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Abstract: Accurately predicting the power produced during solar power generation can greatly
reduce the impact of the randomness and volatility of power generation on the stability of the power
grid system, which is beneficial for its balanced operation and optimized dispatch and reduces
operating costs. Solar PV power generation depends on the weather conditions, such as temperature,
relative humidity, rainfall (precipitation), global solar radiation, wind speed, etc., and it is prone
to large fluctuations under different weather conditions. Its power generation is characterized
by randomness, volatility, and intermittency. Recently, the demand for further investigation into
the uncertainty of short-term solar PV power generation prediction and its effective use in many
applications in renewable energy sources has increased. In order to improve the predictive accuracy
of the output power of solar PV power generation and develop a precise predictive model, the authors
used predictive algorithms for the output power of a solar PV power generation system. Moreover,
since short-term solar PV power forecasting is an important aspect of optimizing the operation and
control of renewable energy systems and electricity markets, this review focuses on the predictive
models of solar PV power generation, which can be verified in the daily planning and operation
of a smart grid system. In addition, the predictive methods identified in the reviewed literature
are classified according to the input data source, and the case studies and examples proposed are
analyzed in detail. The contributions, advantages, and disadvantages of the predictive probabilistic
methods are compared. Finally, future studies on short-term solar PV power forecasting are proposed.

Keywords: predictive models; weather research and forecasting (WRF); solar irradiance; solar PV
power; renewable energy sources

1. Introduction

The energy crisis, air pollution, global warming, and other environmental issues have
stimulated the development of renewable energy, which is expected to account for about
40% of energy consumption by 2030 [1]. Solar PV power generation refers to a power
generation device that uses a PV module to directly convert solar energy into electricity
energy. This is a novel, highly promising, and comprehensive energy utilization method
with the advantages of low environmental pollution, no pollution of air and water resources,
no noise pollution, the ability to adapt to local conditions, low installation cost, and on-site
consumption when connected to the power grid. It can achieve the coexistence of power
generation and consumption and is currently one of the most promising PV technologies.
According to Rethink Energy data, in the first three seasons of 2022, the global installed
solar energy capacity increased by 54 GW, a year-on-year increase of 37.8%. The total
installed capacity in the first nine months of this year was about 142.5 GW. The forecast
shows that the annual installed capacity will reach 222 GW [2,3]. According to the latest
report from the European Photovoltaic Association SPE, the installed capacity of new
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devices in the 27 EU countries in 2022 was 41.4 GW, a net increase of 28.1 GW compared
to last year, achieving a year-on-year increase of 47%. By 2022, the cumulative installed
capacity was expected to reach 208.9 GW. According to the statistical data released by the
National Energy Administration of China, the new installed power capacity in 2022 was
87.41 GW, and by 2022, the cumulative installed power capacity was 396.261 GW.

The prediction of power generation was carried out very early due to the early es-
tablishment of a large number of solar observation stations in Europe and the United
States, more assistance from advanced technology and equipment, and the accumulation
of sufficient historical data. The main work involves the use of different predictive models
to improve forecasting accuracy, and part of the work is to summarize existing methods or
analyze their economic benefits. The methods for realizing PV power generation forecast-
ing are mainly divided into traditional predictive methods in physics and statistics, novel
forecasting methods using machine learning, optimization algorithms, and deep learning,
as well as hybrid models.

More recently, in artificial intelligence (AI) or neural network (NN) approaches, a new
short-term PV predictive method based on the artificial neural network (ANN) or recurrent
neural network (RNN) was proposed. This method employs dynamic artificial neural
networks to predict solar radiation and temperature, thereby achieving the prediction of
the solar power energy output [4–9]. Sudden changes in solar radiation near the surface
are extracted from ground-based cloud image sampling technology and are combined
with similar day-based and ANN-based approaches to ensure accuracy in solar radiation
prediction [10–13]. Lima et al. (2020) used AI methods in a new adaptive topology based
on portfolio theory (PT) technology to make short-term predictions of effective solar PV
power generation for global solar radiation [14].

Next, some solar PV power generation forecasting models based on machine learning
or optimization algorithms, such as the support vector machine (SVM), support vector
regression (SVR), extreme learning machine (ELM), gradient boosting decision tree (GBDT),
and adaptive boosting learning (ABL), have been proposed [15–33]. These use a large num-
ber of satellite images and a significant amount of data. When compared with traditional
time series analysis, the forecasting accuracy is significantly improved. Ziyabari et al. (2022)
used a novel multi-range attentive gated current residual network (ResAttGRU) model
and meteorological data, the clear sky index, and solar Ireland to predict short-term solar
radiation [34]. This model also proposes the use of a strong multi-timescale in the pro-
posed architecture, and the GRU can utilize temporal information at a lower computational
cost than the popular long short-term memory (LSTM) method. Doubleday et al. (2021)
established utility-scale photovoltaic (PV) plants at multiple time horizons based on the
Bayesian model-averaging (BMA) algorithm and numerical weather forecasting (NWP)
and obtained a probabilistic solar power forecasting model [35].

In addition, deep learning methods, such as the long short-term memory (LSTM)
network model, the recursive short-term memory (Rec LSTM) network, convolutive long
short-term memory (Conv LSTM), and the multi-step CNN stacked LSTM model [36–56],
are used to predict the solar PV output power. Talat et al. (2021) proposed a new multi-layer
feed-forward neural network (MFFNN) for solar PV power generation forecasting, con-
sidering thermal effects and environmental conditions [57]. The results obtained from the
MFFNN-MVO and MFFNN-GA models were studied through environmental temperature,
wind speed, and solar irradiance. Jebli et al. (2021) established a multi-layer perceptron
(MLP) model, which is a network composed of multi-layer interconnected nodes combined
with the clear sky index to achieve the classification of environmental factors. They then op-
timized the weight of the multi-layer perceptron through the artificial bee colony algorithm
to predict solar PV output power. This non-linear forecasting model has a better effect than
the linear forecasting model since the output power is intermittent and random [58].

Moreover, some forecasting works have used hybrid and ensemble models. Ma et al.
(2021–2022) proposed new forecasting models, such as VMD-LSTM-RVM, CNN-LSTM-
MLP, MC-WT-CBiLSTM depth, NARX-CVM, wavelet-adversarial deep, GBRT-Med-KDE
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model, and TG-A-CNN-LSTM, and implemented interval forecasting for microgrids, pro-
viding a good solution for the energy management of microgrids [59–63]. Meng et al. (2021)
proposed a new hybrid wavelet-adversarial deep model for power generation forecasting
using satellite and global horizontal radiation (GHI) forecasting. This method integrates a
wavelet neural network model with a three-stage adaptive modification solution to the DA
to improve the algorithm’s ability to modify local and global searches, and it provides rela-
tively reliable forecasting results [64]. Wang et al. (2022) proposed a hybrid LSTM-SVR-BO
model that combines machine learning methods and statistical methods and conducted
comparative tests on multiple time dimensions to better reflect the accuracy of the experi-
mental results. They verified the advantages of the proposed method, which can achieve
better forecasting results than a single model [65]. Zhang et al. (2022) proposed the hybrid
gradient boosting regression tree–median and kernel density estimation (GBRT-Med-KDE)
models. This study proposes a short-term solar power interval prediction method for solar
PV power generation, which effectively predicts global solar radiation. This method can
obtain more reliable and stable interval forecasting results [66]. Du et al. (2022) proposed
a forecasting model based on the theory-guided and attention-based CNN-LSTM (TG-A-
CNN-LSTM), which can ignore meteorological data such as temperature and wind speed.
In the training process, data mismatch and boundary constraints are introduced into the
loss function, and positive constraints are used to limit the output of the model. This model
demonstrates better forecasting accuracy, stability, and robustness characteristics for solar
PV power generation when compared to a single forecasting model [67]. Furthermore,
Ghasvarian Jahromi et al. (2020) conducted forecasting work using statistical methods
such as the hidden Markov model (HMM), similarity-based forecasting models (SBFMs),
and Kalman filtering (KF) and applied them to the probability forecasting of solar power
generation [68,69]. Mutavhatsindi et al. (2021) achieved good results when predicting
the production of solar power plants using the quantitative regression average (QRA)
regression model based on meteorological data [70–74].

To date, several review papers on solar PV power forecasting have been studied.
Maciel, Rajagukguk, et al. (2021) outlined short-term methods for predicting solar PV
power generation. In addition to using different forecasting methods to improve forecasting
performance, another part of the work is to summarize and analyze the existing PV power
generation forecasting methods developed in recent years based on time scales, forecasting
models, and output data [75–77]. Wu et al. (2022) summarized machine learning, deep
learning, algorithm optimization, and hybrid forecasting models to achieve the modeling
and forecasting of meteorological factors. Of these methods, the solar radiant intensity
is a key parameter, and its forecasting results will directly affect the output power of PV
power stations [78,79]. Furthermore, Sudharshan and Mohamad Radzi summarized 161
and 306 related papers, respectively, and introduced various combinations, influencing
factors, issues, limitations, and suggestions for achieving the solar PV power generation
prediction of hybrid ANNs, machine learning methods, or algorithm optimization [80,81].

This review work intends to provide a clear and concise understanding of the different
predictive models for solar radiation and solar PV power generation forecasting. In order
to satisfy the requirements of large-scale solar PV power grid integration and further
improve the forecasting accuracy of short-term solar PV power generation, it is necessary
to develop a short-term solar PV power forecasting model based on state-of-the-art hybrid
AI algorithms to accomplish accurate, robust, and efficient solar PV power forecasting. The
main contribution of this paper is a review of the impacts of different irradiance forecasting
techniques for solar PV power prediction, as follows:

1. This paper discusses a systematic understanding of the selection and application
scope of various prediction models, including Neural Networks (NNs), machine
learning models or algorithm optimization, deep learning models, hybrid AI models,
and probability models;

2. This paper summarizes the current trends in solar PV power forecasting techniques,
including their advantages and disadvantages, and the contributions of various solar
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PV power forecasting models. Some important metrics, such as the time resolution,
model type, accuracy, and parameters, are presented;

3. These models have different predictive capabilities, and the weights of each model
are updated in real time to improve the comprehensive predictive capabilities of the
models and have good application prospects for solar PV power forecasting;

4. The paper reviews and analyzes case studies and examples in the literature that accu-
rately predict short-term solar PV power forecasting with uncertainty and stochasticity.

Finally, the paper draws a conclusion and presents the existing issues in the method-
ologies. Future research directions are suggested.

2. Review of the Development of the Literature on Solar PV Power Forecasting Models

Improving the predictive accuracy of solar PV power generation is conducive to
the optimal dispatching of microgrids. This paper analyzes the multi-time-scale optimal
dispatching model of microgrids, which can effectively deal with the risks brought about by
solar PV power prediction errors to system operation and achieve the optimal dispatching
of solar PV microgrid systems. Then, starting from the necessity of improving the predictive
accuracy of solar PV power generation, the impact of different predictive accuracies of solar
PV output power on the optimal dispatch of microgrids is analyzed, and it is shown that the
predictive accuracy of solar PV power generation can be achieved. Optimized scheduling
that is more in line with the actual operation shows the practicability and necessity of
improving the forecasting accuracy of power generation.

2.1. Forecasting Techniques

Previously, review articles with a wide scope (prediction techniques, sources of input
databases, statistical metrics, temporal and spatial coverage, etc.) were produced. In recent
years, relevant scholars have conducted theoretical research and practical simulations.
This paper presents a comprehensive review of novel techniques for predicting solar PV
power generation. Figure 1 shows a predictive model of solar PV power generation.
The advantage of these methods (AI or neural networks (NNs), machine learning or
optimization algorithms, deep learning, hybrid models, and other statistical analysis
methods) is that the amount of training data can be greatly reduced, and they also avoid
the excessive weighting of individual data.
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2.2. Literature Classification Based on Methods

Modern solar PV power generation forecasting methods mainly include AI neural
networks, the support vector machine, wavelet analysis, hybrid and ensemble model fore-
casting, etc. Neural networks have the characteristics of self-reasoning, self-organization,
and information memory. They also have a strong fitting ability, complex mapping ability,
fault tolerance, and learning ability and are suitable for dealing with a large number of
unstructured and strongly dynamic regular problems. The relationship between solar PV
power generation and time is usually random and non-linear because variations in solar ra-
diation are affected by external conditions, such as temperature, relative humidity, rainfall,
rainfall hours, sunshine hours, and full-day sunshine. Neural networks (ANNs) are the
most frequently used machine learning techniques in short-term solar PV power forecasting.
Hybrid predictive models are designed by combining two or three deep learning techniques
or combining optimization algorithms with AI methods. They address the aforementioned
shortcomings of a single predictive model by finding optimal features, hyperparameters,
and training algorithms. The review works on solar PV power generation forecasting for
time resolution, model type, accuracy, and the parameters used are presented in Table 1.

Table 1. The model type, accuracy, and parameters for the reviewed works.

Ref Method Model Type Parameter Used Accuracy

[4] Neural networks (NNs)

Principal component analysis
(PCA), artificial neural
networks (ANNs) with the
outputs using Mixture
DOE (MDOE)

Instantaneous temperature (◦C),
Instantaneous humidity (%),
Instantaneous precipitation (◦C),
Instantaneous pressure (hPa),
Wind speed (m/s), Wind direction (◦),
Wind gust (m/s), Radiation (KJ/m2).

MAPE = 10.45%, SD = 7.34 for summer;
MAPE = 9.29%, SD = 7.23 for autumn;
MAPE = 9.11%, SD = 5.55 for winter;
MAPE = 6.75%, SD = 6.47 for spring

[5] Neural networks (NNs) Artificial neural
networks (ANNs)

Relative Humidity
Solar Radiation
Temperature
Wind speed

RMSE = 86.466
MAE = 8.409

[6] Neural networks (NNs) Recurrent neural
network (RNN)

Temperature
Humidity
Wind speed

MRE (%) = 3.87
MAE (kW) = 7.75
nRMSE (%) = 5.69

[7] Neural networks (NNs) Artificial neural
network (ANN);

National Renewable Energy Laboratory
MAPE (%) = 1.8
MSE = 3.19 × 10−10Irradiance, temperature, wind speed,

wind pressure

[8] Neural networks (NNs)
Feed-forward
backpropagation neural
network (FFBPNN) method

Daily average temperature, daily average
humidity, daily average wind speed, daily
total sunshine duration, daily average Global
solar irradiation (GSI)

MAPE = 7.066%,
nMAE = 3.629%,
nRMSE = 4.673%,
and MAE = 5.256%

[10] Neural networks (NNs) BP neural network Cloud-based images, historical data of
solar radiation

MAE = 46.1 W
MAPE = 7.8%.

[9] Neural networks (NNs) Artificial neural
network (ANN) Radiation, temperature, wind speed, humidity Classification accuracy% = 97.53%

[11] Neural networks (NNs) Neural network
prediction model

Temp., wind speed, wind direction, humidity,
total amount of cloud, insolation MAPE (%) = 12.94%

[12] Neural networks (NNs) The CAE-PCA model Relative humidity, solar radiation,
temperature, wind speed

MAE = 0.0524
MSE = 0.0113
RMSE = 0.1061

[13] Neural networks (NNs) Similar day-based and
ANN-based approaches

Extraterrestrial radiation
Cloud cover factor
Temperature

MAPE = 21.37%
nRMSE = 30.99%

[14] Neural networks (NNs) AI methods based on the
portfolio theory (PT)

Solar irradiance
Air temperature MAPE= 4.52%

[15] Machine learning or
optimization algorithms RNN-LSTM model Solar radiation, module temperature,

ambient temperature

RNN-LSTM (p-si)
RMSE = 26.85
RNN-LSTM (m-si)
RMSE = 19.78
R2 = 0.9943

[16] Machine learning or
optimization algorithms

Gradient boosting decision
tree (GBDT)

Temperature (◦C)
Atmospheric pressure (kPa)
Relative humidity (%)
Wind speed (m/s)
Total solar radiation (0.01 MJ/m2)

MAE (MWh) = 6.02
MAPE (%) = 3.30
RMSE (MWh) = 6.73
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Table 1. Cont.

Ref Method Model Type Parameter Used Accuracy

[17] Machine learning or
optimization algorithms

Adaptive extreme learning
machine model

(a) Global horizontal irradiance (GHI)
(b) Temperature
(c) Relative humidity

MAE = 0.2444
MSE = 0.1727
RMSE = 0.3012

[18] Machine learning or
optimization algorithms

Transparent open box (TOB)
machine-learning method Solar radiation, wind velocity, air pressure RMSE = 1175 MW and R2 = 0.9804;

RMSE = 1632 MW and R2 = 0.9609

[19] Machine learning or
optimization algorithms

Clouds and sun
detection algorithm Image acquisition, image processing

Sun coverage between 5 and 6 s.
Standard error level in the range of
10–20%.

[20] Machine learning or
optimization algorithms

Adaptive boosting
Learning model

Solar power (MW), solar irradiance (W/m2),
model temperature (K)

RMSE = 25.77
MAE = 30.28

[21] Machine learning or
optimization algorithms

Extreme learning machine
with a forgetting mechanism
(FOS-ELM)

PV Data, weather data, noise variance nRMSE = 0.952, MAPE = 1.549

[22] Machine learning or
optimization algorithms

Regression-based ensemble
method

Irradiance, temperature, precipitation,
humidity, wind speed

MRE = 4.362%, MAE = 87.242 kW, and
R2 = 0.933

[23] Machine learning or
optimization algorithms Machine learning (ML)-based

Ambient temperature, relative humidity, wind
speed, wind direction, solar irradiation,
precipitation

MSE = 0.15.

[24] Machine learning or
optimization algorithms

Spatio-temporal
autoregressive
model (STVAR)

Global horizontal irradiance (GHI)
rMAE (%) = 13.13,
rMBE (%) = −2.99,
rRMSE (%) = 21.8

[25] Machine learning or
optimization algorithms

Support vector machine
(SVM) and Gaussian process
regression (GPR) models

Solar PV panel temperature, ambient
temperature, solar flux, time of the day,
relative humidity.

RMSE = 7.967, MAE = 5.302 and
R2 = 0.98

[26] Machine learning or
optimization algorithms

Multi-kernel random vector
functional link neural
network (MK-RVFLN)

Historical solar power data
MAPE (%) = 2.29,
RMSE (MW) = 0.738,
MAE (MW) = 0.343

[27] Machine learning or
optimization algorithms

An adaptive k-means and
Gru machine learning model

Temperature, dew time, humidity, wind
speed, wind direction, azimuth angle,
visibility, pressure, wind-chill index, calorific
value, precipitation, weather type

RMSE = 8.15
MAPE/(%) = 0.04

[28] Machine learning or
optimization algorithms

Choice of random
forest regression

Global horizontal irradiation, relative
humidity, ambient air temperature, cloud
cover, the generation of electricity of more
than 20 items

R2 = 0.94
MAE = 5.12 kWh
RMSE = 34.59 kWh

[29] Machine learning or
optimization algorithms

Support vector
regression-based model

Power
Hourly standard solar irradiance (SSI), Online
weather condition (OWC)
Cloud cover (CC)

nRMSE = 2.841%
MAPE = 10.776%

[30] Machine learning or
optimization algorithms

Hybrid
classification-regression
forecasting engine

Forecasted/lagged values of weather
parameters, lagged solar power values,
calendar data

MAE = 0.078
MAPE = 14.1
MSE = 0.014

[31] Machine learning or
optimization algorithms

Frequency-domain
decomposition and
convolutional neural
network (CNN)

PV power data
MAPE = 0.1778
RMSE = 1.1757
R2 = 0.9438

[32] Machine learning or
optimization algorithms Regions of interest (ROIs) Precise cloud distribution information

nRMSE = 5.573
nMAE = 2.362
MASE = 0.644

[33] Machine learning or
optimization algorithms

Adaptive learning
neural networks

Solar irradiation, temperature, wind
speed, humidity.

RMSE = 143.7483 (W/m2)
MAE = 67.2620 (W/m2)
MBE = 4.5844 (W/m2)

[34] Machine learning or
optimization algorithms

A novel multi-branch attentive
gated recurrent residual
network (ResAttGRU)

Clear sky index,
Solar irradiance

RMSE = 0.049 (W/m2)
MAE = 0.031 (W/m2)
R2 = 0.99

[35] Machine learning or
optimization algorithms

Bayesian model
averaging (BMA) Numerical weather prediction (NWP) SS’s of at least 12%

[36] Deep-Learning The encoder–decoder
LSTM network

Air temperature (◦C),
Relative humidity (%)
Global irradiance on the Horizontal
plane (W/m2)
Beam/direct irradiance
Diffuse irradiance on the horizontal plane
Extraterrestrial irradiation

MAPE (%) = 39.47%
RMSE (W/m2) = 99.22%
MAE (W/m2) = 67.69%
nRMSE = 0.27

[37] Deep-Learning Deep learning-based
adaptive model

Temperature, dew point, wind speed,
cloud cover. nRMSE = 0.3058

[38] Deep-Learning Multi-step CNN-stacked
LSTM model

Solar irradiance, plane of array (POA)
irradiance

nRMSE = 0.11
RMSE = 0.36
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Table 1. Cont.

Ref Method Model Type Parameter Used Accuracy

[39] Deep-Learning LSTM-dropout model

(a) Cloudy index
(b) Visibility
(c) Temperature
(d) Dew point
(e) Humidity
(f) Wind speed
(g) Atmospheric pressure
(h) Altimeter
(i) Solar output power.

RMSE = 0.01
MAE = 0.0756
MAPE = 0.05711
R2 = 0.90668

[40] Deep-Learning SCNN–LSTM model Direct normal irradiance (DNI), solar zenith
angle, relative humidity, air mass

nRMSE = 23.47%
Forecast skill = 24.51%

[41] Deep-Learning

Artificial neural network
(ANN) and long-term short
memory (LSTM)
network models

Air temperature, relative humidity,
atmospheric pressure, wind speed, wind
direction, maximum wind speed,
precipitation (rain), month, hour, minute,
global horizontal irradiance (GHI)

MAPE = 19.5%

[42] Deep-Learning LSTM and ANFIS
learning models

Direct and diffuse short-wave radiation,
evapotranspiration, vapor pressure deficit at 2
m, relative humidity, sunshine duration, and
soil temperature

RMSE = 0.04–0.8
MSE = 0.0016–0.64
MAE = 0.034–0.86

[43] Deep-Learning Opaque deep learning solar
forecast models

Total column liquid water, total column ice
water, surface pressure, relative humidity,
total cloud cover, U&V wind component,
temperature, surface solar radiation
downwards, surface thermal radiation
downwards, top net solar radiation,
total precipitation.

MAE = 0.050 ± 0.002
RMSE = 0.098 ± 0.003

[44] Deep-Learning VM-based forecast models Solar radiation and temperature Accuracy factor increase of 27%.

[45] Deep-Learning
A fluctuation pattern
prediction (FPP)-LSTM model
FPR-LSTM

The ultrashort-term power prediction was
performed with the cloud distribution
features and historical power data as input

RMSE = 6.675%
MAE = 4.768%
COR = 0.9055

[46] Deep-Learning Long short-term memory
(LSTM) network

PV inverter energy meter data logger,
Weather data acquisition RMSE = 0.512

[47] Deep-Learning Long short-term memory
(LSTM) network Samples, time steps, features RMSE = 15.59 kW

MAE = 8.36 kW

[48] Deep-Learning
Convolutional autoencoder
(CAE) based sky image
prediction models

Precise cloud distribution information SSIM = 1.012
MSE = 0.712

[49] Deep-Learning Long short-term memory
(LSTM) neural network

Temperature, relative humidity, wind speed,
precipitable water.
The approximate numerical solar irradiance

RMSE = 0.71 MW
MAE = 0.36 MW
MAPE = 22.31%

[50] Deep-Learning Recursive long short-term
memory network (Rec-LSTM) General weather information nRMSE = 15.25%

WMAPE = 68.47%

[51] Deep-Learning
Convolutional long
short-term memory
(Conv-LSTM)

Multi-point regional data consolidation,
17 sensors were laid on the island of Oahu
(Hawaii) covering an area of roughly 1 km2

from March 2010 to October 2011

RMSE never increases more than 15%

[52] Deep-Learning
Convolutional neural
network (CNN) and LSTM
recurrent neural network

General weather information RMSE = 2.095 MW
MAE = 1.028 MW

[53] Deep-Learning

A spatial-temporal graph
neural network (GNN) is
then proposed to deal with
the graph

Precise cloud distribution information
RMSE = 6.945 k
MAE = 3.565 k
MAPE = 1.286%

[54] Deep-Learning

Time-series long short-term
memory (LSTM) network,
convolutional LSTM
(ConvLSTM),

Historical hourly solar radiation nRMSE = 4.05%

[55] Deep-Learning Long short-term
memory (LSTM)

Mean solar radiation and air temperature for
a region

RMSE = 317.4
MAE = 236.35
MAPE = 2.17

[56] Deep-Learning Long short-term
memory (LSTM)

Weather temperature (◦C)
Global horizontal radiation (W/m2)
PV power history data

MAPE =6.02

[57] Deep-Learning

The multi-layer
feed-forward neural network
(MFFNN) multiverse
optimization (MVO)

Wind speed
Solar irradiance
Ambient temperature.

nRMSE = 5.95 × 10−3

MSE = 2.16 × 10−5

MAE = 9.44 × 10−5

R2 = 0.994045813
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Table 1. Cont.

Ref Method Model Type Parameter Used Accuracy

[58] Deep-Learning Multi-layer perceptron (MLP)

Temperature, humidity, wind speed; wind
direction, pressure
Solar radiation
Solar energy

MAE = 0.03 (J/m2)
MSE = 0.006 (J/m2)
RMSE = 0.08 (J/m2)

[59] Hybrid model forecasting VMD-LSTM-RVM model Power history data MAPE (%) = 5.12
RMSE (kW) = 4.80

[60] Hybrid model forecasting

Covariance matrix adaptive
evolution strategies (CMAES)
with extreme gradient
boosting (XGB) and
multi-adaptive regression
splines (MARS) models

Wind velocity, maximum and minimum
weather humidity, maximum and minimum
weather temperature, vapor pressure
deficit, evaporation

RMSE = 4.9%

[61] Hybrid model forecasting CNN-LSTM-MLP hybrid
fusion model

Temperature, rainfall, evaporation, vapor
pressure, relative humidity

r ≈ 0.930, RMSE ≈ 2.338 MJm−2day−1,
MAE ≈ 1.69 MJm−2day−1

[62] Hybrid model forecasting MC-WT-CBiLSTM
depth model Global level irradiance, temperature

MAE = 18.13
RMSE = 27.98
R2 = 0.99
SMAPE = 10.97
MAPE = 15.63

[63] Hybrid model forecasting NARX-CVM hybrid model Temperature, solar radiation, relative
humidity, wind speed, pressure Forecasting skills = 34%

[64] Hybrid model forecasting Hybrid wavelet-adversarial
deep model Global horizontal irradiance (GHI) RMSE = 0.0895, MAPE = 0.0531

[65] Hybrid model forecasting Hybrid
LSTM-SVR-BO model. PV power history data

RMSE (MW) = 9.321,
MAE (MW) = 4.588,
AbsDEV (%) = 0.174

[66] Hybrid model forecasting GBRT-Med-KDE model Wind speed, temperature (Celsius),
relative humidity.

MAE = 0.05, RMSE = 0.08,
R2 (%) = 99.75, MAPE = 0.055,
SMAPE = 0.028.

[67] Hybrid model forecasting
Theory-guided and
attention-based CNN-LSTM
(TG-A-CNN-LSTM)

Neglect the meteorological data, such as
temperature and wind speed.

RMSE = 11.07
MAE = 4.98
R2 = 0.94

[68] Other statistical
analysis methods

Hidden Markov
model (HMM) Solar historical data

nMAE = 2.84, nRMSE = 6.05,
MAPE = 13.46 and Correlation
coefficient = 0.975.

[69] Other statistical
analysis methods

Similarity-based forecasting
models (SBFMs)

Temperature, humidity, dew point,
wind speed

RMSE = 15.3%
MAE = 826.2 W
MRE = 10.8%

[70] Other statistical
analysis methods Kalman filtering (KF) Irradiance, temperature, relative humidity,

and the solar zenith angle
RMSE = 156.42 (39.88%)
nRMSE = 12.71%

[71] Other statistical
analysis methods

Quantile regression
averaging (QRA)

Temperature, wind speed, relative humidity,
barometric pressure, wind direction standard
deviation, rainfall

RMSE = 88.600
MAE = 52.034

[72] Neural networks (NNs)

Artificial Intelligence (AI)
methods—random forest (RF)
and deep neural network
(DNN)

Ambient temperature (◦C)
Atmospheric pressure (hPa)
Humidity (%)
Clouds percentage (%)
Wind speed (m/s)

MAE = 338.85
RMSE = 435.44

[73] Deep learning,
Machine learning The single-graph model

Temperature (◦C), Humidity (%),
Wind speed (m/s)
PV power
Global horizontal irradiance (GHI)
Diffuse horizontal irradiance (DHI)
Direct normal irradiance (DNI)

RMSE (kW) = 0.336
MAE (kW) = 0.177
MAPE (%) = 12.89

[74] Neural networks (NNs) and
Optimization algorithms

Genetic Algorithm
programming system (GAPS)
and radial basis
function (RBF)

Meteorological data, including atmospheric
turbidity, relative humidity, and
solar irradiance

Sunny
RMSE (mw) = 0.9636
Cloudy
RMSE (mw) = 4.0123
Rainy
RMSE (mw) = 2.9828

2.3. Summary of Forecasting Techniques

A literature review was conducted using (1) the Web of Science, (2) IEEE Xplore,
(3) MDPI, (4) Engineering Village, and (5) Google Scholar databases from 2020 to 2023
for publications on short-term solar PV power prediction. In the past three years, the
amount of research in this field has significantly increased, which is consistent with
the global growth in solar power generation. This indicates that these predictive tech-
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nologies for solar PV power generation are becoming more important as their pene-
tration rate in the power grid increases. In the initial search for this paper, a total of
217 papers were reviewed and identified using five academic literature databases. A total of
102 relevant articles were identified based on second-review keywords, titles, abstracts,
article content, and the journal’s main subject of interest. The final 74 papers were selected
and analyzed based on reviewing the impact factor, review process, citation, exploration of
issues and challenges, and future studies. Based on the temporal resolution, the number
of AI methods used in the model, and the accuracy of the model, the performance level
of short-term wind power prediction models is evaluated for the reviewed works, recom-
mending prediction models with better performance. These models are mainly divided into
five categories: artificial intelligence or neural networks (NNs), machine learning models
(MLs) or algorithm optimization, deep learning models (DL), hybrid artificial intelligence
models, and probability models. A list of all the papers is presented in the references.

2.3.1. Distribution of Input Data for the Reviewed Works

It was found from the reviewed literature that solar power generation can be predicted
through different input source databases, as shown in Figure 1. Figure 2 presents the
distribution of the five database input sources, of which the models using meteorological
records [81–84] or numerical weather prediction (NWP) [85–87] are dominant, accounting
for 49% and 25%, respectively. In several studies, 15% of the power generation information
was shared from nearby PV power plants [56,59,88], 6% of the studies used satellite images
as the input source data [89,90], and some studies combined with sky images have been
very promising. Such studies account for 5% of all studies, although further work is needed
to correctly identify cloud layers [72,91–93]. When considering their spatial resolution and
the temporal level at which they are applied, NWP, satellite images, and sky images are
plotted based on their spatial resolution, while the statistical methods are represented based
on their spatial range. If inputs from NWP models or satellite or sky images are input into
statistical prediction models, the spatial range of statistical methods will be expanded.
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2.3.2. Distribution of Forecasting Methods for the Reviewed Works

Figure 3 shows the distribution of studies analyzed regarding the techniques used.
We found that 16% of all studies included artificial intelligence or neural network (NN)
models, 31% included machine learning models or algorithm optimization, 34% included
deep learning (DL) models, 13% included mixed artificial intelligence models, and prob-
ability models accounted for 6% of all studies. This selection is limited to publications
produced in 2020 or later, as the purpose of this work was to focus on the latest trends and
developments in solar power energy forecasting. The most common approaches among
the papers reviewed were AI techniques, especially deep learning and machine learning or
optimization algorithms, which accounted for 34% and 31% of the studies, respectively.



Energies 2023, 16, 5436 10 of 30Energies 2023, 16, x FOR PEER REVIEW 11 of 32 
 

 

 

Figure 3. Distribution of forecasting methods used in the reviewed works. 

2.3.3. Statistical Metrics for the Reviewed Works 

There are many methods to determine errors in solar power generation prediction, 

and Table 1 uses various statistical metrics to describe the accuracy of different short-

term solar power generation prediction models produced in the past three years. In Fig-

ure 4, we develop and propose many methods for calculating errors, such as RMSE, 

MAE, MAPE, nRMSE, R2, MSE, MRE, nMAE, MBE, SMAPE, MASE, and WMAPE, and 

attempt to present the error values as completely as possible so that they can be used for 

the study of future short-term solar power generation prediction, which needs to be im-

proved and evaluated. The most commonly used methods for counting errors in the lit-

erature on short-term solar power generation prediction are RMSE, MAE, and MAPE in 

the respective proportions of 25%, 22%, and 17%. 

 

Figure 4. Proportion of statistical metrics for the reviewed works. 

The root mean square error (RMSE) is the most commonly used metric since it de-

scribes the measurement of the average distribution of errors. The RMSE is a good 

method for describing prediction errors because it does not consider the difficulty of the 

predictions made under different meteorological conditions. In addition, most predictive 

models tend to use some variants of the RMSE to evaluate the performance of their pre-

dictive models. 

The research on the above short-term solar PV power generation shows that the ac-

curacy of traditional single prediction models, such as BP neural networks [10], SVM 

[12,25], etc., is far from sufficient. It is easy to fall into local optimal solutions, thereby 

Figure 3. Distribution of forecasting methods used in the reviewed works.

2.3.3. Statistical Metrics for the Reviewed Works

There are many methods to determine errors in solar power generation prediction,
and Table 1 uses various statistical metrics to describe the accuracy of different short-term
solar power generation prediction models produced in the past three years. In Figure 4, we
develop and propose many methods for calculating errors, such as RMSE, MAE, MAPE,
nRMSE, R2, MSE, MRE, nMAE, MBE, SMAPE, MASE, and WMAPE, and attempt to present
the error values as completely as possible so that they can be used for the study of future
short-term solar power generation prediction, which needs to be improved and evaluated.
The most commonly used methods for counting errors in the literature on short-term solar
power generation prediction are RMSE, MAE, and MAPE in the respective proportions of
25%, 22%, and 17%.
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The root mean square error (RMSE) is the most commonly used metric since it describes
the measurement of the average distribution of errors. The RMSE is a good method for
describing prediction errors because it does not consider the difficulty of the predictions
made under different meteorological conditions. In addition, most predictive models tend
to use some variants of the RMSE to evaluate the performance of their predictive models.

The research on the above short-term solar PV power generation shows that the accu-
racy of traditional single prediction models, such as BP neural networks [10], SVM [12,25],
etc., is far from sufficient. It is easy to fall into local optimal solutions, thereby reducing the
prediction accuracy. Deep learning (DL) networks are neural networks with many hidden
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layers, which can actively and comprehensively grasp the abstract features of samples by
using layer-by-layer training and learning methods to form a feature space [86,89]. It over-
comes the shortcomings of BP neural networks and SVM, thereby effectively improving
the prediction accuracy. In addition, due to machine learning techniques, such as extreme
learning machines, where the input weights and hidden layer thresholds can be randomly
set, the calculated hidden layer output weights can have significant fluctuations, leading to
unstable prediction results. In order to reduce prediction errors, the particle swarm opti-
mization algorithm has a strong global search ability and simple optimization, overcoming
the disadvantage of the extreme learning machine model, in which the output weights
are prone to random fluctuations [17,19]. A forgetting mechanism or adaptive extreme
learning machine is employed to optimize the number of neurons in the hidden layer
within a certain range to solve the problem of the poor generalization ability of extreme
learning machines [21,87]. Due to the advantages and disadvantages of different prediction
models, hybrid prediction methods are used to optimize the data processing results of
different models based on specific strategies to obtain better solar PV power generation
prediction results and ultimately improve predictive accuracy [92,93]. It was found that
hybrid prediction methods have the optimization characteristics of the prediction results.
These models fully leverage the advantages of various hybrid prediction models, effectively
overcoming the poor adaptability and low prediction accuracy of individual models and
providing a more practical reference for the optimization and dispatch of PV microgrids.

2.4. Scientific Contributions and Comparison of Reviewed Works

In the past decade, studies on solar PV power generation prediction have become
more and more popular. This paper covers the contribution of the recent progressive solar
PV power forecasting technology and explores the advantages and disadvantages of the
various solar PV power forecasting models produced in the past three years, as shown
in Table 2. These forecasting models have different forecasting capabilities, update the
weights of each model in real time, have an improved comprehensive forecasting capability,
and have good application prospects for solar PV power generation forecasting.

Table 2. Main contributions, advantages, and disadvantages of reviewed works in terms of solar PV
power forecasting.

Work Date of Publication
and Location Main Contribution Advantages Disadvantages

[4] December 2022

The search space and the number of
experimental simulations are reduced,
selecting parameters in a systematic
manner, which can save computational
resources and time without lowing
statistical reliability.

- Divided the data into four
seasons of the year, considering
multiple climate variables for
each season.

- Perform principal component
analysis for data reduction of
climate variables.

Increasing dimensions of the
input vector.

[5] August 2021

A daily clustering method based on
statistical features, such as daily average,
maximum, and standard deviation of
solar PV power, is adopted in the datasets
to address the impact of uncertain
weather on the prediction model.

- Established an ensemble model
by combining the prediction
results of ANN, DNN, SVR,
LSTM, and CNN.

- Higher stability.

- Time-consuming.
- Complex computation process.
- Increasing dimensions of the

input vector.

[6] March 2020

- The prediction error for
unusual weather conditions is
relatively large.

- Expanding training samples,
subdividing, and performing
manual intervention can greatly
improve prediction accuracy.

Lowered the chance of overfitting by
balancing decision trees.

- Increasing dimensions of the
input vector.

- Adjusting the parameters of
abnormal weather.

[7] October 2021

- Only a set of dates for the
specified prediction period are
required as input for the
forecasting purpose.

- It can predict PV power
generation across different
time spans.

- Simplified the application of
trained artificial
neural networks.

- Without real-time data on the
current weather, it is possible to
predict photovoltaic
(PV) output.

- Increasing dimensions of the
input vector.

- Statistics of daily solar energy
over the years.
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Table 2. Cont.

Work Date of Publication
and Location Main Contribution Advantages Disadvantages

[8] June 2020
An accurate prediction model and
results can be obtained for specific
regional meteorological data.

A promising alternative to accurate
power prediction for practical PV
power plants.

Lowing the prediction accuracy of
ANN models due to the chaotic nature
of meteorological parameters.

[10] September 2021

- The movement trajectory of
clouds can be evaluated to
accurately predict the
occurrence covering the sun by
calculating the displacement
vector of the clouds on the
ground cloud images.

- Establishing a new 5 min
ultrashort-term solar radiation
prediction model, which is
particularly suitable for
predicting sudden changes in
near-surface solar radiation in
cloudy weather conditions.

- The features of ground cloud
images can greatly improve
prediction accuracy.

- Thirteen features affecting solar
radiation near the surface were
extracted using digital image
processing from ground
cloud images.

Ultrashort-term forecasting of cloudy
weather is very difficult since there is
no rule about clouds blocking the sun.

[9] March 2020
Determines which regions are more
suitable for solar power stations by
using the examined model.

Deducted the extra costs of installation
and measurement. Long mathematical processes.

[11] November 2022

Reduced the input and computational
complexity of the neural network
model to simplify the hidden layer
stage and build a fast and accurate
prediction model for PV
power generation.

Created a PV power generation
prediction model with non-linear
correlated variables.

Improvements in the prediction
accuracy of performance.

[12] July 2023

- A preprocessing method and
prediction models for various
PV sites with abnormal power
generation are proposed.

- A model combining
convolutional autoencoder
(CAE) and principal component
analysis (PCA) was developed
to extract and analyze features
of solar data.

When compared the actual power
generation of PV devices with the PV
power generation predicted by using
different Machine
learning-based methods.

This database size limits the prediction
horizon of the models.

[13] November 2020

Similar hour-based and hybrid
methods have presented better
performance than commonly deployed
prediction techniques.

The outputs of both solar PV prediction
methods are dynamically weighted
based on weather types and the MAE.

Increasing dimensions of the
input vector.

[14] January 2020

Creating a hybrid model of four
different artificial intelligence
prediction methods to obtain the
optimal policy for each prediction
technique to reduce
predictability errors.

Ensemble of artificial intelligence
methods into a new adaptive topology
based on PT to improve solar PV
power prediction.

- Increasing dimensions of the
input vector.

- Multi-method evaluation.

[15] March 2022

- An RNN-LSTM algorithm was
raised to predict the hour-ahead
output PV power of three
independent PV power
plants annually.

- Application of SVR, GPR, and
ANN for annual, hour-ahead
prediction of PV output power.

- RNN with different LSTM
frameworks were studied to
determine the most
implementable model.

- Compared the performance of
ANFIS with the proposed
RNN-LSTM algorithm.

- Better prediction accuracy
and results.

It is difficult to adjust the LSTM
parameters and determine whether
it converges.

[16] October 2021
Forecasted photovoltaic power
generation using historical weather
data and different time resolutions.

Suggested a model that only requires a
set of dates to specify a prediction
period and more inputs.

The modeling would take a longer
time due to the large amount of
historical data.

[17] October 2022
The ELM method was employed to
ensure faster computing time and more
direct microcomputer realization.

FFNN, with the particle swarm
optimization algorithm, is used to
achieve the search when computing
the optimal weight.

Using PSO to select the parameters of
adaptive ELM will make the
computing time longer.

[18] June 2020
Assisted power grid operators in better
planning the economic dispatch of
solar energy grid-connected electricity.

The accuracy of short-term predictions
can further be improved by using a
longer time period of earlier data.

It is necessary to do more work
(usually for several years) on larger
datasets to confirm this.

[19] June 2021

To avoid erroneous optimistic predictions,
the predicted power generation should be
reduced to avoid affecting the stability of
virtual power plants.

Better accuracy and time resolution of
irradiance prediction is achieved for
the next hour interval.

It is required to acquire the percentage
of uncovered sun and cloud images
within the next hour.
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Table 2. Cont.

Work Date of Publication
and Location Main Contribution Advantages Disadvantages

[20] November 2021 The proposed model can predict solar
PV power generation 10 days ahead.

The proposed model can achieve the
best prediction accuracy with minimal
error by training with accurate ratios of
training and testing.

It is difficult to sharpen the accuracy of
an individual model.

[21] November 2021

Provided time and space
compensation, as well as
comprehensive power regulation while
assisting energy dispatch units in
generating strategies, is crucial for the
stability and security of the energy
system and its
continuous optimization.

The proposed method can reduce the
training time while
improving accuracy.

The degree of uncertainty in
photovoltaic power generation is
closely related to the chaotic nature of
weather conditions.

[22] June 2022

- Proposed a novel PV prediction
model that combines RF
models, K-means clustering,
and regression-based
algorithms with LASSO and
Ridge regularization to improve
prediction accuracy.

- Obtaining the five optimal sets
of weight coefficients and which
model prediction factors
are important.

The integrated prediction models are
much more accurate than single
prediction models.

Recalculating the weight of each new
input sample to improve the accuracy
of a single prediction model.

[23] October 2021

Trained Abha’s solar photovoltaic
system data using seven famous
machine learning algorithms to predict
photovoltaic power generation.

Obtaining relatively low prediction
error of the algorithms. The MSE of RF was the worst.

[24] November 2022
The STVAR model demonstrated good
model performance by predicting at a
time resolution of 5 min to 1 h.

The prediction system can reduce the
cost without installing and maintaining
the solar irradiance sensor.

The research limitations of the
irradiance prediction model (STVAR
model) affect the final PV
prediction results.

[25] November 2021

Machine learning (ML) model is an
efficient tool that can predict the power
performance of any solar photovoltaic
power generation.

The high reliability and accuracy of the
GPR prediction model can be verified.

- Square exponential GPR shows
worse performance due to the
complicated relationship
between input parameters and
the dielectric coefficient.

- Cubic SVM presents worse
performance due to the
complicated relationship
between input parameters and
PV module power.

[26] June 2019

- RVFLN technology enables fast
learning and accurate prediction.

- Using different kernel functions
to obtain better prediction
accuracy and combining two
optimal kernel functions to
obtain more practical solar
energy predictions

- By utilizing effective
optimization techniques for
optimization and adjustment,
more accurate and shorter time
span solar energy predictions
can be provided.

Expediting computing time and
lowering the complexity of the model.

The selection of parameters using
MK-RVFLN affects the accuracy of the
prediction model.

[27] September 2022
Clustering initial training set and
day-ahead power forecasting using
adaptive k-means.

Gru network has excellent prediction
results, better robustness, and fewer
errors.

Increasing dimensions of the input
vector.

[28] May 2022 Had better global radiation
prediction results.

Proposing seven machine learning
models for PV power
generation forecasting.

Increasing dimensions of the
input vector.

[29] February 2022

Selecting the SVR-based model
parameters using PSO-based
algorithms to improve the
model performance

Reaching better performance of the
forecast algorithm.

Using algorithm bar parameters will
lead to longer operation time.

[30] April 2022

A novel solar PV power prediction
method composed of a feature
extraction, clustering method, and
hybrid classification regression
prediction engine.

- The forecasting computation is quicker.
- Individual training for each subset

is achieved by a prediction engine.
- Obtaining the final solar PV power

forecasting by using a
relevancy-based combination of
these two predictions.

- Increasing dimensions of the in-
put vector.

- The internal parameters of the
subset need to be well selected.
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Table 2. Cont.

Work Date of Publication
and Location Main Contribution Advantages Disadvantages

[31] August 2021

In order to obtain the best frequency
demarcation point of the decomposed
component, basic data is subtracted
from the correlation between the
decomposed component and
basic data.

Using CNN for low- and
high-frequency component prediction
and obtaining the final prediction
result by additive reconstruction.

Use of FFT for data preprocessing is
less applicable than the general data
pre-processing method.

[32] January 2022

Proposed a short-term prediction
model for learning cloud motion
characteristics from stacked optical
flow maps using satellite images
as input

- Better performance of the
forecast algorithm.

- Sky image technology with
cloud motion.

- Leading to a heavy
computing burden.

- Complex computation process.

[33] November 2020
Proposed a novel method that does not
rely on the test data labels during the
update process.

This method can dynamically adjust its
structural parameters to fit to the latest
weather conditions.

- Complex computation process.
- Parameter adjustment required.

[34] February 2022

Modeling data at various time
resolutions, extracting hierarchical
features, and capturing short-term and
long-term dependencies.

A model has been proposed to
accelerate the learning process and use
shared representations as auxiliary
information to reduce overfitting.

- Complex computation process.
- Parameter adjustment required.

[35] January 2021

- In order to reduce the
insufficient dispersion of the
raw set, BMA’s mixture model
significantly improves the
predictive calibration.

- Better than the ensemble model
output statistical parameter
method in the literature.

- Being the kernel trimming
technology of NWP.

- The weighted sum for specific
probability density functions.

- Increasing dimensions of the
input vector.

[36] June 2022

- High statistical accuracy
prediction has been achieved
using advanced deep
learning-based
prediction technology.

- Classify solar radiation data
from each month of the year to
obtain a monthly time series
dataset, significantly improving
high-performance prediction.

- Implemented a combination of
recursive multi-step and
multi-output
prediction strategy

- Use of fixed-sized internal
representation in the core of the
model, significantly improving
short-term solar
radiation prediction.

More LSTM parameter settings need to
be adjusted.

[37] May 2022

- As compared to models such as
CNN-LSTM and
non-clustering-based specific
LSTM, the proposed model
presented excellent
predictive performance.

- This model exhibits minor
prediction errors for
photovoltaic power generation
with significant solar
radiation variability.

- CB-LSTM exhibits robust
performance under
different conditions.

- As compared to M-LSTM and
ST-LSTM, CB-LSTM has better
predictive performance for all
climatic zones and areas.

- High NRMSE error.

[38] March 2022

The proposed model combines a
stacking structure and drop-out layer
to improve the accuracy of the PV
prediction model.

The LSTM of multi-step CNN stacking
with deep learning algorithms improve
the validity of the model as compared
with other traditional solar
irradiance prediction.

- Complex structure and
hardware requirements.

[39] July 2020

As compared and analyzed in detail
with other contemporary ML methods,
least absolute shrinkage and selection
operator (LASSO), and elastic net
(ENET) methods, the effectiveness of
the proposed method was verified.

- This prediction model has
outstanding accuracy in all
selected performance criterion.

- The feasibility and practicality
of the proposed model have
been effectively confirmed.

Failed to reach the accuracy of the
proposed prediction model.

[40] December 2021

- Propose a Siamese CNN model to
automatically extract features from
continuous sky images.

- This model shares some
parameters to reduce training time.

- The use of SCNN-LSTM effectively
combines the time series features of
images and meteorological data,
improving the prediction accuracy
of the model.

The prediction accuracy was promoted
by comparing to other models.

In some cloudy or cloudy days
conditions, the model prediction
accuracy needs to be improved.
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Table 2. Cont.

Work Date of Publication
and Location Main Contribution Advantages Disadvantages

[41] March 2022 Optimized ANN and LSTM prediction
models to improve their accuracy.

The ANN and LSTM models in the
reduced Input Set and the complete
Input Set with seven exogenous
variables exhibit the same
prediction accuracy.

- Requiring a larger amount of
training data.

- Higher computational cost and
training time for the models.

[42] March 2022

- The prediction of solar radiation
is greatly influenced by
parameters such as solar
radiation, direct shortwave
radiation, scattered shortwave
radiation, and temperature.

- The prediction of solar radiation
is significantly influenced by
evapotranspiration, sunshine
duration, and humidity.

- Abilities of adaptation.
- Non-linearity.
- Rapid learning.

Too many solar radiation
input parameters.

[43] August 2022

- Proposed the LSTM-AE model
as a benchmark for deep
learning solar forecasting.

- Ensured higher accuracy and
stability of prediction models.

- A comprehensive evaluation
study was conducted on the
performance of
prediction models.

A deep learning AE model is an
effective method for predicting
day-ahead PV power based on NWP
due to its highest accuracy.

Using deep learning for each model
without NWP, the day-ahead
prediction accuracy will sharply
decrease, and its upgrade is
extremely limited.

[44] June 2021

- The proposed TESDL model is a
short-term prediction algorithm
with good generalization ability
and robustness

- Realizing excellent prediction
model accuracy.

Significantly reducing the control costs,
initial hardware component costs, and
long-term maintenance costs of
potential PV power plants.

The whole PV system uses the solar
modules with the lowest power to
calculate the worst-case power
generation performance, and mismatch
loss is a major problem.

[45] September 2022

With historical satellite images as
input, the FPP model based on CNN is
employed to predict the future PV
power fluctuation mode.

Reaching better performance for the
prediction algorithm.

- Complex computation process.
- Use of cloud computing.

[46] January 2021
The predicted results can successfully
close the expected output and well
capture the intra-hour ramping.

Achieving good performance of the
prediction algorithm.

It is difficult to adjust the LSTM
parameters and determine whether
it converges.

[47] October 2022
Proposed an automatic encoder LSTM
model with the best
reliability performance.

- Data normalization.
- Reaching better performance of

the forecast algorithm.

It is difficult to adjust the LSTM
parameters and determine if
it converges.

[48] August 2021
Realizing accurate cloud distribution
information using ground-based total
sky images.

- Particle image velocimetry
technology and Fourier phase
correlation theory are
conducted to establish a
benchmark model.

- Sky image technology.

- The feature of 3-D CAE models
could not find well.

- Increasing dimensions of the
input vector.

[49] October 2020

The significance of the proposed
synthetic prediction is highlighted to
promote the more effective use of
public sky prediction types and
achieve more reliable PV power
generation predictions.

Studied the performance of the
proposed model in different seasons
with different intraday horizon lengths.

- Complex computation process.

[50] November 2022

To deal with the scenarios of missing
data, an integrated model is proposed
for probabilistic PV power
generation prediction.

- Addressing data
missing scenarios.

- Data tolerance.

- Increasing dimensions of the
input vector.

- Computing time is too long.

[51] January 2021

In order to predict the solar irradiance
at several locations simultaneously, a
prediction model trained with several
artificial neural networks is proposed.

A family of flexible and robust deep
learning models for solar irradiance
prediction is proposed.

- Increasing dimensions of the
input vector.

[52] September 2020

A CNN model is proposed to find out
the non-linear characteristics and
invariant structures in the previous
output power data so as to promote the
prediction of PV power.

- CNN was used to preprocess
the data.

- Reaching better performance of
the forecast algorithm.

- Increasing dimensions of the
input vector

- Computing time is too long.
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Table 2. Cont.

Work Date of Publication
and Location Main Contribution Advantages Disadvantages

[53] May 2022

By using bidirectional extrapolation to
simulate cloud motion, a directed
graph from multiple frames of
historical images was generated for
predicting PV power.

Proposed a GNN model that is more
flexible for different sizes of inputs to
handle dynamic ROIs and promote the
prediction of PV power.

Increasing dimensions of the
input vector.

[54] December 2021

A novel prediction model is proposed
to improve the quality of training data,
the size of the data, the meteorological
conditions of the location where the
data are obtained, and the duration or
horizon of the measured
solar irradiance.

The accuracy of solar irradiance
prediction technology has been greatly
improved by training the prediction
model with 10-year datasets.

- Complex computation process.
- Parameter adjustment required.

[55] March 2022

A deep learning method based on
Long short-term memory (LSTM)
algorithm is used to investigate the
prediction ability of solar power data.

Proposed multiple prediction models
with high suitability.

- Complex computation process.
- Parameter adjustment required.

[56] March 2022

- Utilizing grid search technology
to minimize uncertainty.

- Comparing the predictive
performance of different data
segmentation methods from
three months to one day.

Comparing the impact of seasonal and
periodic variables on time series data
and PV output prediction over
different time spans (14 days to 5 min)

It is difficult to adjust the LSTM
parameters and determine whether
it converges.

[57] August 2021

Optimizing the number of neurons in
the hidden layer, weight, and bias of
the proposed neural network using
MVO and GA algorithms.

Multi-layer Feed-forward neural
network (MFFNN) is used to study the
accuracy of MFFNN-MVO and
MFFNN-GA models.

- Increasing dimensions of the
input vector.

[58] February 2021

The relevance of the studied model in
real-time and short-term solar energy
prediction was evaluated using
appropriate prediction models to
ensure optimized management and
safety requirements.

Artificial neural networks (ANN) have
demonstrated good performance in
real-time and short-term predictions.

- Increasing dimensions of the
input vector.

[59] June 2021
Proposed a forecasting model with
higher prediction accuracy and
relatively small overall fluctuations.

Decomposing the PV power sequence
to reduce the complexity and
instability of the raw data by the VMD
decomposition technology.

Prediction errors and fluctuations
are large.

[60] August 2022

- Providing alternative tools for
reliable prediction.

- Providing a promising method
for predicting daily
solar radiation.

The connectivity of machine learning
models and optimization algorithms. Computational complexity

[61] August 2022

- Proposed a new hybrid DL
model, which processes input
data with slime mold algorithm
(SMA) for feature selection,
CNN, LSTM network, CNN,
using an MLP for
final processing

- Obtained a more accurate GSR
prediction model.

Proposed a novel DL-based hybrid
model that overcomes the above
research limitations and produces
accurate GSR predictions.

- Incorporating different
predictor data
decomposition methods.

- Complex computation process.

[62] January 2022

Proposed an MC-WT-CBILSTM hybrid
model combined with various AI
methods to improve the prediction
ability of the model

- Using wavelet transform as
input data preprocessing
effectively decreases the
data complexity.

- Raised the forecasting ability of
the multi-channel
CNN-BiLSTM models.

- The generalization ability for
most forecasting methods
is poor.

- Only achieve good results in a
small range.

[63] April 2022
The short-term solar PV prediction
model developed can be
applied anywhere.

- The prediction ability of the
hybrid model is about 34% of
that of the NAR model.

- Approximately 42% of the
Persistence model.

The proposed prediction model should
exclude redundant or irrelevant
variables to avoid false results.

[64] April 2021

A DA prediction model has been
proposed with a three-phase adaptive
modification solution to improve the
algorithm’s ability in local and
global searches.

Proposed a hybrid deep learning
model with a powerful decomposition
technology to help reduce
data complexity

A long time span has a negative impact
on prediction results.
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Table 2. Cont.

Work Date of Publication
and Location Main Contribution Advantages Disadvantages

[65] September 2022

In order to better reflect the accuracy of
the prediction model, comparative
tests were conducted on multiple time
dimensions to verify the advantage of
the prediction model.

A new prediction model has been
proposed, which has an average
improvement of about 15% in
prediction accuracy and stability as
compared to other prediction models.

Adjusting parameters using the BO
algorithm increases the time cost of
training the model.

[66] September 2022

An ensemble interval prediction
method was proposed for solar power
generation prediction to obtain
higher-quality prediction intervals
than other AI methods

Obtaining more reliable and stable
interval prediction results.

The KDE method takes a longer total
computing time as compared to other
AI methods.

[67] November 2022

- Data mismatch and boundary
constraint are calculated within
the Loss function during
prediction model training.

- Positive constraints are used to
limit the output of
prediction models.

Demonstrated the stability and
robustness of the TG-A-CNN-LSTM
model by testing the performance of
sparse data prediction models.

It is difficult to adjust the LSTM
parameters and determine whether
it converges.

[68] July 2020
Providing better accuracy than other
investigated methods for
cost computation.

Proposed a novel prediction model
that outperforms other investigated
methods in terms of accuracy and
computational time.

Prediction accuracy can be increased
with other new effective techniques.

[69] June 2020
SBFM predicts PV power at high time
resolution by using low time resolution
weather variables.

PV power generation prediction with a
five-minute time resolution can
substantially obtain accurate results.

Increasing dimensions of the
input vector.

[70] August 2021

Generalized a novel prediction model
to find the optimal prediction by affine
transformation mapping for a given
available measurement.

Irradiance, temperature, relative
humidity, and solar zenith angle are
selected as highly correlated inputs of
WRF prediction model.

- Complex computation process.
- Parameter adjustment required.

[71] November 2020

Completed the prediction combination
of machine learning models with
convex combination and Quantile
regression averaging (QRA).

The forecasting performance of
Diebold Mariano and Giacomini White
tests is remarkable.

- Increasing dimensions of the
input vector.

[72] May 2023

The data set of the proposed new
prediction model contains weather
features, which is more cost-efficient
and more suitable for scenarios where
there is no dedicated hardware or
hard-to-obtain input features.

The proposed RF and DNN prediction
models utilize widely available
weather features and operate quite
well even in the event of sudden
fluctuations in PV output.

Increasing dimensions of the
input vector.

[73] July 2021

The accuracy of the proposed
multi-graph model is superior to other
benchmark models in the day-ahead
prediction cases.

When compared to the deep learning
benchmark models, the single- graph
prediction model had lower cost
regarding training time.

- Increasing dimensions of the
input vector.

- Longer computing time.

[74] March 2022
The proposed model and algorithm can
lower the dimensionality of the model
and improve its prediction accuracy.

Proposed a short-term PV power
generation prediction model based on
combined fuzzy clustering, a genetic
algorithm programming system
(GAPS), and radial basis function (RBF)
for meteorological data to improve the
prediction accuracy.

The parameter numbers of the search
window size affect the accuracy of the
proposed models.

In the process of predicting solar PV power, each prediction model has its own ad-
vantages and disadvantages. Due to the research limitations, it is difficult to achieve
high-precision predictions or different types of predictions with a single prediction model.
With the continuous increase in the solar PV power grid connection capacity and the
increase in the solar PV power penetration power, the State Grid Corporation has imple-
mented increasingly high requirements for the scheduling and prediction accuracy of solar
PV power. Based on this, establishing a combined prediction model for solar PV power pre-
diction by integrating the advantages of various prediction models is of great significance
for improving the accuracy of solar PV power prediction. Therefore, conducting research
on solar PV power prediction based on artificial intelligence algorithms and optimizing
prediction models has practical value in engineering for improving the accuracy of solar
PV power prediction and the reliability of grid connection scheduling.
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3. State-of-the-Art Approaches for Short-Term Solar PV Power Forecasting

The short-term solar PV power forecasting model is discussed in depth, as shown in
Figure 5. The latest approaches to short-term solar PV power forecasting developed in
the past three years are reviewed to provide an important reference for solar PV power
grid integration. In order to improve the accuracy of solar PV power forecasting, this
paper gives a detailed overview of the contributions, advantages, and disadvantages
of various delivered solar PV power forecasting models, as well as presenting future
research work. These advanced forecasting models can be approximately classified into
artificial intelligence/neural networks (NNs), machine learning or optimization algorithms,
deep learning, hybrid and ensemble forecasting models, and other statistical analysis
methods. The proposed novel short-term solar PV power forecasting models provide
very useful information for power system operation and control with high renewable
energy penetration.
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3.1. Insolation Prediction for Solar PV Power Generation

A solar cell is a converter that directly converts solar light energy into electrical energy
due to the PV effect. Photodiodes will convert the sun’s light energy into electrical energy,
which can be connected in series and parallel to form a battery array to increase the output.
Equation (1) is given by using least squared curve fitting:

PS = Psb · St · k (1)

Of these, PS is the electrical energy obtained from solar energy (kW), which is the
record of the solar power plant. Psb is the total capacity of the solar cell (kW), which is a
constant value (units: kW), St is the global solar radiation (MJ/m2) obtained by the Central
Weather Bureau, k is the design coefficient of solar module (parameters for curve fitting)
and in solar PV power generation, and St is the main factor affecting the power generation
output and is also the main variable used to predict solar PV power generation, making
Equation (1) more in line with actual solar power generation. Meteorological data, such as
the air temperature, relative humidity, precipitation, precipitation hours, sunshine hours,
and global solar radiation, provided by Central Weather Bureau (CWB) Observation Data
Inquiry System, were used as input variables for the solar irradiance-related information
database; the output variable is the global solar radiation for the solar PV power generation
prediction techniques, as shown in Figure 5.

PV Array Model

The PV cell is a p–n junction semiconductor with characteristics similar to diodes.
The parameters of the PV cell are modeled, as can be seen in Figure 6. The current
source generates the photocurrent, Iph, which is proportional to the solar irradiation. The
relation between the array terminal current and voltage is presented in reference [94]. The
maximum power point of the photovoltaic (PV) array is variational, so a search algorithm
is needed according to the current-voltage (I-V) and power-voltage (P-V) characteristics of
the solar cell.

VPV =
nKT

q
ln
(

ISC
IPV

+ 1
)

(2)
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IPV = ISC − IPVO

[
exp

(
q(VPV + IPV Rs)

nKT

)
− 1
]
− VPV + Rs ISC

Rsh
(3)

where Rs is the series resistance, Rsh is the shunt resistance, ISC is the light-induced current,
n is the diode ideality factor, IPVO is the diode saturation current, and VT is the thermal
voltage. K is the Boltzmann constant (1.38 × 10−23 J/◦k), and q is the electronic charge.
ISC depends on the irradiance level S and on the array temperature T, while IPVO and VT
depend on T only. The PV array current IPV is a non-linear function of the PV array voltage
VPV of the irradiance level S and of the temperature [94,95].
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3.2. Data Mining Technique

The data mining technique is used for data processing, and more meaningful data
are selected from the database as modeling data, as shown in Figure 7. The problem dealt
with by data mining is finding meaningful hidden information in a big database. Power
generation forecasts are similar to solar energy.
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3.3. Hourly Similarity (HS)-Based Method

The reference data selection method based on the hourly similarity (HS) forecasting
method introduces the concept of the horizontal axis and the vertical axis of time. The hour
of the prediction day to be forecasted is called the prediction hour. Firstly, the prediction
day is used to find weather information for the reference day, which is the day before and
the next day (the day after). The reference hours are selected from the prediction hour
and the reference day. The reference hours are the hours before and after the prediction
hour. These reference hours are used as reference data. The reference hours of the hourly
similarity prediction method were selected from the hypothetical case demonstration, as
shown in Figure 8. Grey is historical data. Yellow represents future data.

Demonstration of how to select reference data; assuming that 12:00 on the prediction
day is the prediction hour, the reference hours include 11:00 on the current day, 11:00–13:00
on the previous day, and 12:00–13:00 on the prediction day. A total of six pieces of data are
selected for the reference hours (collectively referred to as the reference data).
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Figure 8 shows the data types used in data mining for the similar day prediction
method, and the data mining steps are as follows:

Step 1: Select the database range and reference day from the prediction hour.
Step 2: Determine the reference data from the prediction hour and reference day.
Step 3: Normalize the data first and then perform sequence similarity searching for each

layer based on the reference hours of each layer. Each reference hour has its own set
of sorted data.

Step 4: Integrate a set of data from the same layer, and all the integrated data are modeling data.

As an example, two layers with Layers 1 and 2 can be used for the reference data. The
normalization for a particular {m, r} is shown in Equation (4):

Nmr
i,k = sqrt

(
f

∑
j=1

(
Nrj

d−m,r − N j
d−i,k

)2
)

(4)

where Nrd−m,r is a similar hour, j ∈ [1, 2, . . . , f ] is the input space dimension number, d
is the reference data for day, and m = [0, 1] as well as r ∈ {t + 1, t, t− 1} are the concepts
of the horizontal axis and vertical axis of time at a similar hour. N j

d−i,k is the original data
for hour k in the database, and i ∈ [0, 1, 2, . . . , v] is the number of the days with the total
number set to v; k ∈ [1, 2, . . . , u] is the hour number with u = 24. Nmr

i,k is sequenced for each
reference hour and is used to figure out the degree of similarity in the data. L is the number
of selections at a similar hour, and HDMT is the training data selected at a similar hour, as
shown in Equations (5) and (6):

Hm
DMT = sort

{{
Nm1

i,k

}u

k=1

}v

i=0
(5)

HDMT = ∪
m

Hm
DMT = ∪

m
∪
r

sort
1→L

{{
Nm1

i,k

}u

k=1

}v

i=0
(6)

After data mining, the modeling data are selected by the hourly similarity (HS)-based
prediction method. The modeling data include the training data and test data. The training
data are the integrated data obtained after sequencing the data (the sequencing data do not
include reference data), and the reference data are used as the test material. The modeling
data selected by data mining can be used to train the models of various state-of-the-art
approaches for short-term solar PV power forecasting.
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3.4. Internet of Things (IOT) Technology

Data obtained from solar PV power generation and several environmental sensors
were collected to store in the Raspberry Pi database and corresponding data tables using
Internet of Things technology. Through the Raspberry Pi environment, a Python crawler
program can be developed to grab the weather forecast information from the local environ-
mental observatory of the Central Meteorological Bureau and store the weather forecast
information in the database. Raspberry Pi is also applied to set up the human–machine
interface and display it in website form while viewing it remotely via the internet. Fur-
thermore, the collection progress is checked to confirm the hardware operation status and
collect the data stably [96–98].

After long-term data collection, the amount of data required for the input layer pa-
rameters of the neural network is obtained. Data tables for variables, such as solar PV
power generation data and environmental sensor data, are exported from the database
management system and are first brought into the model to train the input parameters of
the fuzzy neural network while performing data preprocessing. After the data preprocess-
ing is completed, the data are divided into a training group and a test group. The training
group data are used to continuously train the internal parameters of the neural network,
and then the proposed method is verified by the test group. The feasibility and accuracy of
the data collection framework are shown in Figure 9.
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3.5. Sky-Image-Based Methods

The automatic identification of clouds, cloud matching, and cloud area corrections
based on ground cloud images and the estimation of the cloud movement direction are
carried out to allow accurate judgments to be made on clouds that are about to cover the sun
and to improve the accuracy and speed of big data feature prediction for solar PV power
generation. Next, efficient pixel-sensitive prediction models can be developed based on
satellite imagery to track the cloud shape and motion and study satellite measurements and
high-resolution cloud images (e.g., images from ground-based sky cameras). In addition,
these cloud image information-correlation features have been comprehensively used for
classification and prediction while verifying the feasibility of the model using different
datasets [99].

Based on dynamic sky images, the characteristics of the cloud layer are extracted to
estimate the future cloud movement path by using the object tracking algorithm, and then
the cloud cover of the sun is calculated according to the cloud movement path. Finally, the
change in insolation is estimated through the long short-term memory (LSTM) network.
The paper had the aim of finding a method for predicting the movement path of cloud
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cover and, at the same time, estimating the sun’s shading of cloud piles and forecasting
power variation due to the changes in insolation through the long short-term memory
(LSTM) network. This information can be provided to power dispatchers or the EMS
(energy management system) in advance to allow them to effectively respond to the impact
of cloud clusters shading the sun on the grid [100,101].

A schematic diagram of the sky-image-based methods is shown in Figure 10. The
system configuration can be divided into three parts, among which D1 is the part used
for analyzing the characteristics of all-sky clouds covering the sun and predicting the
movement path of cloud clusters; D2 is the part used for extracting the characteristics
of ground-based all-sky pyranometers, and D3 is the part used for predicting the solar
irradiance and the solar PV power generation. Part D1 in Figure 10 shows the design
of a method to predict the moving path of cloud layers through the whole sky image
and the moving path of the sun and deduce the moving path of the cloud layers. The
moving path of the cloud layer takes into account the moving path of the sun. For sun
shading conditions, the predictive path of cloud layer movement is regarded as future
information, and the real-time value for the insolation observation of the ground-based
all-sky pyranometer is determined in part D2. The input of the intelligent learning network
is used to deduce the change in insolation, and the variation in solar PV power generation
can be obtained according to the power and insolation curve (PV power curve) of the solar
PV module.
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In recent years, various research institutions and scholars have adopted different
cutting-edge methods to reduce power fluctuations and randomness in the power pre-
diction of solar power generation, as well as to prevent possible errors and omissions in
the original data and allow certain results to be achieved. However, there are still some
problems to be solved. First of all, in the future, the sample space can be further expanded,
and the diurnal insolation and the dimension of data samples can be increased to predict
the diversity of solar data. According to solar power generation data with different charac-
teristics, the prediction model was further optimized to increase the applicability of the
model. Secondly, according to the characteristics of the existing hybrid model, the param-
eter optimization method was further improved to ensure that the prediction model has
high prediction accuracy at different time sampling rates, making it suitable for different
prediction situations. An overview of future solar PV forecasting studies is given in the
next section.

4. Future Studies and Development

As an important subsystem of smart management systems for microgrids, solar PV
power generation prediction systems play a vital role in the development of solar energy.
Due to the close relationship between solar radiation and meteorological conditions, such
as seasons, cloudy and sunny days, and day and night, novel solar PV power output
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predictive methods have been developed in the past few years to allow for the balanced
operation and optimized dispatch of the power grid system. These methods have been
used in experiments, and some results have been achieved to solve the intermittent and
random power problems associated with solar PV power generation prediction as well
as to reduce possible errors and omissions in the original input data. Based on the latest
advances in AI neural networks, machine learning, and deep learning methods, this paper
examined the temporal resolution, the parameters used, the accuracy, and the research
limitations and reviewed the contributions, advantages, and disadvantages of the latest
hybrid prediction models for the development of solar PV power generation. However,
there are still some issues that need to be improved. The following points describe the main
aspects that can be studied further:

(1) Weather variable predictions: Recent investigations only selected meteorological sta-
tions based on historical survey data. However, the meteorological information from
different regions is inevitably different. Therefore, considering the impacts of the
geographical environment, weather, or climate-related factors at the location of the
meteorological station can definitely improve the accuracy of solar radiation predic-
tions. In addition, in terms of other meteorological and site determination factors used
for solar radiation forecasting, such as the temperature, humidity, precision, pressure,
and solar radiation, etc., the impacts of these factors on the prediction results need to
be explored, as these could be included as input factors for future meteorological data
from the Meteorological Bureau to improve prediction accuracy;

(2) Modeling the prediction algorithms through cloud images: Cloud areas based on
ground cloud images are automatically identified, matched, and corrected to estimate
the direction of cloud movement and make accurate judgments about clouds that are
about to cover the sun. It is necessary to improve the accuracy and speed of feature
prediction for big data used for solar PV power generation. Efficient pixel-sensitive
prediction models were developed based on satellite images to track the shape and
motion of clouds and study satellite measurements and high-resolution cloud images
(such as images from ground sky cameras). These correlation features of cloud image
information are comprehensively utilized for classification and prediction, for which
different datasets are applied to verify the feasibility of the model. New hybrid mod-
els or multiple optimization algorithms, including cloud information for predictive
models, are also integrated to improve the models and their prediction accuracy;

(3) Solar PV power generation forecasting: Weather forecasting is selected based on data
characteristics, and machine learning or optimization algorithms are added to the solar
PV power generation prediction model, for example, optimization algorithms with
RNN-LSTM, to optimize the superparameters and enhance the prediction accuracy.
These deep learning (DL) models or ensemble models (EMs) are implemented for
solar PV power generation forecasting to provide more stable power to the grid;

(4) Data preprocessing or data feature analysis: Through data preprocessing and the
clustering analysis of initial training sets to predict solar PV power generation, the
accuracy of the prediction model is significantly improved. Secondly, the computing
cost is reduced, the regression accuracy is significantly improved, and the model’s
own features are effectively found for predictions through the preprocessing and
correlation analysis of input data. When compared with general data preprocessing
methods, data preprocessing is further optimized, improving the applicability of
FFT methods;

(5) Improvement of inaccurate or missing data: In order to expand the ability of irradi-
ance prediction methods to predict the power capacity of new solar power plants
without data, we explored prediction methods that can handle repeated and frequent
continuous multi-point data loss, for example, extracting data suitable for the target
domain from different data domains or using data from other regions as a supple-
ment when the training data for the target location are insufficient. Therefore, it is
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of practical significance to improve short-term solar PV predictions of inaccurate or
missing data;

(6) Integration with the power system: Accurate PV power generation forecasting is
very important for the scheduling and regulation of power systems after the grid
connection, and its results can be integrated into the entire energy management sys-
tem or utilities to improve grid performance and achieve a higher level of renewable
energy integration. Secondly, variation in power generation can have an impact on
the voltage and frequency of the power system at any time, solving the problems of
economic dispatch, grid integration, and the mismanagement of power management
systems caused by the variability of solar energy. Furthermore, based on the basic
viewpoint of large-scale or distributed solar PV systems, load forecasting, demand
response applications, aggregate capacity prediction, and the dispatch of a large num-
ber of distributed solar PV systems can be obtained. When combined with pumped
storage power stations, adjustable biomass power stations, or PV battery systems,
they can stably transmit solar PV power generation and improve the flexibility of
power dispatch.

5. Conclusions

This paper first presented the significance of using solar PV power for energy con-
servation and emission reduction issues, as well as the technical challenges faced when
predicting solar PV power generation. The necessity of developing prediction systems
for solar PV power generation and improving the model’s accuracy was clarified. Some
existing physical and statistical learning methods have deficiencies, such as high modeling
costs and large input data requirements when performing predictions, while traditional
machine learning methods have trouble processing missing data, are prone to overfitting,
and ignore the correlations between attributes in the dataset. This paper further reported
on many novel prediction models for PV power generation based on deep learning or
hybrid models that integrate multiple meteorological factors such as temperature, relative
humidity, rainfall (precipitation), global solar radiation, wind speed, etc. By analyzing the
mean square error (MSE) value and the determination coefficient (R-Squared) value, we
proved that the proposed method further improves prediction accuracy when compared to
previous prediction methods. Secondly, this paper introduced the current situation of solar
PV power generation forecasting from a global perspective. Most of these efforts cover
the field of short-term PV power generation forecasting, which has grown significantly
in the past few years. These advanced solar short-term PV power generation prediction
models were classified and compared in terms of temporal resolution, the parameters used,
accuracy, and research limitations. In addition, this paper reviewed the latest progress in
short-term solar PV power generation based on artificial intelligence methods, emphasiz-
ing their contributions to model development, their advantages and disadvantages, and
the areas of future study and development. The contributions of this review work are
as follows:

(1) The most advanced algorithms for short-term solar PV power generation forecasting
were evaluated;

(2) The accuracy, advantages, and disadvantages of various new AI hybrid models
were evaluated;

(3) Existing challenges and issues, such as short-term solar PV power generation data
diversity, algorithm structure, hyperparametric adjustment, optimization integration,
and AI hybrid issues, were explored;

(4) The development and future possibilities of efficient short-term solar PV power
generation prediction methods based on artificial intelligence were proposed. Future
research directions and challenges for existing short-term solar PV power generation
prediction methods were provided;

(5) The impacts of meteorological information and cloud image information in terms
of improving data preprocessing or data feature selection and analysis and data
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inaccuracies or loss were explored. The distribution of the database input sources,
forecasting methods, and predictive error metrics was analyzed, and the effective use
of machine learning or optimization algorithms and deep learning models to improve
the accuracy of existing models was discussed to increase forecasting accuracy;

(6) It was shown that improving the prediction accuracy of short-term solar PV power
generation is beneficial to the optimal scheduling of microgrids and integration with
the optimization of power systems.
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Abbreviations

PV Photovoltaic
AI Artificial intelligence
ANFIS Adaptive-network-based fuzzy inference systems
ANN Artificial neural network
BNN Backpropagation neural network
CNN Convolutional neural network
RNN Regression neural network
LSTM Long-short term memory
CLSTM Convolutional long short-term memory
SVM Support vector machine
SVR Support vector regression
GBDT Gradient boosting decision tree
ELM Extreme learning machine
GHI Global horizontal irradiance
ABL Adaptive boosting Learning
TOB Transparent Open Box
FOS-ELM Extreme learning machine with a forgetting mechanism
ResAttGRU Multi-branch attentive gated current residual network
BMA Bayesian model averaging
Rec_LSTM Recursive long short-term memory network
STVAR Spatio-temporal autoregressive model
GPR Gaussian process regression
MK-RVFLN Multi-kernel random vector functional link neural network
GRU Gate recurrent units—a variant of LSTM
Conv LSTM Convolutional long-term short-term memory
MFFNN Multi-layer feed-forward neural network
MVO Multi-verse optimization
GA Genetic algorithm
MLP Multi-layer perceptron
VMD Variational mode decomposition
RVM Relevance vector machine
CMAES Covariance matrix adaptive evolution strategies
XGB Extreme gradient boosting
MARS Multi-adaptive regression splines
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MC-WT-CBiLSTM
Multi-channel, wavelet transform combining convolutional neural
network and bidirectional long short-term memory

NARX-CVM
Non-linear autoregressive with exogenous inputs and corrective
vector multiplier

LSTM-SVR-BO
Long short-term memory support vector regression
Bayesian optimization

GBRT-Med-KDE Gradient boosting regression tree median-Kernel density estimation
TG-A-CNN-LSTM Theory-guided and attention-based CNN-LSTM
HMM Hidden Markov model
SBFM Similarity-based forecasting model
KF Kalman filtering
QRA Quantile regression averaging
MRE Mean relative error
MAE Mean absolute error
MASE Mean absolute scaled error
WMAPE Weighted mean absolute percentage error
MBE Mean bias error
MSE Mean squared error
RMSE Root mean squared error
MAPE Mean absolute percent error
SMAPE Symmetric mean absolute percentage error
nMAE Normalized mean absolute error
nMBE Normalized mean bias error
nRMSE Normalized root mean squared error
R2 Fitting coefficient
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19. Radovan, A.; Šunde, V.; Kučak, D.; Ban, Ž. Solar irradiance forecast based on cloud movement prediction. Energies 2021, 14, 3775.
[CrossRef]

20. Babbar, S.M.; Lau, C.Y.; Thang, K.F. Long Term Solar Power Generation Prediction using Adaboost as a Hybrid of Linear and
Non-linear Machine Learning Model. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 536–545. [CrossRef]

21. Ramkumar, G.; Sahoo, S.; Amirthalakshmi, T.M.; Ramesh, S.; Prabu, R.T.; Kasirajan, K.; Samrot, A.V.; Ranjith, A. A Short-
Term Solar Photovoltaic Power Optimized Prediction Interval Model Based on FOS-ELM Algorithm. Int. J. Photoenergy 2021,
2021, 3981456. [CrossRef]

22. Lateko, A.A.H.; Yang, H.-T.; Huang, C.-M. Short-Term PV Power Forecasting Using a Regression-Based Ensemble Method.
Energies 2022, 15, 4171. [CrossRef]

23. Mohana, M.; Saidi, A.S.; Alelyani, S.; Alshayeb, M.J.; Basha, S.; Anqi, A.E. Small-Scale Solar Photovoltaic Power Prediction for
Residential Load in Saudi Arabia Using Machine Learning. Energies 2021, 14, 6759. [CrossRef]

24. Mehazzem, F.; André, M.; Calif, R. Efficient Output Photovoltaic Power Prediction Based on MPPT Fuzzy Logic Technique and
Solar Spatio-Temporal Forecasting Approach in a Tropical Insular Region. Energies 2022, 15, 8671. [CrossRef]

25. Zazoum, B. Solar photovoltaic power prediction using different machine learning methods. Energy Rep. 2022, 8, 19–25. [CrossRef]
26. Majumder, I.; Dash, P.K.; Bisoi, R. Short-term solar power prediction using multi-kernel-based random vector functional link

with water cycle algorithm-based parameter optimization. Neural Comput. Appl. 2020, 32, 8011–8029. [CrossRef]
27. Liu, Y. Short-Term Prediction Method of Solar Photovoltaic Power Generation Based on Machine Learning in Smart Grid. Math.

Probl. Eng. 2022, 2022, 8478790. [CrossRef]
28. Krechowicz, M.; Krechowicz, A.; Lichołai, L.; Pawelec, A.; Piotrowski, J.Z.; Stępień, A. Reduction of the Risk of Inaccurate
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