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Abstract: This article presents a comprehensive review of reduced device count multilevel inverter
(RDC MLI) topologies for PV systems. Multilevel inverters are widely used in medium-voltage and
high-power applications such as wireless power transform applications, flexible AC transmission
(FACT), active filters, AC motor drives, high-voltage DC transmission (HVDC), and renewable energy
sources due to their high modularity and high-power quality output. Multilevel inverters have the
ability to diminish the harmonics content in the output voltage by applying various modulation
techniques. The literature in this field showed that the high-power quality and high modularity of
the output demand an undeniable need for multilevel inverter topology. Research in this field has
identified various multilevel inverter topologies, each possessing their own merits and demerits. The
ubiquitous availability of multilevel inverter topologies illustrates the complexity of their accurate
selection. To avoid such complexity, this review shows the state of the art of various reduced device
count (RDC) multilevel inverter (MLI) topologies. Details of the various RDC MLIs, along with their
comparisons, are provided in this paper. This review will be an important reference tool for future
work on RDC MLI for photovoltaic (PV) systems.

Keywords: multilevel inverters; reduced device count; maximum power point tracking (MPPT);
photovoltaic (pv) system

1. Introduction

Due to the latest development in fast switching solid state devices, power electronics
technology is expanding in the areas of residential, commercial, industrial, aerospace,
electric vehicles, motor drives, and power system utilities [1–3]. The switch mode action
of semiconductor devices increases the efficiency of power electronic systems by up to
99% [1]. Day-by-day demand for modern power system networks is increasing, thus
various steps, including integration of renewable energy sources, upgradation of existing
generation systems, and building of new lines to enhance transmission line capacities are
required to meet demand [4]. Expanding power generation and transmission systems
increases problems for power system planners. Various renewable energy resources are
integrated with power system networks through inverters. Square wave and quasi-square
wave inverters were used for power conversion and had poor quality output due to
high harmonic content. These drawbacks were overcome by the conventional multilevel
inverters introduced in 1975.

A multilevel inverter is superior to a two-level inverter in terms of efficiency, perfor-
mance, and better harmonic spectrum. However, the increased number of levels tends to
increase the number of devices and gate drivers for switches, making the overall design
complex, bulky, and uneconomical for medium-voltage applications. Therefore, reducing
the number of devices without reducing the output voltage level is a key area of research
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in the field of multilevel inverters. This has given rise to the concept of RDC MLIs. Several
topologies have recently been proposed to reduce the number of devices in multilevel
inverters. The popularity of RDC MLIs is increasing due to lower harmonics and less
radio frequency interference in the output. Moreover, these converters have low power
dissipation and lower voltage stress on solid-state devices [5–10]. The reduced device count
multilevel inverters reduce the harmonics in the output voltage waveform by varying
the number of levels, resulting in fewer switching devices and trigger circuits, diodes,
capacitors, and other devices [6,11–19]. These topologies make it possible to use the device
effectively and simplify the overall system design compared with available conventional
designs. Several topologies have recently been proposed to reduce the number of devices in
multilevel inverters. The following sections discuss recent studies that have been conducted
on current trends in the era of multilevel inverters.

Siddique, Marif Daula et al. [20] suggested a new single-phase topology with a reduced
number of switches and DC voltage sources with higher numbers of voltage levels. Three
different algorithms were also proposed for a cascaded connection. The 71 levels were
obtained at the output by implementing the selective harmonic elimination pulse width
modulation (PWM) technique.

Bana, Prabhat Ranjan et al. [21] reviewed RDC MLI and recently developed topologies
in renewable energy and drive applications. The study also presented comparisons between
various topologies.

Kanaujia, Anoop Kumar, and Sanjiv Kumar [22] proposed an RDC MLI for open-
end winding induction motor (OEWIM) drive applications. A hybrid flying capacitor
(FC) configuration supported one OEWIM terminal, whereas another terminal was pro-
vided for a three-level-cascaded H-bridge inverter. A three-level FC cascaded to obtain a
capacitor-fed H-bridge. A practical solution for a nine-level active-neutral-point-clamped
switched capacitor MLI with an alleviated capacitor charging current is presented in [23].
Elias et al. [24] proposed a hybrid MLI based on series connection of half-bridge and full-
bridge for its level generation together with a T-type inverter. The proposed MLI generated
an 11-level line output voltage. However, the research consisted of more components,
which made the system uneconomical.

Several review articles on multilevel inverters have been published. Gupta, K.K. et al. [6]
presented quantitative and qualitative features of some reduced device count multilevel
inverters in 2016. Multilevel inverters are single DC as well as multi-DC sources. Single
DC source multilevel inverters reduce the cost and complexity of the circuit and are
available in a compact size. A review of transformer-based single DC source multilevel
inverters was conducted by J. Singh et al. [12]. A number of studies focused on the
use of MLIs for applications, including wind energy, induction motors, fuel cells, and
traction [25–48]. Latran, M. B., and A. Teke [44] reviewed 100 papers on grid-connected
inverters. P. Kala and Arora [48] also conducted a review of hybrid multilevel inverters for
grid-connected applications.

This review offers a single reference containing a considerable number of studies on
multilevel inverter topologies: over 120 papers reporting on different RDC MLI topologies
published up to the year 2022 have been compiled. This article reviews several MLI topolo-
gies, providing a brief discussion and comparison. This article concludes with comparisons
of reduced count device MLIs based on MLI type, modulation scheme, calculated param-
eter, software used, and controller implementation. Tables containing summaries of the
conclusions are also provided.

The research paper has been organized as follows: Section 2 gives an overview of
conventional MLIs. Section 3 presents a comprehensive review of recently developed
reduced device count MLIs. Section 4 gives a comparative analysis of reduced device count
multilevel inverters. Section 5 presents applications of RDC MLI to the PV system, and
Section 6 contains conclusions with insights on some future topics.
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2. Conventional Multilevel Inverters

Multilevel inverters synthesize the AC output voltage waveform in multiple steps
but with less distortion compared with conventional inverters [6,11]. This lower distortion
makes MLI popular in medium-voltage and high-power applications. A conventional
two-level inverter is used for low-voltage applications due to limitations of switching losses
that occur due to high switching frequency and device ratings. High power is achieved by
switching several solid-state devices in MLI together with several lower voltage DC levels
and thus reducing the voltage stress on a solid-state switch. Moreover, these topologies
require less space for installation, are low cost, and have high efficiency, a modular structure,
less complexity, and fewer devices [12–17].

The MLIs generate the required high voltage without the use of transformers with low
harmonics. Due to these remarkable features, MLIs are widely used in photovoltaic sys-
tems [10,18,19], wind energy conversion systems [8,25], fuel cells [26], traction [27–29], in-
duction motors [30,31], active filters [32,33], wireless power transforms [34],
HVDC [35,36], electric vehicles [37], and flexible AC transmission systems [38–40]. The MLI
input is DC, which is obtained from wind conversion systems, fuel cells, photovoltaic pan-
els, or energy storage devices. The classical multilevel inverters are illustrated in Figure 1,
and their salient aspects are further reviewed in the next subsections.
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2.1. Diode-Clamped/Neutral-Point-Clamped Multilevel Inverter (DC-MLI)

A diode-clamped multilevel inverter was proposed in 1981 by Nabae, Takashi, and
Agae [41]. DC-MLI has small leakage current, high efficiency [42,43], and simple construction.
It is composed of switching devices, diodes, and capacitors. A five-level DC-MLI is shown in
Figure 2. In a k-level MLI, the switching devices Sd, DC link capacitors CDC, and clamping
diodes Cd can be expressed as in Equations (1), (2) and (3), respectively [41,44]. The voltage
across each capacitor is the same and is given by Equation (4) [45]. DC-MLI requires more
clamping diodes as the levels increase [46]. The line voltages have 2(k − 1) levels.

Sd = 2 × (k − 1) (1)
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Cd = (k − 1) × (k − 2) (2)

CDC = (k − 1) (3)

Voltage accross each capacitor =
Vdc

k − 1
(4)
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2.2. Capacitor Clamped/Flying Capacitor Multilevel Inverter

In 1992, Meynard proposed the first multilevel flying capacitor inverter (FC MLI).
For a k-level single-phase FC MLI, the number of required switching devices, balancing
capacitors Cb and DC link capacitors are computed using Equations (5)–(7). A single-phase
FC MLI circuit diagram is shown in Figure 3. The line voltage has 2 (k − 1) levels.

Sd = 2 × (k − 1) (5)

Cb =
(k − 1)(k − 2)

2
(6)

CDC = (k − 1) (7)

The FC MLI reduces the harmonics in the output voltage waveform, thereby avoiding
the demand of filters. In addition, these converters can control active and reactive power.
The FC MLI increases the cost based on an increase in the number of levels due to more
capacitor requirements.

2.3. Cascaded H-Bridge Multilevel Inverter (CHB-MLI)

The CHB-MLI topology requires several isolated DC sources, whereas DC MLI and FC
MLI only need a single DC source [47]. The CHB-MLI do not require balancing capacitors
and clamping diodes. CHB-MLI is a hybrid combination of a series of connected single-
phase two-level voltage source converters. The two-level converter, also called a H-bridge
converter, includes four switching semiconductor devices and a single DC source [48].
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In CHB, output levels can be increased by adding DC sources. These DC sources can
be acquired from photovoltaic cells [41], biomass, fuel cells, and batteries. CHB can be
referred as symmetrical when the magnitude of the DC sources is the same. Similarly, the
CHB is known as asymmetric when the DC sources possess different magnitudes. Unlike
DC MLI and FC MLI, CHB-MLI requires fewer devices for the same output voltage level.
Moreover, these inverters possess important characteristics, such as reliability, modularity,
low cost, and high efficiency [49–55]. CHB suffers from the drawback in a way that it
requires separate DC sources for power conversion. The circuit diagram of single phase
CHB-MLI is shown in Figure 4a. If n represents the number of cells in a single phase
symmetric CHB, then output levels (k) and maximum output voltage Vo can be found
using Equations (8) and (9), respectively. Similarly, output voltage levels in a single phase
asymmetric CHB can be selected by a geometric progression (GP) with a binary and a
trinary factor. The output voltage levels are given by Equation (10) and peak output voltage
by Equation (11) for the binary operation. Similarly, the output voltage levels for the
trinary operation are expressed in Equations (12) and (13), respectively. The GP with a
binary factor of 2 for number of voltage levels at the output of CHB multilevel is given in
Equation (10), where k is the number of levels, and n is the number of sources. For example,
if two sources are connected with a CHB multilevel inverter, the number of levels that
will be generated at the output becomes 7 according to Equation (10). Similarly, the GP
with trinary factor of 3 for the number of levels will be 9 (when n = 2) according to
Equation (12). The switching devices for symmetric and asymmetric CHB can be found by
Equation (14). Figure 4b describes variations in the number of levels versus the number
of sources in symmetrical and asymmetrical (binary, trinary) CHB-MLIs. Moreover, the
number of levels are expressed in logarithm scale on y-axis in Figure 4b to clearly express the
relative variation versus number of sources and type of CHB: symmetrical/asymmetrical
(binary, trinary). It can be observed that the progression is arithmetic (linear) in the case
of symmetrical CHB, whereas it is approximately a GP for binary asymmetric CHB and
purely a GP for the case of trinary asymmetric CHB.
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k = (2 × n) + 1 (8)

Vo = n × Vdc (9)

k = 2n+1 − 1 (10)

Vo = (2n − 1) × Vdc (11)

k = 3n (12)

V0 =
(3n − 1)Vdc

2
(13)

Sd = 2 × (k − 1) (14)
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The CHB-MLIs with a single DC source are classified as listed below [12]:

• Cascaded transformer;
• PWM inverter cascaded transformer;
• Forward converter cascaded transformer;
• Stacked inverter with cascaded transformer;
• Z-source cascaded transformer.

The comparison of conventional topologies [5,30,48,56,57] are given in Table 1, where
m is the number of inverter levels. The number of components that are required in five
level topologies are compared in Figure 5.
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Table 1. Comparison of classical multilevel inverters.

Sr No. Implementation Factors NPC FC CHB

1 Switching devices 2(k − 1) 2(k − 1) 2(k − 1)

2 DC sources 1 1 (k − 1)/2

3 Voltage levels 2(k − 1) 2(k − 1)

k = 2n + 1
( f or symmetrical)

k = 2n+1 − 1
( f or binary)

k = 3n

( f or trinary)

4 Clamping diodes (k − 1)(k − 2) 0 0

5 DC side capacitors (k − 1) (k − 1) (k − 1)/2

6 Freewheeling diodes 2(k − 1) 2(k − 1) 2(k − 1)

7 Balancing capacitor 0 (k − 1)(k − 2)/2 0

8 Carrier waves (k − 1) (k − 1) (k − 1)

9 Modularity Low High High

10 Design complexity Low Medium High

11 Structure Symmetric, bulky Symmetric, bulky Symmetric, light

12 Switch/source utilization Poor Good Good

13 Implementation complexity Low Medium High

14 Control concern Voltage balancing Voltage setup Power sharing

15 Redundancy Line Phase and line Phase

16 Fault tolerance Difficult Easy Easy

17 Cost Low High Medium

18 Introduced by Nabae, Takashi, and Akagi Meynard Baker and Bannister

19 Introduced year 1981 1992 1975

When it comes to the modulation scheme as an implementation factor, the space vector
modulation control scheme leads to proper matching between the converter and the control
scheme in NPC and CHB cases, whereas the matching is undesirable in the case of FC. On
the other hand, the selective harmonic elimination pulse width modulation control scheme
leads to most appropriate, proper, and undesirable matching between the converter and
control scheme in the cases of NPC, FC, and CHB, respectively. For the cases of NPC and
FC, proper matching, while most appropriated for the CHB, can be achieved between the
converter and the sinusoidal pulse width modulation control scheme.

3. Reduced Device Count Multilevel Inverter Topologies

The reduced device count multilevel inverters have minimized the harmonics in the
output voltage waveforms by varying the number of levels with a fewer switching devices,
their triggering circuits, diodes, capacitors, and other devices. These topologies require a
single DC source or several isolated DC sources to produce a multilevel output voltage.
Multiple source topology includes symmetric and asymmetric. In symmetric topology, all the
DC sources have the same magnitude, whereas, in asymmetric topology, all the DC sources
possess different magnitudes. DC sources in symmetric topologies may differ in practice due
to the shading effects of PV panels or different charging states of batteries. These problems
are overcome by battery balancing systems [58,59]. Several reduced device count topologies
have been recently developed, which are categorized in Figure 6. A comprehensive review of
most recently developed topologies is presented in this section further.
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3.1. Cascaded Half-Bridge Multilevel Inverters (CHB-MLI)

Cascaded half-bridge multilevel inverters are categorized as with or without a H-
bridge. A CHB-MLI with full H-bridge topologies is composed of level generated and
polarity generated parts [15,16,60–65]. The level generated part is the main part that
produces positive and zero levels. The other polarity generated part is also called an
auxiliary part, which generates a negative level. Another category of cascaded half-
bridge MLI topologies is without a polarity changer that does not require a H-bridge
inverter [66–70]. A cascaded half-bridge multilevel CHB-MLI converter is depicted in
Figure 7 and is documented in [16,66,71], which solely consists of unidirectional switching
devices and can operate in symmetrical or asymmetric mode. The basic unit, called a
sub-cell, consists of a DC source and two unidirectional switching devices. It generates a
positive and a zero level. The switching devices are never operated simultaneously due to
short circuit across a DC source. The negative level is generated by the H-bridge inverter.

Mahrous et al. [66] presented an asymmetric cascaded half-bridge (ACHB) topology
with a reverse polarity DC source half-bridge cell that generated the negative level for
the topology. The magnitude of a DC source of a reverse polarity is the summation of all
DC sources connected in the topology. This topology does not require polarity changer.
Therefore, this MLI reduces the number of switching devices, switching losses, costs, and
sizes. The seven-level asymmetric multilevel inverter is shown in Figure 8.

3.2. Bidirectional Switch Multilevel Inverter

These topologies can be configured without a polarity changer [17] or with a polarity
changer [72–80]. The topology with a polarity changer is employed with bidirectional and
unidirectional switching devices. But, the topology without a polarity changer is only
designed with bidirectional devices.

The asymmetric bidirectional switch multilevel inverter (ABS MLI) was presented by
Ebrahim Babaei et al. [17]. The basic unit of this topology consisted of four common emitter
bidirectional switching devices and a DC source that generated a three-step quasi-square
waveform. By increasing the number of DC sources (n), the output level could be extended
to a higher level. An extended thirteen-level ABS MLI is shown in Figure 9. The MLI
topology of the asymmetric bidirectional switch can be cascaded using sub-cells [17,81].
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Ebrahimi et al. [80] presented the topology based on a multilevel module (MLM), as
shown in Figure 10. In this topology, the multilevel module produces a positive polarity
voltage with the help of bidirectional switching devices and DC sources. The different
configurations of bidirectional switches are available in [82]. At the end of MLM, an
H-bridge polarity generator is connected, which alternates the polarity and produces an
output voltage waveform that has positive and negative levels. The polarity changer is
composed of unidirectional devices. The asymmetrical source arrangement is not possible
in this topology.

Energies 2023, 16, x FOR PEER REVIEW 11 of 30 
 

 

 
Figure 10. Multilevel module multilevel inverter. 

A transistor-clamped multilevel inverter (TC MLI) topology reported in [72–79] is a 
combination of bidirectional and unidirectional switching devices. Bidirectional switch-
ing devices (S1, S2 and S3) are used to generate the levels of topology, whereas unidirec-
tional devices (Q1, Q2, Q3, and Q4) are used for a polarity generation. This topology needs 
fewer devices compared to conventional topologies. Figure 11 shows a transistor-clamped 
MLI. In Figure 11, since the insulated gate bipolar transistors are connected, the converter 
is said to be a transistor clamped multilevel inverter. The transistors (Q1, Q2, Q3, and Q4) 
are unidirectional transistors, and this part is connected as a polarity changer in Figure 11. 

 
Figure 11. Five-level transistor-clamped MLI. 

3.3. DC Switched Sources MLI 
The series-connected switched sources (SCSS) topology developed by Gupta and Jain 

[71] comprises multiple DC sources connected in opposite polarities with switching de-

Vdc1

S1

S2

S3Vdc2

Vdc3

Vdc4

S4

S5

Vo

Q2Q1

Q4

Q3

Vo

Polarity   generator
Vdc1 S1

S2

S3

Vdc2

Vdc3

Vdc4

Q2Q1

Q4

Q3

Level generator

Figure 10. Multilevel module multilevel inverter.

A transistor-clamped multilevel inverter (TC MLI) topology reported in [72–79] is a
combination of bidirectional and unidirectional switching devices. Bidirectional switching
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devices (S1, S2 and S3) are used to generate the levels of topology, whereas unidirectional
devices (Q1, Q2, Q3, and Q4) are used for a polarity generation. This topology needs fewer
devices compared to conventional topologies. Figure 11 shows a transistor-clamped MLI.
In Figure 11, since the insulated gate bipolar transistors are connected, the converter is said
to be a transistor clamped multilevel inverter. The transistors (Q1, Q2, Q3, and Q4) are
unidirectional transistors, and this part is connected as a polarity changer in Figure 11.
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3.3. DC Switched Sources MLI

The series-connected switched sources (SCSS) topology developed by Gupta and
Jain [71] comprises multiple DC sources connected in opposite polarities with switching
devices. It does not require a two-level full bridge voltage source inverter to change the po-
larity. The basic unit includes a single DC source and two unidirectional switching devices.
Figure 12 shows the circuit diagram of this topology. The five-level SCSS topology needs
six switching devices, whereas the conventional five-level CHB requires eight switching
devices. Therefore, the SCSS topology synthesizes the output voltage waveform with a
lesser number of devices, unlike the CHB. The switching losses, conduction losses, and
triggering circuit complexities are also minimized.

Hinago and Koizumi [83] introduced a novel switched-series-parallel-sources (SSPS)
topology consisting of an H-bridge, as shown in Figure 13. With the use of an LC filter, the
harmonic distortion is further reduced in this topology [83].

3.4. Switched Capacitor Multilevel Inverter

The switched capacitor topologies produce more output voltage levels with several
capacitors and switching devices, but fewer symmetrical and asymmetric DC sources
are required [84–96].

The hybrid-switched capacitor multilevel inverter (HSCMLI) that includes switched
capacitors is presented by Fong et al. [84] and is shown in Figure 14. HSCMLI is a combi-
nation of a switched capacitor unit, a bidirectional switched MLI, and an H-bridge. The
topology provides the bidirectional power flow, which is most suitable for motor drives,
particularly for regenerative braking. The SCMLI topology is further simplified by replac-
ing some active switches into diodes, such as when used as a grid, tie inverter for renewable
energy farms, or drive high displacing power factor loads.
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Another topology of a switched capacitor is known as the sub-multilevel inverter
(SMLI) [85], which is capable of boosting and possesses self-charge balancing property.
It generates polarity for a high number of output voltage levels (k) without using the H-
bridge. The basic unit of SMLI consists of a pair stage of switched capacitor converter (SSC),
two half bridges, and two unidirectional switches. This topology is operated in symmetric
as well as asymmetric mode. An asymmetrical 17 level SMLI is shown in Figure 15.
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Barzegarkhoo et al. [86] presented a new boost capacitor MLI BSCMLI topology with
boosting property. The basic unit generates nine levels in the output voltage, which is
composed of a switched capacitor (SC) cell and one bidirectional and four unidirectional
switching devices. Figure 16 shows the boost SCMLI. The proposed topology is capable
of boosting and possesses self-charge balancing properties. It also generates more voltage
levels with reduced switching devices compared to conventional CHB.
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3.5. Developed H-Bridge Multilevel Inverters

Babaei et al. [97] introduced a new H-bridge topology, which was also referred to as
the developed H-bridge topology in that study. The developed H-bridge topology in [97]
needs a lower number of switching devices to synthesize the output voltage. The basic unit
includes two DC sources and six unidirectional switching devices that generate the output
voltages of seven levels. The basic unit of topologies in [97] can be easily configured by
adding an additional DC source and two unidirectional switching devices in a conventional
two-level H-bridge converter. The proposed unit should operate with asymmetric voltage
sources, otherwise the unit of topology operates at voltage levels lower than seven. The
basic circuit arrangement unit of the topology is given in Figure 17 [97,98].
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Sarbanzadeh et al. [99] presented a submodule structure for MLI. The basic sub module
unit of topology in a cascaded connection is shown in Figure 18. Each sub module includes
four isolated DC sources, two bidirectional devices, and six unidirectional devices. In the
structure of the sub module, two Vdc1 and two Vdc2 are used with different magnitudes
(for example, Vdc1 = Vdc and Vdc2 = 3Vdc). The basic unit generates an output voltage
waveform of seventeen levels with positive and negative polarities, and it does not require
an H-bridge polarity generator. The cascaded structure of sub modules is used either
symmetrically or asymmetrically.
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A switch ladder multilevel inverter (SLMLI) was proposed by Alishah et al. [100]. The
basic unit of the SLMLI topology is a combination of four DC sources, six unidirectional
devices, and two bidirectional devices. An extended form of the basic unit is given in
Figure 19, which generates 31 levels in the output voltage waveform. This extended
topology has a high modularity and a connected SLMLI number in a cascaded connection
to assure more voltage levels [100].

Lee et al. [101] presented a cascaded topology that includes a compact module. The
topology has a lower number of switching devices and provides mitigation against voltage
spikes generated during the dead time. In inductive loads, the topology has well facilitated
the smooth flow of inductive current by providing a freewheeling path. A 7-level cascaded
compact module multilevel inverter (CCMMLI) is shown in Figure 20.
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3.6. Packed U-Cell Multilevel Inverter (PUCMLI)

A packed U-cell (PUC) MLI topology can produce a higher number of levels of the
output voltage with a reduction in devices unlike the conventional multilevel inverters.
Therefore, less power losses are generated, a lesser number of triggering circuits are needed,
and the complexity of the topology is reduced [102–105]. The basic unit of this topology
comprises of a DC source or a capacitor and two unidirectional switching devices. Figure 21
shows a 7-level single phase PUC topology introduced by Al-Haddad et al. [102]. The
same author controls even more the dynamics of the PUC topology by using a hysteresis
controller in [104].
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3.7. Other Reduced Device Count Multilevel Inverter

Oskuee et al. [106] proposed a multilevel voltage source inverter (MVSI), which had
a reduced number of components that included switching devices and their triggering
circuits in comparison to the conventional CHB-MLI. Subsequently, conduction losses,
switching losses, costs, and complexities of the MVSI topology are minimized significantly.
This topology is a symmetric topology. If there is an inequality in the DC sources, then
the output voltage has undesirable harmonics. The circuit diagram of a nine-level MVSI
topology is given in Figure 22.
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Siddique et al. [108] presented a double H-bridge MLI, which produced more levels 
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Samadaei et al. [107] introduced an asymmetrical square T (ST) module based multi-
level inverter. The basic unit of this topology, as shown in Figure 23, generates 17 levels
in the output voltage without using a H-bridge. The basic unit extends in a cascaded
connection to generate more levels of the output voltage.
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Siddique et al. [108] presented a double H-bridge MLI, which produced more levels
compared to the conventional CHB-MLI. This topology is shown in Figure 24.
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4. Comparative Study of Reduced Device Count MLIs

The focus of reduced device count multilevel inverters is to generate more levels in
output voltage waveform with use of a minimum number of devices. For this regard,
comparisons are made in this section. The details of the component and the output volt-
ages of several reduced device count multilevel inverters are tabulated in Table 2. The
comparison of switching devices versus the number of levels is made and is shown in
Figure 25, which clearly shows that the RDC multilevel inverters have fewer switching
devices compared to classical CHBs. An asymmetric cascaded half-bridge MLI (Figure 8)
uses less switching devices to generate a specific level compared to all RDC multilevel in-
verters reviewed in this paper. The topologies given in (Figures 9, 15, 17 and 21) also
have less numbers of switching devices. The RDC topology illustrated in Figure 20
needs the highest switching devices as the levels increase. The topologies as shown in
Figures 9–11 have bi-directional switches and have bidirectional power flow capabilities
that are suitable for applications, such as renewable energy systems, motor drives, and
FACTS controllers. Figure 26 shows the number of DC sources with respect to the number
of levels of RDC multilevel inverters. The ACHB and PUC topologies have more reduced
number of DC sources at specific levels in comparison to the RDC multilevel inverters. The
RDC topologies given in Figures 7, 10, 18 and 20 demand the highest DC sources as the
levels increase. The research works of various authors related to RDC multilevel inverters
are summarized in Table 3.
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Table 2. Component and output voltage details of reduced device count multilevel inverters.

Number of Required Switching
Devices (Sd)

Output Voltage
Levels (k)

Type
RDC-MLI of Figure Reference

k + 3
(symmetrical)

2ln[2(k+1)]
ln2

k + 9
(asymmetrical)

2

2n + 1
(symmetrical)
2n+1 − 14n − 1
(asymmetrical)

Cascaded half-bridge MLI using
sub cells Figure 7 [16]

2n
Where n is number of cells 2n − 1 Cascaded half- bridge MLI with

reverse polarity cell Figure 8 [66]

2(n + 1) n (n + 1) + 1 BS-MLI Figure 9 [17]

2(n + 1) 2n + 1 MLM MLI Figure 10 [71]

6n + 4 1 + 2n+2 + 22n+1 SMLI Figure 15 [85]

6n + 2 8n + 1 BSCMLI Figure 16 [86]

4n + 2 2n+1 − 1
Developed

H-bridge MLI Figure 17 [97]

8 ns
Where ns is number of sub modules 8ns + 1 Cascaded MLI with sub module Figure 18 [99]

10 ncm
Where ncm is number of cascaded

modules
6ncm + 1 CCMMLI Figure 20 [101]

2 nc + 2
Where nc is total number of capacitors

and DC sources
2nc+1 − 1 PUCMLI Figure 21 [102]

12 nst
Where nst is number of ST modules 16nst + 1 ST module type

MLI Figure 23 [107]

2nh + 8
Where nh is number of half-bridge

configured sources
6nh + 9 Double H-bridge MLI Figure 24 [108]

Energies 2023, 16, x FOR PEER REVIEW 19 of 30 
 

 

 
Figure 24. Asymmetric double H-bridge MLI. 

4. Comparative Study of Reduced Device Count MLIs 
The focus of reduced device count multilevel inverters is to generate more levels in 

output voltage waveform with use of a minimum number of devices. For this regard, com-
parisons are made in this section. The details of the component and the output voltages 
of several reduced device count multilevel inverters are tabulated in Table 2. The compar-
ison of switching devices versus the number of levels is made and is shown in Figure 25, 
which clearly shows that the RDC multilevel inverters have fewer switching devices com-
pared to classical CHBs. An asymmetric cascaded half-bridge MLI (Figure 8) uses less 
switching devices to generate a specific level compared to all RDC multilevel inverters 
reviewed in this paper. The topologies given in (Figures 9, 15, 17 and 21) also have less 
numbers of switching devices. The RDC topology illustrated in Figure 20 needs the high-
est switching devices as the levels increase. The topologies as shown in Figures 9–11 have 
bi-directional switches and have bidirectional power flow capabilities that are suitable for 
applications, such as renewable energy systems, motor drives, and FACTS controllers. 
Figure 26 shows the number of DC sources with respect to the number of levels of RDC 
multilevel inverters. The ACHB and PUC topologies have more reduced number of DC 
sources at specific levels in comparison to the RDC multilevel inverters. The RDC topolo-
gies given in Figures 7, 10, 18 and 20 demand the highest DC sources as the levels increase. 
The research works of various authors related to RDC multilevel inverters are summa-
rized in Table 3. 

 
Figure 25. Comparison of switching devices vs. no. of levels of reduced switched count MLIs. Figure 25. Comparison of switching devices vs. no. of levels of reduced switched count MLIs.



Energies 2023, 16, 5638 20 of 29

Table 3. Comparison details of reduced device count multilevel inverter.

Reference Author
(Year) MLI Type Modulation

Scheme
Calculated
Parameters Software Controller Summary

[16] Babaei, E
et al. (2009)

Cascaded
half-bridge

MLI

Fundamental
switching
frequency
technique

THD, output
voltage PSCAD

89C52
ATMEL
micro-

controller

Reduced device count topology
sub cells were presented, which

were extended to form a
cascaded connection. Three

algorithms were also presented
to find out the components and
voltage levels. The method was
validated with simulation and

experimental results.

[17] Babaei, E
et al. (2007)

common
emitter bi-
directional

switch based
MLI

Switching
angle

THD,
Standing
voltage

PSCAD/EMTDC

89C52
ATMEL
micro-

controller

RSB-MLI was proposed for the
series connection of sub

multilevel inverters. Theoretical
issues were verified with

simulated and experimental
results with new
49-level inverter.

[60] Kotb, K.M
et al. (2016)

cascaded
half-bridge

inverter

IPD (In
phase

deposition),
POD (Phase

opposite
deposition),

APOD
(Alternative

POD)

THD MATLAB/
Simulink NI PCI-6013

Multicarrier PWM techniques
were employed in a 15-level

cascaded half-bridge inverter.

[66] Ahmed, M
et al. (2017)

asymmetric
cascaded

half-bridge
inverter

selective
harmonic

elimination
THD MATLAB/

Simulink

DSP
TMS320F28335

controller

Authors introduced the
topology with reverse polarity

cell; therefore, it did not require
polarity changer, thus reducing

the switching devices, costs,
and complexities of the circuit.

[71]
Gupta, K.K.
and Jain, S

(2014)
SCSS-MLI PD-SPWM

THD,
conduction

losses,
switching

losses

MATLAB/
Simulink

DS1103
dSpace

A novel topology and its
principle of operation was
presented. The simulation

results of this topology were
also compared with

conventional topologies.

[80] Ebrahimi, J
et al. (2012)

MLM-based
MLI -

THD,
conduction

losses,
switching

losses

PSCAD/EMTDC

ATMEL
89C52
micro-

controller

The multilevel module based
MLI was proposed in this study.

Various optimal structures
related with reduced device

count were also presented. The
proposed topology was

evaluated with its prototype
hardware and simulation.

[81] Babaei, E
(2010)

CHB-MLI
using sub

cells

switching
angle -- PSCAD/EMTDC

89C52
ATMEL
micro-

controller

The authors developed
bi-directional based topologies
in this study. Authors presented

how the basic units can be
extended, and also these

extended units were configured
in a cascaded connection. The

performances of these
topologies were validated with

simulated and
prototype results.
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5. Reduced Device Count Multilevel Inverters in Photovoltaic Systems

Nowadays, the focus of researchers in this field is also devoted mainly to improve
the design of multilevel inverters (a review on previous trends appears in [109]) in such
a way that not only their power consumption is reduced but their harmonic contents are
also minimized with less number of switching devices and their control circuitries. For
this purpose, many topologies of multilevel inverters have been recently developed with
a lower number of switching devices that give a multi-level output that is closer to a
harmonic-free sinusoidal waveform. Some recently developed multilevel inverters for PV
applications are discussed as under:

Regarding single-phase MLIs, as in [110], Sambasivam Rajalakshmi et al. [111] pro-
posed a single-phase-modified multilevel inverter for PV applications. This topology
requires nine switching devices, three diodes, and three DC sources for thirteen levels at
the output voltage. Prabhat Ranjan Bana [112] proposed a reduced device count multilevel
inverter, which was configured with a H-bridge-based MLI and a level-doubling circuit.
The polarity changer was also used to generate negative voltage levels. The output voltage
of the MLI was controlled with the selective harmonic elimination pulse width modulation
(SHE-PWM) technique.

Prem Ponnusamy et al. [113] developed the dual-source multilevel inverter for PV sys-
tem. The MLI consisted of level generator and polarity changer. The MLI was tested with sym-
metric and asymmetric modes of operation using nearest-level modulation (NLM). Alireza
Pourfaraj [114] proposed a single-phase dual-mode interleaved multilevel inverter. A step-up
chopper was integrated with this inverter, which enabled it to operate in step-up and step-
down modes. This topology also consisted of polarity changer. Nirmal Mukundan et al. [115]
integrated a support vector machine (SVM) converter with a newly developed multilevel
inverter. The positive levels were generated with a level generator, whereas negative levels
were changed with polarity changer.

The comparison of recent reduced device count multilevel inverter topologies for PV
system is summarized in Table 4.

Several modulation techniques are available for reduced device count multilevel
inverters. A modulation technique is an essential part of multilevel inverters. The number
of levels and contents of harmonics in the output voltage is controlled by these techniques.
The various types of modulation techniques are shown in Figure 27. Multicarrier PWM
techniques consist of modulators, reference signals, and carrier waves. The carrier wave is
either a triangular wave or an inverted cosine wave.
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Table 4. Comparison of recent reduced device count MLIs for PV system.

Refe-
rence Year

MLI Modulation
Scheme

Calculated
Parameters Software Controller

MPPT
Algorithm

PV
Configu-
rationConfiguration k * Sd * n *

[111] 2019 Modified CHB 9 8 4 PD, POD,
APOD

THD,
output
voltage

MATLAB/
Simulink

PIC 16F877A
Micro-
controller

- Standalone

[112] 2019

Reduced switch
H- bridge-based
(RSHB) MLI with
LDC

9 17 7 SHE-PWM
PD-PWM

THD,
output
voltage

MATLAB/
Simulink

Arduino
Mega 2560

Incremental
conduc-
tance
(IC)

Standalone

[113] 2020
Dual source
multilevel
inverter

9 11 2 NLM

THD,
output
voltage,
voltage
stress,
switching
and
conduction
losses,
efficiency

MATLAB/
Simulink

FPGA
Spartan 6
processor

- Standalone

[114] 2019

Dual-mode
interleaved
multilevel
inverter

10 1 PWM THD,
Power loss

STMicroelectronics
STM32F407
DSP

- Grid
connected

[115] 2021
Improved H-
bridge multilevel
inverter

6 5 2 PWM

THD,
Power loss,
total
standing
voltage

MATLAB/
Simulink
(R2009a)

dSPACE
Micro Lab
Box

IC Grid
connected

[116] 2019 Modified
H-bridge MLI 31 8 4 PWM THD MATLAB/

Simulink
FPGA
Spartan

Artificial
neural
network

Standalone

[117] 2022 Cascaded H-
bridge sub-MLI 15 7 3 PD-

CPWM THD MATLAB/
Simulink

Xilinx
Spartan
3E-500 FPGA

Fuzzy
logic Standalone

[118] 2016
CHB with
double level
circuit

13 14 4 PD-
CPWM

THD,
Power loss

MATLAB/
Simulink

dSpace 1104
controller

Perturb
and
observe (P
& O)

Standalone

[119] 2020 Voltage level
boost (VLB) MLI 15 10 5 PD-

CPWM
THD,
Power loss

MATLAB/
Simulink

DSP
controller IC Grid

connected

[120] 2020 Micro multilevel
inverter 5 5 2 PD-

CPWM
THD,
Power loss

MATLAB/
Simulink

d-SPACE
1104 P & O Standalone

[121] 2020 Switched
capacitor MLI 29 9 3 SHE-

PWM
THD,
Power loss

MATLAB/
Simulink

DSPIC30F2010
controller

Grey Wolf
optimiza-
tion
technique
and fuzzy
logic
control

Standalone

[122] 2023 Switched
capacitor MLI 7 8 1

Anti
predatory
particle
swarm op-
timization

THD MATLAB/
Simulink - Fuzzy

controller Standalone

[123] 2023 S-packed U-cells 5 5 1 PWM THD MATLAB/
Simulink -

IC with
hysteresis
control

Grid
connected

* k (number of levels), Sd (number of switches) and n (number of PV sources).
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6. Conclusions

This paper contains a detailed discussion of classical multilevel inverters. Their
features and limitations are also given in detail. The main focus of this paper is on reduced
device count multilevel inverters. More than 120 studies on different RDC MLI topologies
published up to 2022 have been reviewed and summarized. This paper provides a paradigm
for RDC MLIs based on the switching configuration. A comparison between the number of
levels, the number of switching devices, and the number of DC sources required for several
RDC multilevel inverters is also presented. The information on these inverters is useful
for researchers developing new RDC MLI topologies. Recently, several newly proposed
topologies were introduced by researchers who synthesized a higher number of levels of
the output voltage with a reduced number of power electronic devices. Therefore, this
paper has reviewed the recently developed reduced device count topologies. This paper
also provides a paradigm of RDC multilevel inverter topologies for a PV system that will be
a constructive tool for readers to select an appropriate topology for this application. From
the review, it is concluded that RDC topologies have gained popularity in various power
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utility and industrial applications over the last few years because the topologies reached a
certain level of maturity. There is still a lot of space to conduct research on RDC multilevel
inverters for further optimization. A few future directions on RDC MLIs are the following:

# Fault-tolerant operations;
# Integration with PV systems, wind-energy-conversion systems, fuel cells, etc.;
# Speed control of drives;
# Asymmetric operation such as natural, binary, and trinary progression;
# Cascaded and hybrid configurations;
# Implementation of modulation and control schemes.
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