Paper Review of External Integrated Systems as Photovoltaic Shading Devices
Abstract
:1. Introduction
1.1. The Aim of the Study
1.2. Previous Literature Reviews Based on PVSDs
2. Methodology
2.1. Source of Information and Eligibility Criteria
2.2. Data Analysis and Reporting Methodology
2.3. Additional Analyses
3. Results and Discussion
3.1. Year of Publication
3.2. Working Group and Study Location
3.3. Author Keywords and Validation Method
3.4. Type of Technology
- PV louvre: defined as any similar arrangement of PV slats or PV fins, attached in mechanical systems, often adjustable, used to control ventilation, light intensity, and energy efficiency in general.
- PV window blind: a lightweight system that permits control of the light and privacy and produces energy. The window blind is retractable and includes venetian blinds and roller blinds. This analysis includes embedded PV window blinds as external integrated systems.
- PV panel or PV shading overhang: roof projection, an upper story, or a solid panel of a building beyond the building envelope of the lower part, on which a PV module is integrated.
- PV fin: little static wings that produce energy and are projected perpendicularly or not from the façade and used randomly across the façade, creating rhythm and scale on otherwise soulless cartesian curtain wall grids. PV fins are used to control ventilation, light intensity, and energy efficiency in general. PV fins, unlike PV louvers, are not attached in mechanical systems.
- PV eggcrate: horizontal construction divided vertically into cell-like areas, used primarily to direct downward rays of overhead light and produce electricity (dictionary.com).
- Other PV systems: PV shading systems not included in the previous categories.
- Composite PV systems: PVSD combining multiple simple techniques.
3.5. Design Strategies
3.6. Energy Performance: PV Generation and Savings
3.7. Innovative Solutions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ng, P.K.; Mithraratne, N. Lifetime performance of semi-transparent building-integrated photovoltaic (BIPV) glazing systems in the tropics. Renew. Sustain. Energy Rev. 2014, 31, 736–745. [Google Scholar] [CrossRef]
- Sun, L.; Hu, W.; Yuan, Y.; Cao, X.; Lei, B. Dynamic Performance of the Shading-type Building-Integrated Photovoltaic Claddings. Procedia Eng. 2015, 121, 930–937. [Google Scholar] [CrossRef] [Green Version]
- IEA. Tracking Buildings 2021. 2021. Available online: https://www.iea.org/energy-system/buildings (accessed on 21 June 2023).
- Zhang, X.; Lau, S.-K.; Lau, S.S.Y.; Zhao, Y. Photovoltaic integrated shading devices (PVSDs): A review. Sol. Energy 2018, 170, 947–968. [Google Scholar] [CrossRef]
- EN 50583-1; Photovoltaics in Building—Part 1: BIPV Modules. European Standards: Pilsen, Czech, 2016.
- Berger, K.; Cueli, A.B.; Boddaert, S.; Buono, M.D.; Delisle, V.; Fedorova, A.; Frontini, F.; Hendrick, P.; Inoue, S.; Ishii, H.; et al. International Definitions of BIPV. Rep. IEA-PVPS T9-18 2018. 2018, p. 32. Available online: https://iea-pvps.org/wp-content/uploads/2020/02/IEA-PVPS_Task_15_Report_C0_International_definitions_of_BIPV_hrw_180823.pdf (accessed on 21 July 2023).
- Corti, P.; Bonomo, P.; Frontini, F.; Mace, P.; Bosch, E. Building Integrated Photovoltaics: A Practical Handbook for Solar Buildings’ Stakeholders Status Report. 2020. Available online: https://solarchitecture.ch/wp-content/uploads/2020/11/201022_BIPV_web_V01.pdf (accessed on 21 July 2023).
- Bonomo, P.; Eder, G.; Martín Chivelet, N.; Eisenlohr, J.; Frontini, F.; Kapsis, C. Categorization of BIPV Applications. 2021. Available online: https://repository.supsi.ch/13130/ (accessed on 21 July 2023).
- Mesloub, A.; Ghosh, A.; Touahmia, M.; Albaqawy, G.A.; Noaime, E.; Alsolami, B.M. Performance Analysis of Photovoltaic Integrated Shading Devices (PVSDs) and Semi-Transparent Photovoltaic (STPV) Devices Retrofitted to a Prototype Office Building in a Hot Desert Climate. Sustainability 2020, 12, 10145. [Google Scholar] [CrossRef]
- Al-Masrani, S.M.; Al-Obaidi, K.M. Dynamic shading systems: A review of design parameters, platforms and evaluation strategies. Autom. Constr. 2018, 102, 195–216. [Google Scholar] [CrossRef] [Green Version]
- Kirimtat, A.; Koyunbaba, B.K.; Chatzikonstantinou, I.; Sariyildiz, S. Review of simulation modeling for shading devices in buildings. Renew. Sustain. Energy Rev. 2016, 53, 23–49. [Google Scholar] [CrossRef]
- Bahr, W. A comprehensive assessment methodology of the building integrated photovoltaic blind system. Energy Build. 2014, 82, 703–708. [Google Scholar] [CrossRef]
- Ibraheem, Y.; Farr, E.R.; Piroozfar, P.A. Embedding Passive Intelligence into Building Envelopes: A Review of the State-of-the-art in Integrated Photovoltaic Shading Devices. Energy Procedia 2017, 111, 964–973. [Google Scholar] [CrossRef] [Green Version]
- Kirimtat, A.; Tasgetiren, M.F.; Brida, P.; Krejcar, O. Control of PV integrated shading devices in buildings: A review. Build. Environ. 2022, 214, 108961. [Google Scholar] [CrossRef]
- Vassiliades, C.; Agathokleous, R.; Barone, G.; Forzano, C.; Giuzio, G.; Palombo, A.; Buonomano, A.; Kalogirou, S. Building integration of active solar energy systems: A review of geometrical and architectural characteristics. Renew. Sustain. Energy Rev. 2022, 164, 112482. [Google Scholar] [CrossRef]
- Tongtuam, Y.; Ketjoy, N.; Vaivudh, S.; Thanarak, P. Effect of the Diffuse Radiation Reflection from Exterior wall on Shading Device Integrated Photovoltaic Case of Thailand building. Energy Procedia 2011, 9, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.-H.; Manz, H. Available remodeling simulation for a BIPV as a shading device. Sol. Energy Mater. Sol. Cells 2011, 95, 394–397. [Google Scholar] [CrossRef]
- Hwang, T.; Kang, S.; Kim, J.T. Optimization of the building integrated photovoltaic system in office buildings—Focus on the orientation, inclined angle and installed area. Energy Build. 2012, 46, 92–104. [Google Scholar] [CrossRef]
- Kang, S.; Hwang, T.; Kim, J.T. Theoretical analysis of the blinds integrated photovoltaic modules. Energy Build. 2012, 46, 86–91. [Google Scholar] [CrossRef]
- Mandalaki, M.; Zervas, K.; Tsoutsos, T.; Vazakas, A. Assessment of fixed shading devices with integrated PV for efficient energy use. Sol. Energy 2012, 86, 2561–2575. [Google Scholar] [CrossRef]
- Sun, L.; Lu, L.; Yang, H. Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles. Appl. Energy 2012, 90, 233–240. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kim, I.-T.; Choi, A.-S.; Sung, M. Evaluation of optimized PV power generation and electrical lighting energy savings from the PV blind-integrated daylight responsive dimming system using LED lighting. Sol. Energy 2014, 107, 746–757. [Google Scholar] [CrossRef]
- Mandalaki, M.; Papantoniou, S.; Tsoutsos, T. Assessment of energy production from photovoltaic modules integrated in typical shading devices. Sustain. Cities Soc. 2014, 10, 222–231. [Google Scholar] [CrossRef]
- Saranti, A.; Tsoutsos, T.; Mandalaki, M. Sustainable Energy Planning. Design Shading Devices with Integrated Photovoltaic Systems for Residential Housing Units. Procedia Eng. 2015, 123, 479–487. [Google Scholar] [CrossRef] [Green Version]
- Hofer, J.; Groenewolt, A.; Jayathissa, P.; Nagy, Z.; Schlueter, A. Parametric analysis and systems design of dynamic photovoltaic shading modules. Energy Sci. Eng. 2016, 4, 134–152. [Google Scholar] [CrossRef] [Green Version]
- Hong, T.; Jeong, K.; Ban, C.; Oh, J.; Koo, C.; Kim, J.; Lee, M. A Preliminary Study on the 2-axis Hybrid Solar Tracking Method for the Smart Photovoltaic Blind. Energy Procedia 2016, 88, 484–490. [Google Scholar] [CrossRef] [Green Version]
- Hong, T.; Jeong, K.; Koo, C.; Kim, J.; Lee, M. A Preliminary Study for Determining Photovoltaic Panel for a Smart Photovoltaic Blind Considering Usability and Constructability Issues. Energy Procedia 2016, 88, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Nagy, Z.; Svetozarevic, B.; Jayathissa, P.; Begle, M.; Hofer, J.; Lydon, G.; Willmann, A.; Schlueter, A. The Adaptive Solar Facade: From concept to prototypes. Front. Arch. Res. 2016, 5, 143–156. [Google Scholar] [CrossRef] [Green Version]
- Park, H.S.; Koo, C.; Hong, T.; Oh, J.; Jeong, K. A finite element model for estimating the techno-economic performance of the building-integrated photovoltaic blind. Appl. Energy 2016, 179, 211–227. [Google Scholar] [CrossRef]
- Stamatakis, A.; Mandalaki, M.; Tsoutsos, T. Multi-criteria analysis for PV integrated in shading devices for Mediterranean region. Energy Build. 2016, 117, 128–137. [Google Scholar] [CrossRef]
- Abdullah, H.K.; Alibaba, H.Z. Retrofits for Energy Efficient Office Buildings: Integration of Optimized Photovoltaics in the Form of Responsive Shading Devices. Sustainability 2017, 9, 2096. [Google Scholar] [CrossRef] [Green Version]
- Budhiyanto, A.; Suryabrata, J.A.; Saragih, S. Study of Shading Device Building-Integrated Photovoltaic Performance on Energy Saving. J. Urban Environ. Eng. 2017, 11, 202–207. [Google Scholar] [CrossRef]
- Chantawong, P. Experimental Study of a PV Blinds Glazed Solar Chimney Assisted with DC Fan for Hot Water Production. Energy Procedia 2017, 138, 20–25. [Google Scholar] [CrossRef]
- Gao, Y.; Dong, J.; Isabella, O.; Zeman, M.; Zhang, G. Daylighting simulation and analysis of buildings with dynamic photovoltaic window shading elements. In Proceedings of the 2017 14th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), Beijing, China, 1–3 November 2017; pp. 52–55. [Google Scholar] [CrossRef]
- El Gindi, S.; Abdin, A.R.; Hassan, A. Building integrated Photovoltaic Retrofitting in office buildings. Energy Procedia 2017, 115, 239–252. [Google Scholar] [CrossRef]
- Hong, S.; Choi, A.-S.; Sung, M. Development and verification of a slat control method for a bi-directional PV blind. Appl. Energy 2017, 206, 1321–1333. [Google Scholar] [CrossRef]
- Hong, T.; Koo, C.; Oh, J.; Jeong, K. Nonlinearity analysis of the shading effect on the technical–economic performance of the building-integrated photovoltaic blind. Appl. Energy 2017, 194, 467–480. [Google Scholar] [CrossRef]
- Hu, Z.; He, W.; Hu, D.; Lv, S.; Wang, L.; Ji, J.; Chen, H.; Ma, J. Design, construction and performance testing of a PV blind-integrated Trombe wall module. Appl. Energy 2017, 203, 643–656. [Google Scholar] [CrossRef]
- Hu, Z.; He, W.; Ji, J.; Hu, D.; Lv, S.; Chen, H.; Shen, Z. Comparative study on the annual performance of three types of building integrated photovoltaic (BIPV) Trombe wall system. Appl. Energy 2017, 194, 81–93. [Google Scholar] [CrossRef]
- Jayathissa, P.; Zarb, J.; Luzzatto, M.; Hofer, J.; Schlueter, A. Sensitivity of Building Properties and Use Types for the Application of Adaptive Photovoltaic Shading Systems. Energy Procedia 2017, 122, 139–144. [Google Scholar] [CrossRef]
- Jayathissa, P.; Luzzatto, M.; Schmidli, J.; Hofer, J.; Nagy, Z.; Schlueter, A. Optimising building net energy demand with dynamic BIPV shading. Appl. Energy 2017, 202, 726–735. [Google Scholar] [CrossRef]
- Jeong, K.; Hong, T.; Koo, C.; Oh, J.; Lee, M.; Kim, J. A Prototype Design and Development of the Smart Photovoltaic System Blind Considering the Photovoltaic Panel, Tracking System, and Monitoring System. Appl. Sci. 2017, 7, 1077. [Google Scholar] [CrossRef] [Green Version]
- Koo, C.; Hong, T.; Jeong, K.; Ban, C.; Oh, J. Development of the smart photovoltaic system blind and its impact on net-zero energy solar buildings using technical-economic-political analyses. Energy 2017, 124, 382–396. [Google Scholar] [CrossRef]
- Li, X.; Peng, J.; Li, N.; Wang, M.; Wang, C. Study on Optimum Tilt Angles of Photovoltaic Shading Systems in Different Climatic Regions of China. Procedia Eng. 2017, 205, 1157–1164. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, L.; Wang, X.; Xie, L.; Liu, Z.; Wu, J.; Zhang, Y.; He, X. A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds. Appl. Energy 2017, 199, 281–293. [Google Scholar] [CrossRef]
- Oh, J.; Koo, C.; Hong, T.; Jeong, K.; Lee, M. An economic impact analysis of residential progressive electricity tariffs in implementing the building-integrated photovoltaic blind using an advanced finite element model. Appl. Energy 2017, 202, 259–274. [Google Scholar] [CrossRef]
- Taveres-Cachat, E.; Bøe, K.; Lobaccaro, G.; Goia, F.; Grynning, S. Balancing competing parameters in search of optimal configurations for a fix louvre blade system with integrated PV. Energy Procedia 2017, 122, 607–612. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, L.; Peng, J. Evaluation of potential benefits of solar photovoltaic shadings in Hong Kong. Energy 2017, 137, 1152–1158. [Google Scholar] [CrossRef]
- Abdullah, H.K.; Alibaba, H.Z. Towards Nearly Zero-Energy Buildings: The Potential of Photovoltaic-Integrated Shading Devices to Achieve Autonomous Solar Electricity and Acceptable Thermal Comfort in Naturally ventilated Office Spaces. In Proceedings of the 16th International Conference on Clean Energy, Famagusta, North Cyprus, 9–11 May 2018. [Google Scholar]
- Asfour, O.S. Solar and Shading Potential of Different Configurations of Building Integrated Photovoltaics Used as Shading Devices Considering Hot Climatic Conditions. Sustainability 2018, 10, 4373. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Dong, J.; Isabella, O.; Santbergen, R.; Tan, H.; Zeman, M.; Zhang, G. A photovoltaic window with sun-tracking shading elements towards maximum power generation and non-glare daylighting. Appl. Energy 2018, 228, 1454–1472. [Google Scholar] [CrossRef]
- Hong, S.; Choi, A.; Sung, M. Impact of bi-directional PV blind control method on lighting, heating and cooling energy consumption in mock-up rooms. Energy Build. 2018, 176, 1–16. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, L.; Liu, Z.; Su, X.; Lian, J.; Luo, Y. Coupled thermal-electrical-optical analysis of a photovoltaic-blind integrated glazing façade. Appl. Energy 2018, 228, 1870–1886. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, L.; Liu, Z.; Xie, L.; Wang, X.; Wu, J. Experimental study and performance evaluation of a PV-blind embedded double skin façade in winter season. Energy 2018, 165, 326–342. [Google Scholar] [CrossRef]
- Martinopoulos, G.; Serasidou, A.; Antoniadou, P.; Papadopoulos, A.M. Building Integrated Shading and Building Applied Photovoltaic System Assessment in the Energy Performance and Thermal Comfort of Office Buildings. Sustainability 2018, 10, 4670. [Google Scholar] [CrossRef] [Green Version]
- Fouad, M.; Shihata, L.A.; Mohamed, A. Modeling and analysis of Building Attached Photovoltaic Integrated Shading Systems (BAPVIS) aiming for zero energy buildings in hot regions. J. Build. Eng. 2018, 21, 18–27. [Google Scholar] [CrossRef]
- Jung, W.; Hong, T.; Oh, J.; Kang, H.; Lee, M. Development of a prototype for multi-function smart window by integrating photovoltaic blinds and ventilation system. Build. Environ. 2018, 149, 366–378. [Google Scholar] [CrossRef]
- Kang, H.; Hong, T.; Lee, M. Technical performance analysis of the smart solar photovoltaic blinds based on the solar tracking methods considering the climate factors. Energy Build. 2019, 190, 34–48. [Google Scholar] [CrossRef]
- Kang, H.; Hong, T.; Jung, S.; Lee, M. Techno-economic performance analysis of the smart solar photovoltaic blinds considering the photovoltaic panel type and the solar tracking method. Energy Build. 2019, 193, 1–14. [Google Scholar] [CrossRef]
- Li, X.; Peng, J.; Li, N.; Wu, Y.; Fang, Y.; Li, T.; Wang, M.; Wang, C. Optimal design of photovoltaic shading systems for multi-story buildings. J. Clean. Prod. 2019, 220, 1024–1038. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, L.; Su, X.; Liu, Z.; Lian, J.; Luo, Y. Improved thermal-electrical-optical model and performance assessment of a PV-blind embedded glazing façade system with complex shading effects. Appl. Energy 2019, 255, 113896. [Google Scholar] [CrossRef]
- Ogbeba, J.E.; Hoskara, E. The Evaluation of Single-Family Detached Housing Units in Terms of Integrated Photovoltaic Shading Devices: The Case of Northern Cyprus. Sustainability 2019, 11, 593. [Google Scholar] [CrossRef] [Green Version]
- Taveres-Cachat, E.; Goia, F. Investigating the performance of a hybrid PV integrated shading device using multi-objective optimization. J. Physics: Conf. Ser. 2019, 1343, 012086. [Google Scholar] [CrossRef]
- Taveres-Cachat, E.; Lobaccaro, G.; Goia, F.; Chaudhary, G. A methodology to improve the performance of PV integrated shading devices using multi-objective optimization. Appl. Energy 2019, 247, 731–744. [Google Scholar] [CrossRef]
- Paydar, M.A. Optimum design of building integrated PV module as a movable shading device. Sustain. Cities Soc. 2020, 62, 102368. [Google Scholar] [CrossRef]
- Alinejad, T.; Yaghoubi, M.; Vadiee, A. Thermo-environomic assessment of an integrated greenhouse with an adjustable solar photovoltaic blind system. Renew. Energy 2020, 156, 1–13. [Google Scholar] [CrossRef]
- Ibraheem, Y.; Piroozfar, P.; Farr, E.R.P.; Ravenscroft, N. Energy Production Analysis of Photovoltaic Shading Devices (PVSD) in Integrated Façade Systems (IFS). Front. Built Environ. 2020, 6, 1–12. [Google Scholar] [CrossRef]
- Jung, S.K.; Kim, Y.; Moon, J.W. Performance Evaluation of Control Methods for PV-Integrated Shading Devices. Energies 2020, 13, 3171. [Google Scholar] [CrossRef]
- Kang, H.; Hong, T.; Lee, M. A new approach for developing a hybrid sun-tracking method of the intelligent photovoltaic blinds considering the weather condition using data mining technique. Energy Build. 2019, 209, 109708. [Google Scholar] [CrossRef]
- Li, Z.; Yano, A.; Yoshioka, H. Feasibility study of a blind-type photovoltaic roof-shade system designed for simultaneous production of crops and electricity in a greenhouse. Appl. Energy 2020, 279, 115853. [Google Scholar] [CrossRef]
- Lin, Q.; Zhang, Y.; Van Mieghem, A.; Chen, Y.-C.; Yu, N.; Yang, Y.; Yin, H. Design and experiment of a sun-powered smart building envelope with automatic control. Energy Build. 2020, 223, 110173. [Google Scholar] [CrossRef]
- Peres, A.C.; Calili, R.; Louzada, D. Impacts of photovoltaic shading devices on energy generation and cooling demand. In Proceedings of the 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, ON, Canada, 15 June–21 August 2020; pp. 1186–1191. [Google Scholar] [CrossRef]
- Settino, J.; Carpino, C.; Perrella, S.; Arcuri, N. Multi-Objective Analysis of a Fixed Solar Shading System in Different Climatic Areas. Energies 2020, 13, 3249. [Google Scholar] [CrossRef]
- Yu, G.; Yang, H.; Luo, D.; Cheng, X.; Ansah, M.K. A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds. Renew. Sustain. Energy Rev. 2021, 149, 111355. [Google Scholar] [CrossRef]
- Taveres-Cachat, E.; Goia, F. Exploring the impact of problem formulation in numerical optimization: A case study of the design of PV integrated shading systems. Build. Environ. 2020, 188, 107422. [Google Scholar] [CrossRef]
- Custódio, I.; Quevedo, T.; Melo, A.; Rüther, R. A holistic approach for assessing architectural integration quality of solar photovoltaic rooftops and shading devices. Sol. Energy 2022, 237, 432–446. [Google Scholar] [CrossRef]
- Yun, S.-I.; Choi, A. Simulation-based analysis of luminous environment of OLED lighting-integrated blinds for PV–OLED blind systems. Build. Environ. 2022, 211, 108765. [Google Scholar] [CrossRef]
- Kim, J.; Lee, H.; Choi, M.; Kim, D.; Yoon, J. Power performance assessment of PV blinds system considering self-shading effects. Sol. Energy 2023, 262, 111834. [Google Scholar] [CrossRef]
- Liu, J.; Bi, G.; Gao, G.; Zhao, L. Optimal design method for photovoltaic shading devices (PVSDs) by combining geometric optimization and adaptive control model. J. Build. Eng. 2023, 69, 106101. [Google Scholar] [CrossRef]
- Nicoletti, F.; Cucumo, M.A.; Arcuri, N. Building-integrated photovoltaics (BIPV): A mathematical approach to evaluate the electrical production of solar PV blinds. Energy 2023, 263, 126030. [Google Scholar] [CrossRef]
- Chen, H.; Cai, B.; Yang, H.; Wang, Y.; Yang, J. Study on natural lighting and electrical performance of louvered photovoltaic windows in hot summer and cold winter areas. Energy Build. 2022, 271, 112313. [Google Scholar] [CrossRef]
- Sadatifar, S.; Johlin, E. Multi-objective optimization of building integrated photovoltaic solar shades. Sol. Energy 2022, 242, 191–200. [Google Scholar] [CrossRef]
- Sayre, R.; Karagulle, D.; Frye, C.; Boucher, T.; Wolff, N.H.; Breyer, S.; Wright, D.; Martin, M.; Butler, K.; Van Graafeiland, K.; et al. An assessment of the representation of ecosystems in global protected areas using new maps of World Climate Regions and World Ecosystems. Glob. Ecol. Conserv. 2020, 21, e00860. [Google Scholar] [CrossRef]
- European Commission. The European Green Deal. 2019. Available online: http://eur-lex.europa.eu/resource.html?uri=cellar:208111e4-414e-4da5-94c1-852f1c74f351.0004.02/DOC_1&format=PDF (accessed on 21 July 2023).
- National Energy Foundation. Solar Shading Impact; No. June; National Energy Foundation: Milton Keynes, UK, 2016. [Google Scholar]
- Gasparri, E.; Brambilla, A.; Lobaccaro, G.; Goia, F.A.; Sangiorgio, A. Rethinking Building Skins; Woodhead Publishing Limited: Cambridge, UK, 2022. [Google Scholar]
- Muntwyler, U.; Renken, C.; Schüpbach, E.; Faes, A.; Stöckli, T. The missing link: Innovative vertical PV surfaces ‘solar windwos’ and ‘solar blinds. In Proceedings of the EU PVSEC 2021, Online, 6–10 September 2021. [Google Scholar]
- WIPO. Global Innovation Index 2021; No. June; WIPO: Karlsruhe, Germany, 2021. [Google Scholar]
Parameter | Keyword |
---|---|
Photovoltaic | PV, BIPV, building integrated photovoltaic, solar, renewable energy, energy production, module, electricity |
Shading system | Blind, venetian blind, shading device, louver, louvre, overhang, canopy, fin, eggcrate, innovation, design strategies |
Building | nZEB, nearly zero energy building, construction, energy demand, renovation, energy-saving |
Reference Number | Study Location | Keywords | Validation Method | PVSD |
---|---|---|---|---|
[16] | Thailand | Diffuse radiation reflection; Exterior wall; Shading device integrated photovoltaic; Thailand building | Simulation | PV panel |
[17] | South Korea | BIPV; CFD; Efficiency; Power generation; Remodelling | Simulation | PV panel |
[18] | South Korea | Optimization of a PVSD in office building | Simulation | PV louver |
[19] | South Korea | Heat exchange network analysis; Photovoltaic module; Photovoltaic module integrated blind; Shading effects; Venetian blind | Simulation | PV Window blind |
[20] | Greece | BIPV; Daylight availability; Electricity production; Photovoltaic panel; Shading device; Thermal comfort | Mock-up—outdoor | PV panel; PV louver; PV eggcrate |
[21] | Hong Kong | BIPV; Energy saving; Optimum design; Shading-type building integrated photovoltaic cladding; Surface azimuth angle | Simulation | PV panel |
[12] | South Korea | Assessment methodology; PV blinds; Renewable energy; Sustainability | Simulation | PV panel |
[22] | South Korea | BIPV (building integrated photovoltaic) system; Daylight responsive dimming system; LED lighting system; PV system; Venetian blind | Real building | PV Window blind |
[23] | Greece | Energy production PVSD | Simulation | PV panel; PV louver; PV eggcrate |
[24] | Greece | Electricity production; Shading devices | Mock-up—outdoor | PV panel |
[2] | Hong Kong | Dynamic performance; Energy saving; Optimum design; Shading-type building integrated photovoltaic clad | Simulation | PV panel |
[25] | Switzerland | Shading optimization | Simulation | PV louver; Other PV system |
[26] | South Korea | Hybrid solar tracking method; Indirect tracking method; Smart photovoltaic blind; Solar tracking system | Theoretical | PV window blind |
[27] | NA | Amorphous silicon; Copper indium gallium selenide; Smart photovoltaic blind | Theoretical | PV window blind |
[28] | Switzerland | BIPV; Dynamic facade; Facade engineering; Photovoltaics; Responsive architecture | Simulation | Other PV system |
[29] | South Korea | Building integrated photovoltaic blind; Energy simulation; Finite element method; Grid-connected utilization plan; Lifecycle cost analysis | Simulation | PV Window blind |
[30]. | Greece | BIPV systems; Multicriteria analysis; PROMETHEE method; Shading devices | NA | PV panel; PV louver; PV eggcrate |
[31] | Turkey | Building retrofit; Energy efficiency; Office building; Photovoltaic optimization; Responsive shading devices | Simulation | Other PV system |
[32] | Indonesia | BIPV; Building envelope; Building simulation; Energy efficient; Shading device | Simulation | PV panel |
[33] | Thailand | Assisted natural ventilation; DC fan; Domestic hot water; PV blinds; Tropical climate of Thailand | Mock-up—outdoor | PV Window blind |
[34] | China | NA | Simulation | PV louver |
[35] | Egypt | Building integrated photovoltaic; Office Buildings; Retrofitting | Simulation | PV panel |
[36] | South Korea | Bidirectional blind; Daylight; PV Module; PV blinds | Mock-up—outdoor | PV Window blind |
[37] | South Korea | Building integrated photovoltaic blind; Electricity generation; Lifecycle cost analysis; Nonlinearity; Shading effect | Simulation | PV Window blind |
[38] | China | Comparative experiments; Electricity generation; Heat gains; PV blind; The total efficiency; Trombe wall | Mock-up—outdoor | PV Window blind |
[39] | China | BIPV Trombe wall; Cooling/heating load reduction; Electricity generation; PV blind; Total electricity saving | Simulation | PV Window blind |
[13]. | - | Fully glazed façades; Highly glazed façades; Integrated façade systems; Intelligent façades; Photovoltaic integrated shading devices | NA | Multiple |
[40]. | Switzerland | Adaptive shading; BIPV; Dynamic photovoltaics; Multifunctional envelope | Simulation | Other PV system |
[41] | Switzerland | Adaptive shading; BIPV; Dynamic photovoltaics; Multifunctional envelope | Simulation | Other PV system |
[42] | South Korea | Monitoring system; Photovoltaic panel; Prototype model; Smart photovoltaic system blind; Tracking system | Small scale demonstrator | PV Window blind |
[43] | South Korea | Energy self-sufficiency rate; Grid-connected utilization plan; Lifecycle cost analysis; Smart photovoltaic system blind; Spatial footprint | Simulation | PV Window blind |
[44] | China | EnergyPlus; Net energy consumption; Optimum tilt angles; Photovoltaic shading system | Simulation | PV panel |
[45] | China | Comparative study; Double-skin façade; Photovoltaic blinds; Solar heat gain; Thermal performance | Mock-up—outdoor | PV Window blind |
[46] | South Korea | Building integrated photovoltaic blind; Economic impact analysis; Finite element method; Grid-connected utilization; Residential progressive electricity tariffs | Simulation | PV Window blind |
[47] | Norway | BIPV; Continuous daylight autonomy; Daylight autonomy; Parametric analysis; Shading system; Useful daylight autonomy; Visual comfort | Simulation | PV louver |
[48] | Hong Kong | Building integrated photovoltaics (BIPV); Energy saving potential; Optimum design; Solar photovoltaic (PV) shading | Simulation | PV panel |
[49] | Cyprus | Nearly zero energy buildings (nZEB); Autonomous solar electricity; Adaptive thermal comfort; Passive design strategies; Photovoltaic integrated shading devices (PVISD) | Simulation | PV panel |
[50] | Saudi Arabia | Architecture; Building integrated photovoltaics (BIPVs); Saudi Arabia; Shading devices; Solar energy | Simulation | PV panel; PV fin |
[51] | Worldwide (multiple) | BIPV; Partial shading effects; Photovoltaics; Solar energy; Sun-tracking methods | Simulation | Other PV system |
[52] | South Korea | Airconditioning; Bidirectional blinds; Daylight; Lighting | Mock-up—outdoor | PV window blind |
[53] | South Korea | Daylighting; Double-skin façade; Energy-saving; PV façade; Shading device | Mock-up—outdoor | PV Window blind |
[54] | China | Comparison analysis; Double-skin facades; Experiment study; Photovoltaic blinds; Thermal performance | Mock-up—outdoor | PV window blind |
[55] | Greece | BIPV (building integrated photovoltaic); Energy performance; EnergyPlus; Office buildings; Simulation; Thermal comfort | Simulation | PV louver |
[4] | - | Paper review of PVSD | NA | Multiple |
[10] | - | Control systems; Dynamic shading systems; Geometries; Mechanisms; Responsive architecture | NA | Multiple |
[56] | Egypt | Building attached photovoltaic (BAPV); Photovoltaic integrated shading (PVIS); Regression analyses; Zero energy building (ZEB) | Mock-up—outdoor | PV panel |
[57] | South Korea | Building façade; multifunction smart window; Photovoltaic blinds; Real-time operation system; Ventilation system | Simulation | PV Window blind |
[58] | South Korea | Climate factor; Correlation analysis; Solar photovoltaic blind; Solar tracking method; Technical performance | Mock-up—outdoor | PV Window blind |
[59] | South Korea | Feasibility study; Photovoltaic panel type; Solar photovoltaic blind; Solar tracking method; Techno-economic performance analysis | Real building | PV Window blind |
[60] | China | Cost of Benefit; Net electricity consumption; Numerical shading model; Photovoltaic shading systems | Simulation | PV panel |
[61] | China | Complex shading effects; Glazing façade; PV blind; Thermal–electrical–optical simulation | Mock-up—outdoor | PV Window blind |
[62] | Cyprus | BIPV; Energy consumption; Northern Cyprus; Renewable energy integration; Shading devices; Thermal comfort | Simulation | PV panel; PV fin |
[63] | Norway | NA | Simulation | PV louver |
[64] | Norway | Building integrated photovoltaic shading device; Daylighting; Multi-objective optimization; Parametric design; Passive solar energy technologies; Solar building envelope | Simulation | PV louver |
[65] | Iran | Building energy simulation; Building integrated photovoltaic (BIPV); Movable BIPV shading; Optimization | Simulation | PV panel |
[66] | Iran | Energy; Photovoltaic; Solar blind system; Solar greenhouse; Thermo-environomic | Simulation | PV panel |
[67] | Iraq | Base-case model; benchmarking; building energy simulation (BES); Energy production; Fully glazed façades; Highly glazed façades; Office buildings; Sensitivity analysis | Simulation | PV louver |
[68] | USA | Artificial neural networks; Electricity production; Optimum louver slat angle; PV integrated shading device; Visual comfort | Mock-up—outdoor | PV Window blind |
[69] | South Korea | Climate factor; Data mining techniques; Decision tree (DT); Efficiency of electricity generation; Hybrid sun-tracking method; Photovoltaic blind (PB) | Real building | PV Window blind |
[70] | Japan | Food; Renewable energy; Shading; Solar cell; Sustainability | Real building | PV panel |
[71] | USA | Automatic control; Energy equilibrium design; Energy harvesting; Smart building envelope; Window blinds | Mock-up—indoor | PV Window blind |
[9] | Saudi Arabia | Energy saving; Hot desert climate; Overall energy; Photovoltaic shading device (PVSD); Tilt angle; Visual comfort | Simulation | PV louver; PV panel; PV fin |
[72] | Brazil | Cooling loads; Energy efficiency; Energy generation; Photovoltaic; Shading devices | Simulation | PV louver |
[73] | Europe (multiple) | Energy savings; Multi-objective optimization; Shading systems; Visual comfort | Simulation | PV louver |
[74] | - | BIPV windows; PV blinds; PV glazing; Performance | NA | Multiple |
[75] | Norway | Multi-objective optimization; Genetic algorithms; Genetic operators; Performance-based design; Shading devices | Simulation | PV louver |
[76] | Brazil | PV building integration; Architectural integration quality; Energy performance improvement; PV system performance; Economic viability; Aesthetical evaluation | Simulation | PV panel |
[15] | Active solar energy systems; Building integration; BIPV; BIPV/T; BISTS | NA | Multiple | |
[14] | PVSD; Control; Building; Review | NA | Multiple | |
[77] | PV–OLED blind system; Organic light-emitting diodes (OLED); Daylight | Mock-up—outdoor | PV window blind | |
[78] | South Korea | BIPV; PV blinds; PV louver; Experimental study; PV simulation; Ladybug | Simulation | PV panel |
[79] | China | BIPV; PVSDs; Adaptive façade; Machine learning; Solar energy | Simulation | PV panel |
[80] | Solar PV blinds; BIPV; Slat mutual shading; PV; Venetian blinds | Simulation | PV window blind | |
[81] | Louvered PV window; Natural lighting; Evaluation index; Electricity; Regulation strategy | Simulation | PV louver | |
[82] | London, Teheran, Los Angeles, Berlin, Singapore | BIPV; PV solar shade; Multi-objective optimisation; PV design; Computational modelling | Simulation | PV louver |
Country | Institutes | Location |
---|---|---|
China | 17 | 12 |
Republic of Korea | 10 | 19 |
United Kingdom | 8 | 1 |
USA | 8 | 3 |
Egypt | 5 | 2 |
Saudi Arabia | 3 | 2 |
Greece | 3 | 5 |
Norway | 3 | 4 |
Cyprus | 3 | - |
Italy | 3 | - |
Switzerland | 2 | 4 |
France | 2 | - |
Iraq | 2 | 1 |
Belgium | 2 | - |
The Netherlands | 2 | - |
Iran | 2 | 3 |
Japan | 2 | 1 |
Thailand | 2 | 2 |
Brazil | 2 | 2 |
Indonesia | 1 | 1 |
Turkey | 1 | 3 |
Singapore | 1 | 1 |
Malaysia | 1 | - |
Germany | 1 | 1 |
Lebanon | 1 | - |
Sweden | 1 | - |
Czech Republic | 1 | - |
Slovakia | 1 | - |
SIMPLE SYSTEM | ||||||||
PVSD | Position | Control | Direction | Repetition | ||||
Name | Outside | In between | Dynamic | Static | Vertical | Horizontal | Single | Multiple |
1. PV Louver | x | x | x | x | x | x | ||
2. PV Window Blind | x | x | x | x | x | x | ||
3. PV Panel (overhang) | x | x | x | x | x | |||
4. PV Fins | x | x | x | x | x | |||
5. PV Eggcrate | x | x | x | x | ||||
6. Other PV systems | x | x | x | x | x | x | ||
COMPOSITE SYSTEM | ||||||||
PVSD | Position | Control | Direction | Repetition | ||||
Name | Outside | In between | Dynamic | Static | Vertical | Horizontal | Single | Multiple |
7. PV Panel + Louvers | x | x | x | x | ||||
8. PV Eggcrate + Louvers | x | x | x | x | ||||
PV Louver, vertical | PV louver, horizontal | PV Window Blind, external | ||||||
PV Window Blind, embedded | PV Panel, single | PV Panel, multiple | ||||||
PV Fins, single | PV Fins, multiple | PV Eggcrate | ||||||
Other PV System | PV Panel + Louver | PV Eggcrate + Louver | ||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corti, P.; Bonomo, P.; Frontini, F. Paper Review of External Integrated Systems as Photovoltaic Shading Devices. Energies 2023, 16, 5542. https://doi.org/10.3390/en16145542
Corti P, Bonomo P, Frontini F. Paper Review of External Integrated Systems as Photovoltaic Shading Devices. Energies. 2023; 16(14):5542. https://doi.org/10.3390/en16145542
Chicago/Turabian StyleCorti, Paolo, Pierluigi Bonomo, and Francesco Frontini. 2023. "Paper Review of External Integrated Systems as Photovoltaic Shading Devices" Energies 16, no. 14: 5542. https://doi.org/10.3390/en16145542
APA StyleCorti, P., Bonomo, P., & Frontini, F. (2023). Paper Review of External Integrated Systems as Photovoltaic Shading Devices. Energies, 16(14), 5542. https://doi.org/10.3390/en16145542