
Citation: Zhu, R.; Das, K.; Sørensen,

P.E.; Hansen, A.D. Optimal

Participation of Co-Located

Wind–Battery Plants in Sequential

Electricity Markets. Energies 2023, 16,

5597. https://doi.org/10.3390/

en16155597

Academic Editors: Jan K. Kazak and

Jianjian Shen

Received: 21 June 2023

Revised: 7 July 2023

Accepted: 20 July 2023

Published: 25 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Optimal Participation of Co-Located Wind–Battery Plants in
Sequential Electricity Markets
Rujie Zhu * , Kaushik Das * , Poul Ejnar Sørensen and Anca Daniela Hansen

Department of Wind and Energy Systems, Risø Campus, Technical University of Denmark (DTU),
4000 Roskilde, Denmark; posq@dtu.dk (P.E.S.); anca@dtu.dk (A.D.H.)
* Correspondence: ruzhu@dtu.dk (R.Z.); kdas@dtu.dk (K.D.)

Abstract: Since hybrid power plants (HPPs) play an intensive role in the energy supply balance of
future energy systems, there is today increased attention on co-located wind–battery HPPs both in
industry and academia. This paper proposes an energy management system (EMS) methodology for
wind–battery plants participating in two sequential electricity markets, namely in the spot market
(SM) and the balancing market (BM). The proposed and implemented EMS consists of day-ahead
(DA) spot market optimization, hour-ahead (HA) balancing market optimization, and intra-hour
re-dispatch optimization to allow HPPs to achieve energy arbitrage, to offer regulation power at the
HA stage, and to reduce real-time imbalances. The optimization models used in the EMS incorporate
an accurate battery degradation model and grid connection constraints. This paper presents a
detailed case analysis of the profitability of HPPs in markets towards 2030 based on the proposed
EMS. Furthermore, the value of intra-hour re-dispatch optimization in improving the feasibility of
generation plans, as well as the impacts of overplanting on wind energy curtailment and battery
degradation, is also investigated based on the proposed EMS.

Keywords: wind–battery hybrid power plant; EMS; balancing market

1. Introduction

The green transition of the energy system is witnessing an increase in the share of
wind energy [1]. Nevertheless, the power system imbalances caused by the variability and
uncertainty of wind generation bring huge challenges to power system operators [2,3]. Such
power systems with a large share of wind energy require large power capacity reserves or
a huge curtailment of wind power to maintain the power system balance. In this respect,
energy storage technologies are seen as potential solutions to mitigate such concerns.
These storage technologies can either be connected directly in the power systems close to
loads or together with wind power plants (WPPs), forming hybrid power plants (HPPs).
Figure 1 illustrates an example diagram of a wind–battery HPP. Compared with a virtual
power plant, an obvious feature of the HPP is the co-location; namely, the assets in the
HPP share the same point of interconnection. On the one hand, this makes it possible to
overplant HPPs with respect to grid connection capacity. Overplanting means increasing
the HPP capacity above the grid connection capacity. As an example, a utility-scale HPP—
Kennedy Energy Park [4]—was constructed in Queensland, Australia, in 2019. In this
project, 12 wind turbines amounting to a 43 MW installed capacity are coupled with 15 MW
of solar photovoltaic (PV) and a 2 MW/4 MWh battery energy storage system (BESS).
The total installed capacity is higher than the grid connection capacity (50 MW) [4]. It is
foreseeable that overplanting helps optimize transmission system utilization and delays
the reinforcement of transmission infrastructures during renewable energy integration. On
the other hand, an HPP with storage can increase generation flexibility because, by shifting
energy through charging or discharging the battery, more stable power can be inserted
into the electrical grid [5,6]. This helps the HPP to capture more revenue streams [7] in
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electricity markets to overcome operation costs including battery degradation costs, etc.
One market opportunity is, for example, the balancing market, where HPPs might receive
payments by voluntarily providing a balancing service. Individual WPPs are less likely to
provide balancing services due to their power variability and uncertainty.

Figure 1. Diagram example for a wind–battery hybrid power plant.

There have been various investigations in the literature regarding the short-term
optimal offering challenges of wind–battery HPPs in electricity markets. Comparisons
of existing works regarding different aspects are summarized in Table 1. It is clear that
all the works cover the aspect of day-ahead (DA) energy trading in the spot market.
Additionally, ref. [8] also studies the optimal offering of regulation power in the hour-ahead
(HA) balancing market. The grid connection constraint is considered in [9,10], where
the total power output of HPPs is limited by the grid connection capacity. However, the
models proposed in [9,10] do not include a battery degradation model, which could have
significant impacts on the making of generation plans. Ref. [11] proposes a distributionally
robust chance-constraint model for the optimal operation of the wind–battery plant in the
day-ahead market. The battery degradation is modeled by the battery energy throughput
multiplied by the fixed degradation coefficient. The price maker model for wind–battery
plants in the day-ahead market is proposed in [12], where the battery degradation cost
depends on the depth of discharge (DoD) of the discharging cycles. The degradation
in [13,14] is modeled based on the degradation state of the charge curve, while the non-
linear relationship between degradation and the DoD is considered in [15]. The others
consider neither grid connection constraints nor battery degradation.

Accordingly, none of the aforementioned studies consider both battery degradation
and grid connection constraints, which play important roles in the operation of wind–
battery plants. Moreover, transmission system operators in many countries have legal
or contractual requirements for power plants to track their generation plans. None of
the aforementioned studies investigate whether wind–battery plants with variable and
uncertain wind generation can track their generation plans.

To fill this gap, this article proposes a novel EMS methodology consisting of three
optimization models for wind–battery plants to participate in the spot market and balancing
market, including battery degradation and grid connection constraints.

The main contributions of this paper are as follows:

• A novel EMS methodology is proposed for operating wind–battery HPPs in electricity
markets considering the battery degradation model and grid connection constraints.
The novelty lies in the fact that there has been no method in the literature that considers
operation in sequential markets, i.e., the spot market, the balancing market, and
real-time operation, as well as the non-linear battery degradation model and grid
connection constraints, simultaneously.

• The value of wind–battery HPPs providing regulation power, i.e., a balancing service
in the Nordic balancing market in 2030, is investigated by comparing the annual
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profits of different operation strategies. This value quantification provides HPP devel-
opers and owners with knowledge of profit maximization from the balancing market
while taking in cognizance the bulk-power offer in the spot market and limiting the
overdegradation of batteries.

• The value of intra-hour re-dispatch optimization on improving the feasibility of the
generation plan is analyzed through specific case studies. This is particularly relevant
as numerous countries have legal or contractual obligations for power plants to adhere
to their generation plans.

• A detailed investigation of the impacts of overplanting on wind energy curtailment
and battery degradation is performed, which helps HPP developers and owners to
understand the potential benefits or adverse effects of overplanting with respect to
the grid connection constraints.

Table 1. Overview and comparison of the research focus in the literature and the work presented in
this paper.

Ref. No.
Time Scale

Battery Degradation Grid Connection
ConstraintsDA Energy

Offering
HA Regulation
Power Offering

Intra-Hour
Balancing

[8] X X
[9] X X
[10] X X
[11] X X
[12] X X
[13] X X
[15] X X
[14] X X
[16] X
[17] X
[18] X
[19] X
[20] X
[21] X
[22] X

This work X X X X X

This article is structured as follows. The formulation of the EMS is presented in detail
in Section 2. Section 3 discusses the case study results. Finally, the conclusions are given in
Section 4.

2. Methodology

This section discusses the methodology of the developed EMS. As demonstrated in
Figure 2, the EMS is on top of the power management system (PMS) (also often referred
to as the HPP controller (HPPC) [23]). It works through three optimizations, including
DA spot market optimization (SMOpt), HA balancing market optimization (BMOpt), and
intra-hour re-dispatch optimization (RDOpt). All optimization models integrate a detailed
battery degradation model [24]. The inputs of the EMS are external forecasts of wind power
and market prices, updated real-time (RT) information from the PMS, and information from
markets and transmission system operators (TSOs). The outputs of the EMS are traded
energy and power into markets and energy set-points to the PMS.
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Figure 2. Diagram of energy management system and its interface with other models and agents.

2.1. Battery Degradation Model

In this paper, a semi-empirical model (SEM) [24] is used to estimate the loss of capacity
(LoC) of the battery. The formulations are given by the following:

d =

{
1− αseie−βsei l − (1− αsei)e−l , i f d ≤ d1

1− (1− d′)e−(l−l
′
), i f d > d1

(1)

Emax = EBESS · (1− d) (2)

Equation (1) provides the non-linear models (as shown in Figure 2) to be used to
express the accumulated LoC d for a fresh battery and used battery after the formation of
an SEI film, respectively. A pre-defined value d1, e.g., 8% [24], is used to switch between
the models. d

′
and l

′
are the LoC and linear degradation rate when d exceeds d1 for the first

time. The remaining energy capacity Emax is estimated by Equation (2), where EBESS is the
rated energy capacity of the battery.

The linear degradation rate l in Equation (1), calculated by Equations (3) and (4),
depends on the DoD δ, the elapsed time tc, the state of charge (SoC) σ, and the cell
temperature te.

l = ∑
i

li (3)

li = Sδ(δ)Sσ(σ)Ste(te) + Stc(tc)Sσ(σ)Ste(te) (4)

For each cycle i, the linear degradation rate li is calculated by Equation (4), which
consists of the cycling degradation and calendar degradation. These two components de-
pend on four stress factor models, including the DoD stress model Sδ(δ), time stress model
Stc(tc), SoC stress model Sσ(σ), and temperature stress model Ste(te). Their formulations
are given as follows [24]:
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Sδ(δ) = (kδ1 δkδ2 + kδ3)
−1 (5)

Stc(tc) = ktc tc (6)

Sσ(σ) = ekσ(σ−σre f ) (7)

Ste(te) = ekte (te−tre f )
tre f
te (8)

where kδ1 , kδ2 , kδ3 , ktc , kσ, and kte are parameters fitted by experiment data. σre f and tre f are
the reference SoC and reference temperature, respectively.

It should be noticed that the model is a post-processing model. A rainflow count-
ing [25,26] needs to be implemented on the historical SoC profile to obtain the cycle DoD,
cycle average SoC, cycle number, and cycle time duration, as shown in Figure 2. Therefore,
the model as it is in this form cannot be directly integrated into optimization.

To solve this problem, a throughput-based model is used to approximate the semi-
empirical model based on the assumption that the battery degrades linearly in a short
period, e.g., one week. Based on this, the accumulated LoC per MWh throughput, i.e., slope
ad, can be calculated in a short period using the following:

ad =
dsem

∑t∈Tpast |Pb
t | · ∆t

(9)

where dsem is the LoC obtained by (1). ∑t∈Tpast |Pb
t | · ∆t represents the energy throughput

for a past period. Then, the LoC caused by the charging/discharging throughput in a
future period can be estimated using the following:

dest = ad · ∑
t∈T f uture

|Pb
t | · ∆t (10)

where ∑t∈T f uture |Pb
t | · ∆t is the energy throughput for a future period.

2.2. Spot Market Optimization

The goal of spot market optimization is to decide how much energy should be com-
mitted to the spot market based on wind power forecasts and spot market price forecasts.
This model operates once a day, before the closure of the spot market.

2.2.1. Objective Function

The objective function in the spot market optimization is to maximize profits, i.e., rev-
enues minus the degradation cost, in the spot market, namely,

max ∑
t∈T

λ̂
sp
t · P

sm
t · ∆t− Ψ̂(Psm,b

t ) (11)

where λ̂
sp
t , Psm

t , and Psm,b
t are spot price forecasts, the power of the HPP in the SM, and

the power of the battery in the SM, respectively. The first item is the revenues from selling
energy in the spot market. ∆t is typically one hour. Ψ̂(Psm,b

t ) represents battery degradation
costs given by the following:

Ψ̂(Psm,b
t ) = µ · EBESS · ad · ∑

t∈T
(Psm,dis

t + Psm,cha
t ) · ∆t (12)

where µ is the marginal degradation cost of the battery. Psm,dis
t and Psm,cha

t are the discharg-
ing and charging power of the battery in the SM, respectively.
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2.2.2. Technical and Operation Constraints

The technical and operation constraints are given as:

Psm
t = Psm,w

t + Psm,b
t (13)

Psm,b
t = Psm,dis

t − Psm,cha
t (14)

0 ≤ Psm,cha
t ≤ Pb,max

t · (1− zt) (15)

0 ≤ Psm,dis
t ≤ Pb,max

t · zt (16)

Esm,b
t+1 = Esm,b

t · (1− ηleak)−
Psm,dis

t
ηdis

· ∆t + Psm,cha
t · ηcha · ∆t (17)

Emin ≤ Esm,b
t ≤ Emax (18)

0 ≤ Psm
t ≤ Pgrid (19)

0 ≤ Psm,w
t ≤ P̂da,w

t (20)

where Psm,w
t , Pb,max

t , Esm,b
t , Emin/Emax, Pgrid, and P̂w

t are the dispatched wind power in the
SM, rated power capacity of the battery, stored energy of the battery, minimum/maximum
stored energy of the battery, grid connection capacity, and DA wind power forecasts,
respectively. Equation (13) calculates the power output of HPPs based on wind and battery
generation, where Psm,b

t is calculated in (14). Constraints (15) and (16) limit the battery
that cannot charge or discharge at the same time, where zt = 1 means the battery works
on the discharging status; otherwise, zt = 0 means the battery works on the charging
status. Equation (17) models the evolution of battery energy over time. Constraint (18)
sets the limits of energy. Constraint (19) details that the power output of HPPs cannot
exceed grid limitations. Constraint (20) restricts the wind power output to less than the
forecasting value.

2.3. Balancing Market Optimization

The goal of BMOpt is to optimize regulation power offers and update power schedules
based on the updated forecast information, e.g., the HA wind power forecast. This model
operates hourly, starting from the current OI to the end of the day.

2.3.1. Objective Function

The objective function of BMOpt is to maximize profits in the balancing market, namely,

max ∑
k∈D

(t+1)NO
D

Π̂reg
k + ∑

s∈S
tNO

S

Π̂im
s − Ψ̂(Pha,b

k ) (21)

Π̂reg
k = (λ̂

up
k · r̂

up
k · P

up
k − λ̂dw

k · r̂
dw
k · P

dw
k ) · ∆k (22)

Π̂im
s = (λ̂dw

s · ∆P̂up
s − λ̂

up
s · ∆P̂dw

s ) · ∆s (23)

Ψ̂(Pha,b
k ) = µ · EBESS · ad · ∑

k∈D
tNO

D

(Pha,dis
k + Pha,cha

k ) · ∆k (24)

where Pha,b
k , Pup

k /Pdw
k , ∆P̂up

s /∆P̂dw
s , and Pha,dis

k /Pha,cha
k are the HA battery power schedule,

upward/downward balancing power offer, positive/negative imbalance power, and charg-
ing/discharging power of the battery, respectively. The objective function (21) includes
revenues from the regulation power and imbalance settlement, as well as penalties of bat-
tery degradation. Revenues from the regulation power Π̂reg

k and imbalance settlement Π̂im
s

are computed in (22) and (23), respectively, where λ̂
up
k and λ̂dw

k are up and down balancing
prices, respectively. They are calculated by λ̂

up
k = max{λ̂rp

k , λ
sp
t } and λ̂dw

k = min{λ̂rp
k , λ

sp
t }.

The λ̂
rp
k represents forecasts of the regulation price (RP) during period k. It should be
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noticed that the cleared spot prices (SPs) for all days are known in balancing market opti-
mization. r̂up

k and r̂dw
k indicate the activation signal of regulation power of the coming hour

generated by (25) and (26), which can be regarded as forecasts of the activation signal. Ψ̂
refers to the penalties of battery degradation, given in (24), where µ is the penalty coefficient,
which reflects the degradation mode. ∆k is the DI, which is typically of a 5-min resolution.
∆s is the SI, which is typically an hourly or 15-min resolution. The set D(t+1)NO

D
is defined

as D(t+1)NO
D

:= {(t + 1)NO
D , (t + 1)NO

D + 1, ..., ND − 1}. There is D0 ⊃ D1 ⊃ · · · ⊃ DND−1.
Therefore, the optimization horizon decreases as time increases.

r̂up
k =

{
1, if λ̂

rp
k > λ

sp
k

0, otherwise
(25)

r̂dw
k =

{
1, if λ̂

rp
k < λ

sp
k

0, otherwise
(26)

2.3.2. Technical and Operation Constraints

In BMOpt, a sub-hourly resolution is applied because the TSO requires a higher-
resolution power schedule to balance the power system, namely, for k ∈ DtNB

D
,

Pha
k = Pha,w

k + Pha,b
k (27)

Pha,b
k = Pha,dis

k − Pha,cha
k (28)

0 ≤ Pha,cha
k ≤ Pb,max · (1− zk) (29)

0 ≤ Pha,dis
k ≤ Pb,max · zk (30)

Eha,b
k+1 = Eha,b

k (1− ηha
leak)−

Pha,dis
k

ηha
dis
· ∆k + Pha,cha

k ηha
cha · ∆k (31)

Emin ≤ Eha,b
k ≤ Emax (32)

0 ≤ Pha
k ≤ Pgrid (33)

0 ≤ Pha,w
k ≤ P̂ha,w

k (34)

where Pha,w
k , Eha,b

k , and P̂ha,w
k are the HA dispatched wind power, HA plan of stored

energy in the battery, and HA wind power forecasts. The constraints in balancing market
optimization are defined in a similar way as for spot market optimization, with just the
small difference that in balancing market optimization a sub-hourly resolution is applied
according to the requirement from the TSO.

2.3.3. Imbalance Settlement Constraints

The revenue from imbalance settlement should also be considered when optimiz-
ing regulation power offers and power schedules. This refers to whether HPPs should
deliberately create an imbalance in order to capture revenue opportunities from provid-
ing regulation power. For s ∈ StNO

S
, the imbalance settlement constraints are expressed

in (35)–(37).

∆P̂s =


1

∆s
· ∑

k∈Ks

(Pha
k − (rup

k Pcrt,up − rdw
k Pcrt,dw)− Psm

k ) · ∆k, if s < tNO
S

1
∆s
· ∑

k∈Ks

(Pha
k − (r̂up

k Pup
k − r̂dw

k Pdw
k )− Psm

k ) · ∆k, o.w.
(35)

∆P̂s = ∆P̂up
s − ∆P̂dw

s (36)

∆P̂up
s , ∆P̂dw

s ≥ 0 (37)
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where ∆P̂s is the imbalance power in an SI. Equation (35) calculates imbalance power that
is the difference between the HA power schedule and DA promised power as well as the
regulation power. It is noted that the upward and downward regulating power offer of the
current hour, denoted as Pcrt,up and Pcrt,dw, are fixed at the time of executing BMOpt. The set
StNO

S
is defined as StNO

S
:= {tNO

S , tNO
S + 1, · · · , NS − 1}. There is S0 ⊃ S1 ⊃ · · · ⊃ SNS−1.

The set Ks is defined as Ks := {sNS
D, sNS

D + 1, · · · , (s + 1)NS
D − 1}.

rup
k and rdw

k are the activation signals of the regulation power of the current hour
coming from the TSO. A value of 1 means activation and a value of 0 means no activation.

2.4. Re-Dispatch Optimization

The RDOpt operates between two BMOpts when part of the imbalances has been
realized. It repeats every 5 min, which is a nearly real-time optimization starting from
the ith dispatch interval (DI) to the end of the day. The goal of this model is to update the
power schedule continuously with real-time information to maximize profits in imbalance
settlement and also consider the potential profit opportunities for providing regulation
power in future offering intervals (OIs).

2.4.1. Objective Function

The objective function is given as:

max ∑
k∈D

(t+2)NB
D

Π̂reg
k + ∑

s∈Sbi/NS
Dc

Π̂im
s − Ψ̂(Pha,b

k ) (38)

The objective function of RDOpt is similar to BMOpt, but the difference is that the
index of regulation revenues is D(t+2)NB

D
, meaning that the start interval for regulation

power offers is after 2 OIs because regulation power offers for the current OI and next OI
are already determined at the time of optimization. b·cmeans rounding down.

2.4.2. Technical and Operation Constraints

For k ∈ Di, The general constraints are the same as BMOpt, i.e., (27)–(34).

2.4.3. Imbalance Settlement Constraints

In the re-dispatch stage, the calculation of imbalance power is classified into four
situations: the current settlement interval (SI), the remaining SIs in the current OI, the SIs
in the next OI, and the SIs for the rest of the day. For s ∈ Sbi/NS

Dc
, the constraints are shown

in (36), (37), and (39)–(42):

∆P̂s =



Pim
s +

1
∆s
· ∑

k∈Ks

(Pha
k − (rup

k Pcrt,up − rdw
k Pcrt,dw)− Psm

k ) · ∆k, if s = bi/NS
Dc (39)

1
∆s
· ∑

k∈Ks

(Pha
k − (rup

k Pcrt,up − rdw
k Pcrt,dw)− Psm

k ) · ∆k, if bi/NS
Dc < s < tNO

S (40)

1
∆s
· ∑

k∈Ks

(Pha
k − (r̂up

k Pnxt,up − r̂dw
k Pnxt,dw)− Psm

k ) · ∆k, if tNO
S ≤ s < (t + 1)NO

S (41)

1
∆s
· ∑

k∈Ks

(Pha
k − (r̂up

k Pup
k − r̂dw

k Pdw
k )− Psm

k ) · ∆k, o.w. (42)

2.5. Post-Calculation of Revenue and Cost

The profits calculation happens after the operation day when all information is real-
ized. Accordingly, the profits can be calculated. The realized spot market revenue Πsm is
calculated by multiplying the energy schedule with cleared spot prices:

Πsm = ∑
t∈T

λ
sp
t · P

sm
t · ∆t (43)
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The realized regulation revenue Πreg is equal to activated regulation powers multiplied
by RPs (44).

Πreg = ∑
k∈Dt

λ
rp
k · P

reg
k · ∆k (44)

where Preg
k is the activated regulation power calculated by (45):

Preg
k = rup

k · P
up
k − rdw

k · P
dw
k (45)

The realized imbalance revenue Πim is equal to differences among the real-time mea-
surements and spot market power schedule as well as the activated regulation power
multiplied by the up price or down price according to the sign of the delta (46).

Πim = ∑
s∈St

(λdw
s · ∆Pup

s − λ
up
s ∆Pdw

s ) · ∆s (46)

where ∆Pdw
s and ∆Pup

s are the realized imbalance power given in (47) and (48).

∆Pup
s =

{
∆Ps, if ∆Ps ≥ 0
0, otherwise

(47)

∆Pdw
s =

{
−∆Ps, if ∆Ps ≤ 0
0, otherwise

(48)

∆Ps = ∑
k∈Ks

(Prt
k − Preg

k − Psm
k ) (49)

where Prt
k is the real-time measured generation provided by the PMS.

Apart from revenues, the realized battery degradation cost is also calculated in (50) to
reflect where the battery lifetime is.

Ψ =
Nc

Ntotal
c
· CCap (50)

where Ntotal
c represents the total number of 100% DOD cycles that make the battery reach a

80% state of health (SoH). CCap is the capital cost of the battery. Nc is the equivalent 100%
DoD cycle number, which can be identified by Equations (1), (3), and (4) assuming the
observed LoC is loaded by repeated cycles with a 100% DoD and 50% average SoC.

2.6. Real-Time Measurements

In the real world, communication between the EMS and PMS is required to exchange
information. The interface of the EMS and PMS is shown in Figure 3 [27], where the EMS
provides energy set-points to the PMS and obtains real-time measurement values, e.g., Prt

k ,
from the PMS. However, it is impossible to connect the developed EMS to a real PMS to
implement long-term case analysis. To solve this problem, a real-time algorithm to emulate
active power control logic [23] is proposed as depicted in Figure 4.

Figure 3. An overview of HPP EMS and HPP PMS [27].

In each DI, the behavior of the controller depends on the difference between the
available wind power and power reference, battery charging/discharging abilities, and
whether the point of connection (PoC) is congested. The final outputs of the algorithm are
3 states with a priority that follows reference > create imbalance > power curtailment.
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Figure 4. Real-time simulation algorithm.

3. Case Studies

A set of case studies is carried out to assess the performance of the proposed EMS
methodology for HPPs in sequential electricity markets and to understand the profitability
of HPPs in sequential electricity markets towards the year 2030. As an HPP located in
Western Denmark is considered, the market rules of DK1 are applied, where the DI, SI, and
OI are 5 min, 15 min, and 1 h, respectively. As shown in Table 2, four operation strategies
are considered in the analysis. It should be noted that, since there is no trade of regulation
power when using SMOpt and RDOpt, the variables and objective function terms regarding
regulation power in RDOpt are not considered. The parameters for the HPP, based on [27]
and the Danish Energy Agency catalogue [28], are depicted in Table 3.

Table 2. Operation strategy definition.

Operation Strategy Spot Market Balancing Market
SMOpt BMOpt RDOpt

SM X
SM + RD X X
SM + BM X X

SM + BM + RD X X X

Table 3. Parameters of the HPP.

Item Parameters Values

WPP Pw,max 120 MW
BESS Pb,max 20 MW

EBESS 60 MWh
Emin 12 MWh
ηcha 97%
ηdis 98%
ηleak 0%

µ 0.142 M EUR/MWh
CCap 11.72 M EUR

Grid pgrid 100 MW

All three optimization models proposed and described in the previous section are
solved using the solver of IBM Decision Optimisation Studio CPLEX through the docplex
python library [29] operating on the DTU’s high-performance computing cluster Sophia [30].
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3.1. Wind and Market Data

Wind power time series are simulated with the CorRES simulation tool [31–33]. This
tool is based on re-analyzing meteorological data from the weather research and forecast
model with the stochastic model to add fluctuations. CorRES is capable of simulating wind
power time series in minute resolution. The longitude, latitude, and hub height of the HPP,
power curves of wind turbines, and simulation period are required as inputs for CoRES to
simulate wind power time series. The weather year used for the time series corresponds to
2012. The assumption behind this is that the climate in 2030 does not change compared to
2012. The DA and HA wind power time series forecasts are also obtained from CorRES
with the same setup. The 5-min-ahead forecasts are generated based on the realized wind
power of the previous 5 min as the forecast of the next 5 min.

The balancing tool chain (BTC) [34] is used to model the SP and RP in 2030 electricity
markets, which combines the Balmorel open-source energy system model [35] to emulate
the operation of electricity markets from day-ahead to real-time dynamics. This model
considers not only Denmark but also neighboring countries. On top of it, an investment
optimization of northern central Europe is implemented to have the 2030 energy system
scenario [36–38]. To simulate wind and solar power time series in the BTC, CorRES is
applied to incorporate the correlation between solar and wind, resulting in simulated prices
that are correlated with renewable energy generation. Furthermore, the correlation between
the renewable energy generation and load is also considered in the BTC. To obtain the
SP and RP forecasts, different techniques are used. Specifically, the SP forecast is derived
using a long short-term memory network [39]. The RP forecast is obtained via persistence
forecast, which simply uses the previous day’s realized price as the forecast of the current
day’s price.

Figure 5 shows the DA, HA, and 5-min-ahead forecasts and measurements of wind
power as well as the actual and forecasted spot and regulation price. It is noted that the
wind power forecasts of the HPP may not be correlated with market prices. For example,
the actual wind power during 8 August to 10 August is higher than DA wind power
forecasts. However, the regulating price is higher than the spot price; namely, the whole
system requires more generation. Therefore, the wind power forecasting errors in this
period do not impact the regulating price.

Figure 5. Demonstration of wind and market data in one week: (a) DA, HA, and 5-min-ahead
forecast and measurement of wind power time series; (b) forecasted and actual SP time series;
(c) forecasted and actual RP time series.
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3.2. Annual Profit of HPP

In DK1, deviations between participants’ metering power and most recent power
schedules are penalized via a special power imbalance settlement. The settlement is based
on the original energy notification, the most recently updated power schedule converting to
15 min resolution time series, and real-time metering power converting to 15 min resolution
time series. In every 15 min, deviations bigger than 10 MW are punished. The details of
the calculation can be found in [40]. This part of the penalties is also considered to analyze
the profitability, which is marked as “special imbalance costs” in Table 4. Accordingly,
the annual statistics of revenues and costs for different operation strategies are shown in
Table 4 and Figure 6.

Figure 6. Comparison of SM revenue, BM revenue, degradation cost, and total profits of all operation
strategies.

As observed in Table 4 and Figure 6, it is clear that the total profit of HPP in the
operation strategy SM + BM + RD is the biggest (13.7 M EUR), followed by the operation
strategies SM + BM (13.6 M EUR) and SM+RD (12.2 M EUR), respectively, with the lowest
profit being achieved in the operation strategy SM (10.3 M EUR). Furthermore, it is also
seen that the intra-hour re-dispatch can unilaterally improve the profits of HPP by reducing
imbalance costs from 3.9 M EUR to 1.8 M EUR. while providing balancing service can
individually improve the profits of THE HPP by capturing the regulation revenue stream
leading to almost no penalties in the BM. The comparison illustrates that the profit potential
of providing balancing services is higher than the real-time imbalance cost reduction.
Moreover, it can also be noticed that the battery degradation cost approximately doubles
with the operation strategy SM + BM compared with the operation strategy SM. The reason
is the fact that the battery is more stressed when providing a balancing service. However,
the aid of intra-hour re-dispatch helps the battery degradation cost decrease by comparing
operation strategies SM + BM + RD and SM+BM, which illustrates that energy set-points
derived from re-dispatch optimization stress the battery less.

Table 4. Annual revenues and costs of HPP with different operation strategies (million EUR).

Operation
Strategy SM Revenues

BM Revenues

Total
Revenues

Degradation
Costs

Total
ProfitsRegulation

Revenues
Imbalance
Revenues

Special
Imbalance

Costs
Total

SM 14.7 0 −2.0 2.0 −4.0 10.7 0.4 10.3
SM + RD 14.5 0 −1.8 0.0 −1.8 12.7 0.5 12.2
SM + BM 14.6 3.9 −4.1 0.1 −0.3 14.3 0.7 13.6

SM + BM + RD 14.5 4.0 −4.1 0.0 −0.2 14.3 0.6 13.7

3.3. Value of Re-Dispatch Optimization

In some Nordic countries, there are contractual or legal requirements with regard to
participants tracking their most recent generation plans [41]. Due to the fact that wind
forecasting errors are relatively smaller as the time is close to real-time, this section verifies
the value of intra-hour re-dispatch for obtaining more trackable generation plans.
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As shown in Figure 7, one week is picked up randomly to compare the real-time
measured power and power schedules for all operation strategies and to analyze whether
power schedules are well tracked. Table 5 demonstrates the percentage of time during the
year in terms of the exceedance of the 10 MW threshold with different operation strategies.
It is clear in Figure 7 that the HPP can follow its power schedule for more time with re-
dispatch optimization in (b) and (d) compared with (a) and (c). Moreover, the percentages
of exceedance are significantly reduced, from 19% to 0% and from 2% to 0%, respectively,
with the implementation of intra-hour re-dispatch optimization in the EMS, as indicated
in Table 5. Accordingly, the special imbalance costs are also reduced to zero, as shown in
Table 4. Therefore, the energy set-points obtained by intra-hour re-dispatch are easy to
track via the PMS. The reason is that a 5 min ahead forecast of wind power is more accurate
and hence stresses the battery less when following such power set-points.

Figure 7. Real-time power measurements and power schedules with different operation strategies:
(a) SM; (b) SM + RD; (c) SM+BM; (d) SM + BM + RD.

Table 5. Percentage of time during the year that the difference between Pre f
k and Prt

k exceeds 10 MW
threshold with different operation strategies.

SM SM + RD SM + BM SM + BM + RD

Percentage (%) 19 0 2 0

3.4. The Impacts of Overplanting on Wind Energy Curtailment

This section investigates the impact of overplanting on wind energy curtailment,
which is the ratio between the annual curtailed wind energy and annual available wind
energy. We keep the grid connection capacity fixed at 100 MW and vary the wind power
plant capacity from 100 MW to 150 MW. The power capacity of the battery changes from
10 MW to 50 MW with a fixed C-rate of 1/3. The simulation results are demonstrated in
Figure 8.

It is evident that augmenting the capacity of wind power plants leads to a substantial
increase in wind energy curtailment, due to the restricted grid connection capacity. For
instance, the curtailment percentage rises to 9% when the wind power plant capacity
reaches 150 MW, with the minimum battery capacity. Additionally, the figure indicates
that increasing the battery size can alleviate the curtailment to some extent, but the wind
power plant capacity still dominates the curtailment due to the limited energy capacity of
the battery.
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Figure 8. Wind energy curtailment (%) with different capacities of wind power plants.

3.5. The Impacts of Overplanting on Battery Degradation

Furthermore, the impacts of overplanting HPPs on battery degradation are also studied
with the same HPP configurations. The simulation results are shown in Figure 9.

Figure 9. Loss of energy capacity (%) with different capacity of wind power plants.

The figure demonstrates that, irrespective of the battery size, an increase in the wind
power plant capacity results in an observable upward trend in the loss of energy capacity.
This phenomenon arises due to the deployment of batteries to handle surplus power when
the wind power exceeds the grid connection capacity. Additionally, Figure 9 exhibits that
the loss of energy capacity curve for relatively smaller batteries plateaus when the wind
power plant capacity surpasses a particular value, e.g., 120 MW for a 10 MW/30 MWh
battery. This is due to the excess wind power being too substantial for the battery to
accommodate. As a result, the battery has already reached its maximum potential and
cannot undergo any further degradation.

4. Conclusions

This article has proposed an EMS for wind–battery hybrid power plants (HPPs) in
electricity markets, which allows HPPs to obtain revenues from energy arbitrage, the provi-
sion of balancing services, and a reduction in real-time imbalances. An annual simulation



Energies 2023, 16, 5597 15 of 17

of wind–battery HPPs in sequential electricity markets towards 2030 has been carried out to
analyze the performance of the EMS. The analysis revealed that the balancing market offers
profit potential in 2030, with a 33% increase in annual profits compared to participation
in the spot market alone. Additionally, the proposed intra-hour re-dispatch optimization
helps to formulate more tractable generation plans. The percentages of imbalance power
exceeding the 10 MW threshold are reduced to 0% with the intra-hour re-dispatch opti-
mization. However, it was observed that overplanting wind–battery HPPs beyond the grid
connection capacity could result in significant wind energy curtailment, which was up to
9% in the studied case. Furthermore, overplanting can also accelerate battery degradation,
highlighting the need for the careful planning of wind–battery HPPs to ensure their optimal
operation in electricity markets.

This work mainly focused on the EMS methodology for different markets and its
application in investigating balancing market potentials. The decisions made by the EMS
depend on forecasts. The future work will focus on investigating the impact of forecast
errors on the profitability of HPPs and take the uncertainties of the wind power and market
prices into account. Moreover, this work assumes the HPP is the price taker. Future work
will also focus on the price maker model for the energy management of HPPs.
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Abbreviations

The following abbreviations are used in this manuscript:

HPP Hybrid power plant
EMS Energy management system
SM Spot market
BM Balancing market
DA Day-ahead
HA Hour-ahead
WPP Wind power plant
PV Photovoltaic
BESS Battery energy storage system
DoD Depth of discharge
SMOpt Spot market optimization
BMOpt Balancing market optimization
RDOpt Re-dispatch optimization
DI Dispatch interval
SI Settlement interval
OI Offering interval
PMS Power management system
HPPC Hybrid power plant controller
RT Real time
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TSO Transmission system operator
SEM Semi-empirical model
LoC Loss of capacity
SoC State of charge
SoH State of health
CorRES Correlated renewable energy source simulation tool
BTC Balancing tool chain
PoC Point of connection
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