (i.e., temperature, humidity and radiation);
(2) Smart meter measurements, from the smart meters (e.g., active/reactive power);
(3) Categorical values, which are related to geographical data from each household and

significantly impact the consumer energy profile. Such data are gathered based on
manual consumer questionnaire answers upon deploying the proposed framework in
their household.

The reactive power of the second category is computed based on active power by
including reactive elements like inductive or capacitive loads in the household. It is
measured in volt-ampere reactive (VAR) and calculated based on the reactive elements
present in the household. The power factor indicates the ratio of real power (active power)
when compared with the total power (apparent power) in an electrical system. It ranges
between 0 and 1, where a power factor of 1 signifies a purely resistive load and a power
factor less than 1 indicates the presence of reactive elements. Concretely, it is calculated by
the following equation:

Reactive Power (RP) = S x
√

1− PF2)

where S indicates the apparent power (measured in volt-amperes), which is equal to the
active power (P) divided by the power factor (PF). Specifically:

Apparent Power (S) =
P

PF

The average power factor for many household appliances and devices is around
0.9 to 1.0. Specifically, power factors close to 1.0 indicate that the load is primarily resistive,
meaning it consumes mostly active power and has minimal reactive power.

Before proceeding to data preprocessing, an exploratory data analysis (EDA) step
was followed. During the EDA, data are analyzed and visualized to understand patterns,
explore correlations and dependencies between the variables and summarize the main
characteristics of the dataset. Then, the feature selection process takes place, where a subset
of the features that are the most informative and have a significant contribution to the STLF
prediction model is selected. This reduces the dimensionality of the dataset and improves
the model’s performance by focusing on the most important features.

Upon finishing the EDA analysis, the input parameters for the prediction model are
selected. The parameters that constitute the STLF dataset, along with their sample values,
are provided in Table 2. The parameters are divided into the aforementioned categories
and the common reference for them is the energy supply ID, which is unique for each
household and provided as an anonymized example value in the table for security and
data privacy issues.
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Table 2. Dataset input parameters overview.

Parameter Category Description Example

Energy supply ID Generic Unique energy supply ID
(anonymized) 4qxiUAKo2BHN8p/RXfiXag==

Timestamp Sensor data Date and time of
measurement 3

Indoor temperature Sensor data Indoor household
temperature 22 degrees Celsius

Outdoor temperature Sensor data Outdoor air dry-bulb
temperature 32 degrees Celsius

Relative indoor humidity Sensor data The humidity percentage
inside the household 30%

Relative outdoor humidity Sensor data The humidity percentage in
the external environment 40%

Radiation Sensor data Global horizontal radiation 800 watts per square meter
(W/m2)

Active power Smart meter measurements
The real energy consumption
from the household in
kilowatts (kW)

5910 kW
(1600 watts (morning) + 1250
watts (afternoon) + 2700 watts
(evening) + 360 watts (night))

Reactive power Smart meter measurements
The unused power in the lines
that is consumed by the
household in kilowatts (kW)

2858.51 VAR

Voltage Smart meter measurements Average voltage (volts) 230 V

Current intensity Smart meter measurements Average current intensity
(amperes) 25,695 A

Electrical appliances Categorical values List of basic electrical
appliances in the household

Electric hobs
Oven
Refrigerator
Washing machine
TV

Primary heating system Categorical values
The type of the primary
heating appliance the
household uses

Air condition

House year built Categorical values The year the house was built 1975

Floor number Categorical values The house floor 2nd floor

Heating water appliance Categorical values The appliance used to heat
water Electric water heater

Household type Categorical values The type of the building Detached house

For the above table, the reactive power was calculated based on an average active
power consumption of a household (5910 kW). First, the apparent power (S) is computed
as 6566.67 VA using a 0.9 power factor. Then, using the above formula, the reactive power
is computed as 2858.51 VAR.

Given that the data were collected from the sensors and the smart meters every
minute, there were 5,256,000 records per year for each household, as well as 7 more records
including six categorical values and one generic value for the energy supply ID. Each record
was occupied by 50 bytes of storage, thus resulting in a total of 250 MB of data storage for
each household. Moreover, as the datasets were collected for the last four years, a total
size of 1 GB was required for storage memory by the data concentrator device where the
proposed MEC framework was deployed. Such a size was adequate for storing and later
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processing the data from the HEMS testbed. The datasets were then placed in a PostgreSQL
database of the storage layer, a fragment of which is presented in Figure 6.
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The measurements in this figure are also taken from the GuruX AMI library [42],
which is also deployed in the HEMS testbed for storing measurements and scheduling data
and events from the smart meters. The forecasted values from the prediction model can
also be presented in the AMI library, as they are linked to energy measurements, i.e., the
forecasted active and reactive power for the consumption of the HEMS testbed.

As a final remark and to facilitate the reader’s understanding, the selection of the
dataset timeframe that was made for the HEMS testbed, i.e., four years, was indicative of
sufficient training measurements. The framework has the ability to stop data collection and
start retraining based on user input, which means that it can be performed in periods less
than a year, i.e., on a monthly or even daily data collection basis.

4.1.2. Data Preprocessing

Upon data gathering from the sensors/actuators and the smart meters, necessary
preprocessing is applied, which is a vital step in data analysis. Entries with duplicate or
incomplete values are removed as they may give an incorrect interpretation of the overall
statistics. Outliers and inconsistent data points are removed as well. Data preprocessing
involves steps to transform or encode the data so that it can be easily manipulated by a
machine. This ensures that the framework and the underlying model are accurate and
precise in their predictions, as the features of the data are easily interpreted.

Then, we performed a correlation analysis to identify if the parameters of the dataset
are highly correlated with each other, in which case a multivariate method would be used
as the features are likely to be affected by the same underlying patterns and outliers.
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Following the correlation analysis, the four-year household dataset is split into a three-
year training set and a one-year test set and down-sampled into 10 min increments to match
the smart meter dataset. Hence, it was split into 80% training and 20% testing. Splitting
was performed to prevent overfitting as well as to evaluate the prediction model’s accuracy.
Then, we trained our proposed model on the data and validated it on the testing data.

Moreover, the dataset was provided to the TFT prediction model using the parameters
of Table 1 as input variables and the forecasted active and reactive power for the consump-
tion of the HEMS testbed as output variables. The model was deployed within the EdgeX
Foundry framework, and relevant MQTT topic listening processes ran constantly to receive
new data from the sensors and the smart meters. Whenever such data are received, the
framework initiates a new procedure to store them in the database of the storage layer and
form a new dataset, which will later be used as an up-to-date version for training the TFT
model. Afterwards, the TFT can initiate predictions based on the new dataset.

4.2. Experiments

The prediction model is assumed to be executed at midnight every day and produces a
forecast for the next 24 h (144 different 10-min intervals). Throughout the experiments, we
ran the model with 432 time-steps, 287 past samples, 1 current sample and 144 future sam-
ples. These correspond to 2 days of 10 min intervals for past and current observations and
1 day of 10 min intervals for prediction. The prediction model uses a stacked architecture
with three stacked layers, while the attention layer has four heads. Due to the large mem-
ory requirement for explainability processing and the use of the edge computing-based
framework, the model was not able to rank parameters in terms of their contribution to the
predictions. However, they are present and have been considered by the prediction model.
Furthermore, apart from a data concentrator device, we also deployed the framework on a
Cloud platform that is also present in the infrastructure of the HEMS testbed.

For the considered testbed, two types of forecasts are produced based on the conducted
experiments:

(1) Active and reactive power forecasts in 10 min intervals for a whole day. The model
is executed at midnight every day, producing a forecast for the next day in 10 min
intervals. This forecast would be useful to plan intra-day actions like storage allocation,
power source management for grid balancing, etc.

(2) Daily energy production forecasts. These would be useful for energy auctions and
grid balancing.

Figure 7 illustrates the predictions for 10 min power consumption as well as energy
consumption for every day of the last year in the dataset produced. Furthermore, the 50%
quantile prediction is considered the actual prediction, while the 10% and 90% quantiles
give the margin of possible power variation.

The predicted power demand of Figure 7 would be useful in a demand–response
system since it predicts the max and min power demands as well as the (approximate) time
they happen. In this case, consumers could be alerted to a pending rate change.

Additionally, Figure 8 provides insights into calculating the energy demand for daily
energy auctions or simply for making decisions to bring in new power sources in order
to balance the grid. Each data point in this figure represents the sum of all points in
forecasts, as in Figure 7 for every day of the year. The resulting MAE obtained during
the execution of the prediction model was 68 kilowatt hours (kWh) and the RMSE was
86 kWh. Furthermore, the MAPE for the prediction difference according to the actual value
was 87.88%.
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Table 3 illustrates the key performance indicator (KPI) metrics for the proposed frame-
work. The metrics include: (1) average training time for the edge-based prediction model,
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(2) average processing power, (3) storage memory for training and prediction at the edge-
level, (4) prediction accuracy in comparison with future values for energy demand and
(5) average time duration for the availability of the STLF to the utility operators at the
distribution level. The results are also compared with the respective values when the
framework is deployed directly in the utility data control center of Figure 1.

Table 3. Performance metrics of edge-based prediction framework.

KPI Edge-Based Deployment Control Center Deployment

Av. training time 15 min 29 s 15 min 58 s

Av. processing power 1.66 GHz 2 GHz

Av. storage memory 2 GB 2.5 GB

Prediction accuracy 94.1% 81.3%

Av. STLF time 1.3 s 5.7 s

In the above table, it is depicted that both the edge-based and the control center
deployments have similar average training times. More specifically, the edge-based deploy-
ment performs slightly better since it is closer to the smart meter and sensors, which are
devices providing the measurements, whereas due to communication latency issues, the
control center deployment requires more time to gather all the necessary training measure-
ments. On the contrary, the control center has an extensive amount of resources, including
processing power and storage, allowing it to score significantly higher in the processing
power KPI than the edge-based deployment. However, since the data concentrator is only
used for STLF applications, there is no impact on the resources of the edge-based device.
Additionally, the prediction accuracy for the STLF is significantly higher than the control
center deployment since, at the edge level, there is real-time availability for smart meter
and environmental measurements that can be leveraged for better training using historical
data, which subsequently leads to an increased prediction accuracy. Finally, the edge-based
deployment provides the forecast in near real-time (1.3 s) to the utility operators at the
distribution level, whereas the time that is needed to provide such a forecast in a control
center deployment is significantly higher (5.7 s). This is mainly due to the communication
latency for transmitting the forecasts to the distribution substations.

5. Discussion

This section provides the main benefits and limitations of the proposed method when
compared to similar work on energy forecasting methods. Initially, STLF prediction is
usually performed using Cloud computing platforms [43], which leverage large computing
and data storage capabilities in order to train the models using, for example, the Extreme
Gradient Boosting (XGBoost) library [38]. Even though these models have satisfying
accuracy, communication latency is added for their availability in the utility substations in
order to be used by distribution service operators (DSOs) for STLFs. Moreover, certain DSOs
employ strong security mechanisms for protecting access to the substation infrastructure
or even use virtual private networks (VPNs), which provide an added time duration for
encrypting and decrypting the data at the substation level. Furthermore, the presence of
edge devices allows scalability for STLF applications and the avoidance of a single point of
failure. Specifically, the presence of a utility data control center deployment constitutes an
important risk for the electrical network, as a potential failure may lead to a loss of data,
processing and management capabilities. The utility data control center deployment may
fail due to a potential overload or even as a result of a cyber-attack. With a decentralized
MEC architecture, an issue or fault in the utility data control center will have no impact on
the STLF application, which is executed at the substation level.

In comparison with the existing work for STLFs in Section 2, and to the best of our
knowledge, the proposed method in this article constitutes the first effort towards STLFs
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using the TFT. Furthermore, existing work in STLFs focuses on applying statistical ap-
proaches such as ARIMA [31,32] or regression [33–35] models for the analysis of smart
meter measurements, including voltage, current and active/reactive power, which allow
the capture of linear and non-linear patterns from temporal data. However, to produce
accurate and tailored predictions for each household area, including behavioral habits,
environmental variables and categorical values shall be considered in the prediction model.
Moreover, environmental variables exhibit seasonal variations and usually do not remain
constant over time. Nevertheless, this is not possible with statistical approaches such as
ARIMA models since they require that the input parameters remain constant over time and
have no variation. To cope with this challenge, this article is based on the use of the TFT as
an ML-based prediction model. Apart from its low resource consumption, the TFT aids in
identifying all the temporal relationships in the historical data that are fed into the STLF
model. Specifically, the TFT incorporates: (1) static covariate encoders as context vectors,
(2) gating mechanisms and sample-dependent variable selection for filtering the contri-
bution of unnecessary variables, (3) a sequence-to-sequence layer to allow edge-based
processing of the input energy consumption and environmental data and (4) a temporal
self-attention decoder to learn long-term dependencies that may be present within the
historical values of the gathered data. All these features facilitate the interpretation of
data, including the identification of only the necessary values for the prediction as well
as the presence of any temporal patterns in the prediction model by incorporating LSTM
encoder/decoder layers in the architecture (Figure 3).

Finally, TFT models have been introduced only recently for multi-horizon time series
forecasting in the literature [10]. Nevertheless, they have been used for MTLF predictions
over the energy load [39], where they have demonstrated substantial improvements in
forecasting accuracy as well as the incorporation of uncertainty estimation in time series
forecasting. However, the data that are used for training do not include environmental
factors and categorical values and are also performed with sufficient resources in terms of
memory, processing power and GPU availability.

6. Conclusions

This article presents a novel energy demand prediction method that is based on an
edge computing framework and the TFT prediction model for building a profile tailored to
the behavioral characteristics of each consumer. The framework is based on the Foundry
platform for gathering and analyzing data that are required for producing accurate forecasts,
such as smart meter measurements as well as temperature, humidity and radiation data
from embedded devices (i.e., sensors and actuators). The proposed method is applied on a
HEMS testbed, which includes a PV system, smart meters and a battery storage system as
an additional electricity supply unit in case of peak demands.

As a part of our future work, we plan to apply the forecasting method to a large-scale
testbed covering the area of an entire neighborhood. This will demonstrate the impact
of the method and allow us to demonstrate the seasonal dependence of the predictions.
Moreover, it will enable the prediction of electricity load demand peaks at an early stage,
i.e., before they cause blackouts. Hence, the avoidance of blackouts will provide high utility
service availability, which in turn will increase customer satisfaction and avoid manual
actions by operator personnel to restore the electricity network in such conditions. Finally,
we plan to apply an optimization model for the optimal scheduling of shiftable loads
(electric vehicles, a building energy management system—BEMS, etc.), based on day-ahead
forecasting of the power produced by the photovoltaic system and the energy demand of
the households or buildings.
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