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Abstract: As the core component of the flow-making system, the circulating pump has differences
in its internal flow structure under different operating conditions, which affects the flow quality of
the environmental simulation test area and the authenticity of marine environmental simulation. To
explore the internal flow characteristics and outlet evolution characteristics of the circulating pump,
this paper uses the DDES (delayed detached eddy simulation) method for numerical simulation. This
paper combines BVF (boundary vorticity flow) diagnosis and the limit streamline method to analyze
the evolution characteristics of the unstable flow area on the blade surface; it uses the Q criterion
to identify the vortex structure inside the pump and analyze its evolution and development laws.
Additionally, a quantitative analysis of the flow state of the circulating pump using flow uniformity
indexes is performed. The results show that the surface of impeller blades is uniform under 1.0 QN.
At 0.7 QN, the evolution process of the blade suction surface BVF is periodic, with a corresponding
period of about 2/9 T (0.02 s). At 1.0 QN, the strength and scale of the separated vortices inside the
guide vanes are minimized compared to other flow rates, and the scale and strength of the vortices
show a decreasing trend along the outer normal direction. The evolution period of the separation
vortex on the pressure surface of the guide vane is about 1/3 T (0.033 s) under 1.1 QN and the
evolution period of the suction surface of the guide vane is about 2/3 T (0.067 s) under 0.7 QN. The
flow uniformity indexes value downstream of the pump outlet under 1.0 QN are very close to the
ideal value; with a corresponding value of
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Abstract: As the core component of the flow-making system, the circulating pump has differences 

in its internal flow structure under different operating conditions, which affects the flow quality of 

the environmental simulation test area and the authenticity of marine environmental simulation. To 

explore the internal flow characteristics and outlet evolution characteristics of the circulating pump, 

this paper uses the DDES (delayed detached eddy simulation) method for numerical simulation. 

This paper combines BVF (boundary vorticity flow) diagnosis and the limit streamline method to 

analyze the evolution characteristics of the unstable flow area on the blade surface; it uses the Q 

criterion to identify the vortex structure inside the pump and analyze its evolution and development 

laws. Additionally, a quantitative analysis of the flow state of the circulating pump using flow 

uniformity indexes is performed. The results show that the surface of impeller blades is uniform 

under 1.0 QN. At 0.7 QN, the evolution process of the blade suction surface BVF is periodic, with a 

corresponding period of about 2/9 T (0.02 s). At 1.0 QN, the strength and scale of the separated 

vortices inside the guide vanes are minimized compared to other flow rates, and the scale and 

strength of the vortices show a decreasing trend along the outer normal direction. The evolution 

period of the separation vortex on the pressure surface of the guide vane is about 1/3 T (0.033 s) 

under 1.1 QN and the evolution period of the suction surface of the guide vane is about 2/3 T (0.067 

s) under 0.7 QN. The flow uniformity indexes value downstream of the pump outlet under 1.0 QN 

are very close to the ideal value; with a corresponding value of Ϛi = 0.023, θ̅ = 89.94°, γ = 0.95, λ = 

97.9%, the outflow can be approximately regarded as axial uniform flow. The research results can 

provide theoretical support for the further optimization design of circulating pumps and lay the 

foundation for the implementation of real systems. 

Keywords: flow-making system; circulating pump; internal flow characteristics; BVF;  

flow uniformity indexes 

 

1. Introduction 

The ocean is the focus of current and future human attention. Global ocean 

development is continuously moving from nearshore to deep sea and ultra-deep sea, 

becoming a new trend in the competition among ocean powers [1,2]. The circulation flow-

making system, as the core facility for improving deep-sea engineering technology, 

provides an effective platform for various complex environmental conditions in ocean 

engineering experiments and research, and can accurately measure key information such 

as speed, pressure, radiation noise, and vibration in the environment simulation area [3]. 

The axial flow circulation pump is the core hydraulic component that drives the 
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i = 0.023, θ = 89.94◦, γ = 0.95, λ = 97.9%, the outflow
can be approximately regarded as axial uniform flow. The research results can provide theoretical
support for the further optimization design of circulating pumps and lay the foundation for the
implementation of real systems.

Keywords: flow-making system; circulating pump; internal flow characteristics; BVF; flow
uniformity indexes

1. Introduction

The ocean is the focus of current and future human attention. Global ocean develop-
ment is continuously moving from nearshore to deep sea and ultra-deep sea, becoming
a new trend in the competition among ocean powers [1,2]. The circulation flow-making
system, as the core facility for improving deep-sea engineering technology, provides an
effective platform for various complex environmental conditions in ocean engineering
experiments and research, and can accurately measure key information such as speed,
pressure, radiation noise, and vibration in the environment simulation area [3]. The axial
flow circulation pump is the core hydraulic component that drives the circulation of the
fluid medium inside the circulation flow-making system. The control of the outflow quality
of the circulation pump is the key to achieving the technical indicators of the circulation
flow system to simulate the real ocean environment. The study of the non-steady flow
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characteristics inside the circulation pump is an important prerequisite and foundation for
achieving effective control of the outflow quality of the circulation pump [4,5].

The internal flow of an axial flow pump during operation is a complex three-dimensional
unsteady flow, often resulting in complex flow phenomena and inducing strong pressure
pulsations and vibration noise [6]. The study of the internal flow characteristics of axial
flow pumps under different parameter conditions is a prerequisite for suppressing the
level of pulsation and vibration noise inside the pump [7,8]. Currently, computational
fluid dynamics is a powerful method for analyzing the detailed flow field structure inside
a water pump; when combined with experimental methods, it can be used to study the
complex flow patterns inside an axial flow pump device. Many scholars have conducted
extensive research on the three-dimensional flow field and pressure pulsations inside
axial flow pump devices. Zuo et al. [9] explored the influence of different rotational
speeds on the transient internal and external flow characteristics of axial flow pumps by
combining numerical simulations and experiments. AI-Obaidi et al. [10] analyzed the
static pressure, axial, tangential, and radial velocity vectors, as well as pressure pulsations
inside an axial flow pump, based on the k-epsilon turbulence model and sliding mesh
technology. Wang et al. [11] combined numerical simulations and experimental verification
to reveal the development process of the skewed flow characteristics inside the S-shaped
channel of a 15-degree slanted axial flow pump. Kim et al. [12] found that the steady and
unsteady performance characteristics of a submersible axial flow pump depend on the
inlet guide vanes (IGV) and blade pitch angle. Zhou et al. [13] improved the internal flow
characteristics of an axial flow pump under low flow conditions by adopting a double-inlet
structure and combining numerical simulations with experimental methods. Mu et al. [14]
proposed a new groove flow control technology for axial flow pumps and used numerical
simulation methods to study its internal flow characteristics and improvement effects
under stall conditions. Kang et al. [15] found that increasing the number of guide vanes
can help improve the uniformity of the axial velocity at the impeller outlet by numerical
simulation of the internal flow field of an axial flow pump. Xie et al. [16] studied the
significance of the pressure pulsation characteristics inside a prototype pump and a model
pump through computational fluid dynamics and experiments and found that numerical
simulation predictions can replace model test pressure pulsations. Zhang et al. [17] studied
the transient turbulent characteristics and fluid–structure interaction (FSI) characteristics
of a vertical axial flow pump under design conditions, and revealed the time-frequency
rules of fluid pressure pulsations and structural vibrations at the same position inside the
axial flow pump. Yang et al. [18,19] studied the internal flow characteristics and pressure
pulsation characteristics inside the impeller and guide vanes of a vertical axial flow pump
at different flow rates, and analyzed the internal flow characteristics at the inlet and outlet
under different deflection angles based on the k-omega model, finding that the uniformity
of the outlet flow velocity and the pressure pulsation are periodic with the increase in
the deflection angle. Kan et al. [20] used the k-omega turbulence model to numerically
calculate a helical axial flow pump and revealed the influence of the clearance between
the blade tip and the casing on the internal flow characteristics by analyzing the pump’s
pressure, streamline, and turbulent kinetic energy. Feng et al. [21] used numerical methods
to study the influence of the clearance between the blade tip and the casing on the pressure
fluctuation of an axial flow pump, and proposed a new method based on pressure statistics
to determine the pressure fluctuation of all grid nodes in the pump.

There exist complex vortex structures inside an axial flow pump, and these vortices
are also an important factor causing pressure pulsations inside the pump, which have
garnered significant attention within the domain of academic discourse [22]. Zhao et al. [23]
quantitatively analyzed the characteristics of corner vortices in the separated flow of axial
flow pumps and found that the average vortex strength and turbulent vortex dissipation
gradually weaken along the vortex core line from the corner area to the vortex tail under
different operating conditions. Zhang et al. [24] qualitatively and quantitatively analyzed
the effect of inlet vortex flow on the performance of a pump device under different inlet
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flow conditions through numerical calculations and experiments, and revealed the trend of
changes in the internal vortex type of the impeller and the pressure pulsation caused by the
vortex. Kan et al. [25] used CFD technology to study the steady-state flow structure and
unsteady flow characteristics of an axial flow pump under stall conditions, revealing the
mechanism of low-frequency pressure pulsations under stall conditions, and also analyzed
the position and evolution of the core area of the guide vane vortex structure under deep
stall conditions. Song et al. [26] studied the influence of attached vortices on pressure
pulsations in a pump sump by combining experiments and vortex dynamics and found
that the pressure pulsation induced by the attached vortices fluctuates periodically with
time, and the pressure pulsation curve is approximately a cosine curve. Wu et al. [27]
used PIV flow field testing technology to obtain the non-steady-state characteristics of the
leakage vortex at the blade tip clearance of an axial flow pump under rated conditions, and
analyzed the generation, separation, and fragmentation process of the leakage vortex.

Based on the extensive research results mentioned above, the study of flow charac-
teristics inside axial flow pumps mainly focuses on the pressure pulsation characteristics
and typical vortex flow characteristics in the impeller and guide vane interference region.
However, compared to that, research on the evolution of multi-scale vortex flow at the
pump outlet and downstream is relatively lacking, and the impact of the internal flow
on the downstream is yet to be revealed. Therefore, targeted research is urgently needed.
In this paper, the DDES method is used to numerically simulate the three-dimensional
unsteady flow structure of a circulation pump under different flow rates, and the evolu-
tion characteristics of the unstable flow region on the blade surface, the evolution and
development laws of the internal vortex structure, and the quantitative analysis of the
pump outlet flow state using flow uniformity indicators are analyzed in detail. This lays a
model foundation for the smooth implementation of the physical implementation of the
circulation system.

2. Numerical Simulation and Test Loop
2.1. Model Pump

Considering the existing model test conditions and experimental costs, this paper
reduces the scale of the circulation pump in the prototype nominal diameter 6000 mm
flow-making system, with a scale ratio of 1:10. According to the theory of fluid machinery
similarity, it is possible to predict the relevant unsteady performance of the prototype pump
based on the research results of the model pump. The parameters of prototype and model
circulating pumps are shown in Tables 1 and 2, and the hydraulic components consist of
the front guide vane, impeller, and guide vane, as shown in the three-dimensional structure
in Figure 1.

Table 1. The basic design parameters of prototype pump.

Parameter Value

Flow rate QN 460,800 m3/h
Pump head HN 2.8 m

Rotational speed n 60 r/min
Specific speed ns 1145

Impeller blade number Zi 7
Tip clearance 6 mm

Guide vane blade number Zg 9
Front guide vane blade number Zf 4

Impeller inlet diameter D1 6000 mm
Impeller outlet diameter D2 6000 mm
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Table 2. The basic design parameters of model circulation pump.

Parameter Value

Flow rate QN 4608 m3/h
Pump head HN 2.8 m

Rotational speed n 600 r/min
Specific speed ns 1145

Impeller blade number Zi 7
Tip clearance 0.6 mm

Guide vane blade number Zg 9
Front guide vane blade number Zf 4

Impeller inlet diameter D1 600 mm
Impeller outlet diameter D2 600 mm
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2.2. Turbulence Model and Boundary Conditions

ANSYS-FLUENT is used to solve the three-dimensional unsteady flow field of the
circulating pump. In this study, the SIMPLEC algorithm is used to achieve the coupling
between velocity and pressure. The steady-state numerical calculation uses the SST k-ω
turbulence model, and the results of the steady-state calculation are used as the initial value
for the unsteady-state calculation. The SST k-ω turbulence model inherits the advantages
of the traditional k-ω and k-ε model, and can better handle the flow conditions near the
wall and in the fully developed flow area. The DDES method avoids the problem of the
modeled stress loss in DES and captures the internal flow structure more accurately by
introducing a delay function to reconstruct the DES length scale while considering the grid
scale and vortex viscosity field [28,29]. Therefore, the DDES method is used in the unsteady
numerical calculation.

The DDES turbulent transport equation based on the SST k-ω model is:

∂(ρk)
∂t

+
∂(ρkui)

∂xi
=

∂

∂x

[(
µ +

µt

σk3

)
∂k
∂xj

]
+ Pk − ρk3/2/lDDES (1)

∂(ρω)
∂t + ∂(ρωui)

∂xi
= ∂

∂xj

[(
µ + µt

σω3

)
∂ω
∂xj

]
+ α3

ω
k Pk − β3ρω2

+2(1− F1)ρ
1

ωσω2
∂k
∂xj

∂ω
∂xj

(2)

µt = ρ
a1k

max(a1ω, SF2)
(3)
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where the mixed functions F1 and F2 of the SST k-ωmodel can be represented as

F1 = tanh(ξ4) (4)

ξ = min

[
max

( √
k

β∗ωdω
,

500µ

ρdω
2ω

)
,

4ρk
Dω

+σω2dω
2

]
(5)

Dω
+ = max

[
2ρ

1
σω2

1
ω

∂k
∂xj

∂ω

∂xj
, 10−10

]
(6)

F2 = tanh
(

η2
)

(7)

η = max

{
2k1/2

β∗ωdω
,

500µ

ρdω
2ω

}
(8)

where dω is the distance from the calculation point to the wall surface; Pk is the turbulence
generation term caused by viscous forces, defined the same as the DES model; α1 = 5/9,
β1 = 0.075, k1 = 1.176, σω1 = 2, α2 = 0.44, β2 = 0.0828, σk2 = 1, σω2 = 1/0.856, a1 = 0.31,
β* = 0.09.

lDDES = lRANS − fdmax(0, lRANS − lLES) (9)

lRANS =
k1/2

β∗ω
(10)

lLES = CDES∆ (11)

CDES = F1CDES1 + (1− F1)CDES2 (12)

∆ = max{∆x, ∆y, ∆z} (13)

fd = 1− tanh
[
(Cd1rd)

Cd2
]

(14)

rd =
vt + v√

1
2 (S

2 + Ω2)k2dω
2

(15)

where fd is the delay function; rd is the delay factor; S is the value of the strain rate tensor; Ω is
the value of the curl tensor; ∆ is the maximum side length of the unit; Constant k = 0.41,
CDES1 = 0.78, CDES2 = 0.61, Cd1 = 8, Cd2 = 3.

The equations and the constants in the equations could be found in the published
paper [30].

The inlet boundary condition is velocity inlet with parameters calculated from the
experimental conditions, and the outlet boundary condition is pressure outlet with a value
set to a standard atmospheric pressure. All physical wall surfaces use a no-slip wall
condition. The specific turbulence characteristics with a turbulence intensity of 5% are
given. The calculation convergence residual is set to 1 × 10−6.

2.3. Mesh Generation

The calculation domain of the circulation pump consists of the inlet section, rectangular
diffuser section, front guide vane, impeller, guide vane, and outlet section, as shown in
Figure 2a. To improve the reliability of numerical simulation, the length of the inlet and
outlet sections is extended by 3 times the pipe diameter length, while the tip clearance is
consistent with the experiment, which is 1‰ of the impeller outer diameter. Structured
grids have higher accuracy and better convergence in numerical simulation. Therefore, the
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hexahedral structure grid in ANSYE-ICEM is used in this paper to partition the calculation
domain of the circulation pump. In addition, due to the significant reverse pressure
gradient near the blade surface, flow separation is prone to occur. To reproduce the flow
characteristics more realistically, an O-type grid and block rotation technology are used to
construct the topological structure of the blade surface and local refinement is performed,
where the height of the first layer of the blade surface is 0.01 mm, as shown in Figure 2b.
A small Y+ value is required in the impeller to obtain better flow structure. The average
Y+ value of the blade surface is calculated and analyzed to be less than 4, which meets the
requirements of the DDES numerical calculation. The distribution of the Y+ values on the
blade surface is shown in Figure 2c.

Energies 2023, 16, x FOR PEER REVIEW 6 of 22 
 

 

where fd is the delay function; rd is the delay factor; S is the value of the strain rate tensor; 

Ω is the value of the curl tensor; Δ is the maximum side length of the unit; Constant k = 

0.41, CDES1 = 0.78, CDES2 = 0.61, Cd1 = 8, Cd2 = 3. 

The equations and the constants in the equations could be found in the published 

paper [30]. 

The inlet boundary condition is velocity inlet with parameters calculated from the 

experimental conditions, and the outlet boundary condition is pressure outlet with a value 

set to a standard atmospheric pressure. All physical wall surfaces use a no-slip wall 

condition. The specific turbulence characteristics with a turbulence intensity of 5% are 

given. The calculation convergence residual is set to 1 × 10−6. 

2.3. Mesh Generation 

The calculation domain of the circulation pump consists of the inlet section, 

rectangular diffuser section, front guide vane, impeller, guide vane, and outlet section, as 

shown in Figure 2a. To improve the reliability of numerical simulation, the length of the 

inlet and outlet sections is extended by 3 times the pipe diameter length, while the tip 

clearance is consistent with the experiment, which is 1‰ of the impeller outer diameter. 

Structured grids have higher accuracy and better convergence in numerical simulation. 

Therefore, the hexahedral structure grid in ANSYE-ICEM is used in this paper to partition 

the calculation domain of the circulation pump. In addition, due to the significant reverse 

pressure gradient near the blade surface, flow separation is prone to occur. To reproduce 

the flow characteristics more realistically, an O-type grid and block rotation technology 

are used to construct the topological structure of the blade surface and local refinement is 

performed, where the height of the first layer of the blade surface is 0.01 mm, as shown in 

Figure 2b. A small Y+ value is required in the impeller to obtain better flow structure. The 

average Y+ value of the blade surface is calculated and analyzed to be less than 4, which 

meets the requirements of the DDES numerical calculation. The distribution of the Y+ 

values on the blade surface is shown in Figure 2c. 

 
(a) 

 
(b) 

Energies 2023, 16, x FOR PEER REVIEW 7 of 22 
 

 

 
(c) 

Figure 2. Computational domain structured grid. (a) Computational domain of circulating pump. 

(b) Structured mesh of circulating pump and partial mesh of impeller. (c) Y+ distribution on blades. 

Based on whether the head obtained from the unsteady calculation tends to be stable 

with the total number of grids, an independence verification of the calculation domain 

grid is carried out. Five grid division schemes are designed, as shown in Table 3. 

Table 3. Different mesh numbers’ division schemes. 

Grid Division 

Schemes 
Impeller Guide Vane 

Total Number of 

Grids 

1 1,656,789 1,545,652 4,654,234 

2 1,865,448 1,845,487 5,454,876 

3 2,254,665 2,044,548 6,546,445 

4 3,331,710 2,849,253 9,850,983 

5 4,125,842 3,045,456 11,456,687 

As shown in Figure 3, when the total number of grids exceeds 11,456,687, the head of 

the circulation pump changes slightly with the total number of grids. Considering the 

accuracy and economy of numerical calculation, grid division scheme 5 is selected, where 

the total grid quality is greater than 0.4. 

 

Figure 3. Mesh sensitivity check. 

Figure 2. Computational domain structured grid. (a) Computational domain of circulating pump.
(b) Structured mesh of circulating pump and partial mesh of impeller. (c) Y+ distribution on blades.

Based on whether the head obtained from the unsteady calculation tends to be stable
with the total number of grids, an independence verification of the calculation domain grid
is carried out. Five grid division schemes are designed, as shown in Table 3.
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Table 3. Different mesh numbers’ division schemes.

Grid Division Schemes Impeller Guide Vane Total Number of Grids

1 1,656,789 1,545,652 4,654,234
2 1,865,448 1,845,487 5,454,876
3 2,254,665 2,044,548 6,546,445
4 3,331,710 2,849,253 9,850,983
5 4,125,842 3,045,456 11,456,687

As shown in Figure 3, when the total number of grids exceeds 11,456,687, the head
of the circulation pump changes slightly with the total number of grids. Considering the
accuracy and economy of numerical calculation, grid division scheme 5 is selected, where
the total grid quality is greater than 0.4.

Energies 2023, 16, x FOR PEER REVIEW 7 of 22 
 

 

 
(c) 

Figure 2. Computational domain structured grid. (a) Computational domain of circulating pump. 

(b) Structured mesh of circulating pump and partial mesh of impeller. (c) Y+ distribution on blades. 

Based on whether the head obtained from the unsteady calculation tends to be stable 

with the total number of grids, an independence verification of the calculation domain 

grid is carried out. Five grid division schemes are designed, as shown in Table 3. 

Table 3. Different mesh numbers’ division schemes. 

Grid Division 

Schemes 
Impeller Guide Vane 

Total Number of 

Grids 

1 1,656,789 1,545,652 4,654,234 

2 1,865,448 1,845,487 5,454,876 

3 2,254,665 2,044,548 6,546,445 

4 3,331,710 2,849,253 9,850,983 

5 4,125,842 3,045,456 11,456,687 

As shown in Figure 3, when the total number of grids exceeds 11,456,687, the head of 

the circulation pump changes slightly with the total number of grids. Considering the 

accuracy and economy of numerical calculation, grid division scheme 5 is selected, where 

the total grid quality is greater than 0.4. 

 

Figure 3. Mesh sensitivity check. Figure 3. Mesh sensitivity check.

2.4. Test Loop

An experimental system is built to verify the reliability of the numerical simulation
method, as shown in Figure 4. The regulation of the operating conditions of the circulating
pump is achieved by adjusting the opening of the outlet butterfly valve in the system. The
flow rate is collected using an electromagnetic flowmeter (KROHNE, accuracy ± 0.3%).
The static pressure at the pump inlet and outlet is collected by a pressure transmitter
(EJA, accuracy ± 0.075%). The shaft power and rotational speed are measured using the
electrical power measurement method (accuracy ± 0.5%, shaft power analyzed using the
loss analysis method). The instruments and motors are connected to the measurement and
control center, where data are automatically collected, analyzed, and precise adjustment of
the operating conditions is performed. The hydraulic performance of the circulation pump
is obtained by collecting parameters in the full operating range of the circulation pump.
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Figure 4. Test loop includes: 1. Reservoir; 2. Outlet butterfly valve; 3. Prototype pump; 4. Rectangular
rectifier gate; 5. Low noise motor; 6. Electromagnetic flowmeter; 7. Inlet butterfly valve. (a) Top view
of the test loop. (b) Actual photo of the test loop.

3. Experimental Validation

The average transient parameters of the last five cycles obtained from unsteady nu-
merical calculation are compared and analyzed with the experimental measurement results,
and the results are shown in Figure 5. The figure shows that the optimal flow rate obtained
from the numerical calculation is consistent with the experimental measurement. The error
between the pump head obtained from the numerical calculation and the experimental
measurement at 1.0 QN is only 3.4%. The maximum error between the two heads in the
range of 0.6 QN to 1.1 QN is only 6%. The trend of the results obtained from the numerical
calculation and the experimental measurement also has good consistency under other flow
rates. The critical stall and deep stall points are basically the same, indicating that the
numerical calculation method used in this paper has a high calculation accuracy.
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4. Result
4.1. Blade Surface Flow Analysis

Boundary vorticity flow (BVF) is the root cause of the generation and diffusion of
vorticity in the impeller of an axial flow pump. The BVF-based flow diagnosis can effectively
capture the root cause of bad flow in turbomachinery. By using the BVF diagnostic method,
the local key information on the blade surface will be easily identified. Therefore, the
BVF diagnostic method is used to analyze the complex flow structure on the surface of
the circulating pump blade under different flow rates and to analyze the positive and
negative contribution areas of the blade torque through the BVF distribution results on the
blade surface.

BVF refers to the vortex flux entering a unit area of fluid per unit time [31,32], and its
dynamic description is as follows:

σ = σa + σp + στ (16)

σa = n× aB (17)

σp =
1
ρ

n×∇π (18)

στ = v(n×∇)×ω (19)

where σ is the combined value of BVF, and σa, σp, στ , respectively, refer to the BVF caused
by wall acceleration, tangential pressure gradient, and boundary vortices.

During the numerical analysis of the circulating pump, due to the non-sliding wall
surface, the large Reynolds number (στ<< σp) and the compressibility of the fluid, it can
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be approximately considered that BVF is mainly generated by the tangential pressure
gradient σp. The moment is converted into the integral of BVF through derivative moment
transformation (DMT), and its calculation formula is as follows:

Mz = −
1
2

w

Sb

ρr2σpzdS +
1
2

w

∂Sb

ρr2dZ (20)

where Mz is the torque exerted by the fluid on the blade; Sb is the surface area; r is the
radius; σpz is the component of σp in the axial direction.

Based on this, combined with the limit streamline method, the flow structure on the
blade surface under the flow rates of 0.7 QN, 1.0 QN, and 1.1 QN is analyzed, and the blade
surface BVF and limit streamline distribution cloud maps of the impeller blade are shown in
Figure 6. At 1.0 QN, the flow lines on the blade surface are distributed uniformly, and there
is only a weak deviation flow phenomenon at the outlet edge (OE) of the suction surface;
in addition, the BVF and flow lines on the pressure surface are uniformly distributed
circumferentially. At 1.1 QN, the distribution law of BVF and limit streamline is similar to
1.0 QN. At 0.7 QN, there are obvious BVF peak transition areas on the suction surface inlet
hub side, the blade inlet edge (IE) side, and the outlet near the hub side of the impeller
blade, and a large area of backflow zone is found near the hub at the outlet combined
with the limit streamline; additionally, there is a forward peak point of BVF, which causes
unstable flow on the suction surface. There is a negative BVF area on the pressure surface
hub side, and a large area of turbulence appears in the limit streamline, which becomes
stable as the blade height increases.
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To further analyze the evolution of the backflow at the trailing edge of the suction
surface and the deviation flow on the pressure surface, the BVF on the suction and pressure
surfaces of the blade at different times is analyzed under 0.7 QN, and the distribution cloud
map is shown in Figure 7. The evolution of the BVF on the suction surface of the blade
corresponds to a period of about 2/9T (0.02 s), and the peak BVF area is generated at the
inlet hub and continuously evolves and dissipates towards the outlet edge, forming a large
range of tilted flow on the suction surface. The BVF distribution cloud map on the pressure
surface of the blade shows a trend of alternating positive and negative BVF on the near hub
side, and the evolution process has obvious periodicity. Comparing the BVF cloud maps on
the suction and pressure surfaces, it is found that the flow stability on the pressure surface
is better than that on the suction surface under 0.7 QN.

4.2. Internal Vortex Structure

To analyze the evolution process of multi-scale vortices in the circulation pump, the
Q criterion is used to identify the vortices in the guide vanes, where Q = 2 × 105 s−2

is selected as the equivalent surface for vortex identification, and the vortex structure is
colored by pressure.

From the hub to the rim, S1, S2, and S3 sections are selected, corresponding to 20%,
50%, and 80% blade height, respectively, as shown in Figure 8. Figure 9 shows the vortex
structure and streamline distribution of different radial sections in the guide vane domain
under different flow rates. At 1.0 QN, the vortex intensity in the guide vane passage is
small, and the guide vane wake is more obvious at 20% blade height than at 50% and
80% blade height. Compared with 1.0 QN, the separation vortex at the leading edge and
trailing edge of the guide vane is enhanced under 1.1 QN, and the positive and negative
vortices generated on the pressure surface of the guide vane migrate downstream along
the near-wall surface and detach at the wake, causing the main flow to deflect. At 0.7 QN,
the vortex scale and intensity in the guide vane passage and the outflow passage are
significantly larger than 1.0 QN and 1.1 QN. Large-scale vortices are formed inside the guide
vane, especially near the hub side, which disrupt the normal flow of the main flow. In
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addition, the vortex shedding and dissipation area of the guide vane wake are significantly
increased. Combined with the streamline distribution under different operating conditions,
the intensity and scale of the internal vortices in the guide vane decrease radially from the
hub to the rim.
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Figure 9. Distribution of vortex structures and streamline with different span.

The evolution of the vortices inside the circulation pump guide vane is more intense
under 1.1 QN and 0.7 QN. Taking the 50% blade height section as an example for vortex
evolution analysis, the evolution process of the vortices at different times is shown in
Figure 10. At 1.1 QN, the evolution period of the separation vortex generated at the leading
edge of the pressure surface of the guide vane is about 1/3T (0.033 s). At 0.7 QN, the
positive vortex is generated at the leading edge of the suction surface of the guide vane, and
then migrates downstream with its scale gradually increasing. When the vortex detaches
from the suction surface and enters the main flow passage, it gradually dissipates, and its
evolution period is about 2/3T (0.067 s). It can be inferred that multi-scale and different
evolution period vortices inside the guide vane under the small flow rate condition will
induce complex discrete excitation signals.
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4.3. Flow Uniformity

Since the environmental simulation test area in the circulation system is located
downstream of the circulation pump, the flow uniformity of the pump outlet directly
affects the flow quality of the environmental simulation test area. The flow uniformity
index is used to compare and analyze the flow uniformity of the pump outlet section
(distance from the guide vane outlet is 350 mm, as shown in Figure 11) under different flow
rates. The commonly used definition and calculation method of the flow uniformity index
are as follows:
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Abstract: As the core component of the flow-making system, the circulating pump has differences 

in its internal flow structure under different operating conditions, which affects the flow quality of 

the environmental simulation test area and the authenticity of marine environmental simulation. To 

explore the internal flow characteristics and outlet evolution characteristics of the circulating pump, 

this paper uses the DDES (delayed detached eddy simulation) method for numerical simulation. 

This paper combines BVF (boundary vorticity flow) diagnosis and the limit streamline method to 

analyze the evolution characteristics of the unstable flow area on the blade surface; it uses the Q 

criterion to identify the vortex structure inside the pump and analyze its evolution and development 

laws. Additionally, a quantitative analysis of the flow state of the circulating pump using flow 

uniformity indexes is performed. The results show that the surface of impeller blades is uniform 

under 1.0 QN. At 0.7 QN, the evolution process of the blade suction surface BVF is periodic, with a 

corresponding period of about 2/9 T (0.02 s). At 1.0 QN, the strength and scale of the separated 

vortices inside the guide vanes are minimized compared to other flow rates, and the scale and 

strength of the vortices show a decreasing trend along the outer normal direction. The evolution 

period of the separation vortex on the pressure surface of the guide vane is about 1/3 T (0.033 s) 

under 1.1 QN and the evolution period of the suction surface of the guide vane is about 2/3 T (0.067 

s) under 0.7 QN. The flow uniformity indexes value downstream of the pump outlet under 1.0 QN 

are very close to the ideal value; with a corresponding value of Ϛi = 0.023, θ̅ = 89.94°, γ = 0.95, λ = 

97.9%, the outflow can be approximately regarded as axial uniform flow. The research results can 

provide theoretical support for the further optimization design of circulating pumps and lay the 

foundation for the implementation of real systems. 

Keywords: flow-making system; circulating pump; internal flow characteristics; BVF;  

flow uniformity indexes 

 

1. Introduction 

The ocean is the focus of current and future human attention. Global ocean 

development is continuously moving from nearshore to deep sea and ultra-deep sea, 

becoming a new trend in the competition among ocean powers [1,2]. The circulation flow-

making system, as the core facility for improving deep-sea engineering technology, 

provides an effective platform for various complex environmental conditions in ocean 

engineering experiments and research, and can accurately measure key information such 

as speed, pressure, radiation noise, and vibration in the environment simulation area [3]. 

The axial flow circulation pump is the core hydraulic component that drives the 
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i = 0.

(2) Flow verticality

The flow verticality is the average angle between the axial velocity and tangential
velocity of the flow section [24], and its calculation formula is:

θ = 90◦ − 1
Q

∫
Ai

vzarctan(
vu

vz
)dA (22)

where vu is the tangential velocity of the flow section, m/s; corresponding to uniform flow
in an ideal state θ = 90◦.

(3) Speed uniformity index

The velocity uniformity index is defined based on statistical deviation and can reflect
the distribution characteristics of fluid velocity in the flow section. It has the advantages of
strong comparability and wide applicability [24], and its calculation formula is:

γ = 1− v,

2v
= 1−

n
∑

i=1
Ai

√
(vi − v)2

2
n
∑

i=1
Aivi

(23)
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where vi and v is the average velocity of the measuring point and the flow section, m/s.
Under ideal conditions, the corresponding γ = 1 corresponds to uniform flow.

(4) Uniformity evaluation index based on area weighted average

The uniformity evaluation index based on area weighted average is the relative ratio
of area weighted average velocity and quality weighted average velocity. This index is not
directly related to the sample points and can quickly evaluate the uniformity of the flow
section. It has obvious advantages in evaluating the flow uniformity of the flow section in
numerical simulation [34], and its calculation formula is:

λ = (1− |va − vm|
vm

)× 100% (24)

va =
1
A

n

∑
j=1

vj
∣∣Aj
∣∣ (25)

vm =

n
∑

j=1
vjρj

∣∣vj·Aj
∣∣

n
∑

j=1
ρj
∣∣vj·Aj

∣∣ (26)

where va and vm are area weighted average velocity and mass weighted average velocity,
respectively; A represents the cross-sectional area of the flow passage; the Aj and vj sub
tables represent the area vector and velocity vector on the j-th unit surface; ρj represents the
fluid density on j unit surfaces; n is the number of unit surfaces divided by the flow section.

After calculation, the index value of flow uniformity at the pump outlet is shown in
Table 4, in which: when
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i θ (◦) γ λ (%)

0.6 0.11 86.3 0.85 90.2
0.7 0.08 88.7 0.88 92.3
0.8 0.04 89.9 0.9 94.5
0.9 0.023 89.94 0.92 96.7
1.0 0.023 89.94 0.95 97.9
1.1 0.04 89.2 0.92 96.5

Each uniformity index has obtained the optimal value under 1.0 QN, and its corre-
sponding optimal values are
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i = 0.023, θ = 89.94◦, γ = 0.95, λ = 97.9%, respectively, and its
flow state can be approximated as normal uniform outflow. On the whole, the variation
trend of each uniformity index with the flow rate is consistent; that is, with the increase
in deviation from the rated working condition, the flow uniformity at the pump outlet
decreases.

In order to further analyze the distribution characteristics of the circulating pump
outflow under 1.0 QN, the velocity distribution curves at different radii as shown in
Figure 12 are given.

As shown in the above figure, at 1.0 QN, the speed uniformity of the hub and rim side
of the outlet section of the circulating pump in the circumferential direction is obviously
weaker than that in the main passage, the speed fluctuation amplitude at the hub side is
the largest, and the speed fluctuation amplitude at the radius of 0.7 r/R is the smallest.
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5. Conclusions

This article adopts the DDES method to perform unsteady numerical simulation of
the internal flow of the circulating pump under different flow rates. Methods such as the
BVF flow diagnosis, limit streamlines, and Q criteria are used to analyze the evolution
and development laws of the unstable flow structure in the circulating pump, and to
quantitatively evaluate the flow uniformity of the pump outlet. The main conclusions
obtained are as follows.

By comparing the energy performance test of the pump with the numerical calculation,
the accuracy of the DDES method is verified.

The flow stability on the suction side of the blade is lower than that on the pressure
side under different flow rates. At 0.7 QN, there is a peak point of BVF on the suction side,
which is the main reason for the unstable flow on the suction surface. The turbulence on the
pressure surface gradually improves with the increase in the blade height. The evolution
period of the BVF on the suction surface of the blade is 0.02 s, and the BVF peak is generated
on the inlet hub side and continuously dissipates towards the outlet. The pressure surface
of the blade exhibits an alternating trend of positive and negative BVF evolution.

Under off-design flow rates, the internal flow of the guide vane exhibits strong un-
steady characteristics. The intensity and scale of the vortex structure in the guide vane flow
passage weaken from the hub to the rim under different flow rates. At 0.7 QN, the suction
surface vortex migrates downstream, and its scale gradually increases before detachment
and dissipation. At 1.1 QN, the forward vortex evolves along the pressure surface of the
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guide vane. The evolution period of the vortex structure varies under different flow rates,
with approximately 0.033 s for 0.7 QN and approximately 0.067 s for 1.1 QN. The multi-scale
and different period vortex evolution inside the guide vane under 0.7 QN is the main cause
of complex discrete signals.

The outlet position of the circulating pump is validated based on the internal flow and
flow uniformity index. The analysis shows that the flow uniformity index of the circulating
pump achieves optimal values under 1.0 QN, and the fluctuation amplitude of velocity
gradually decreases with the increase in the blade height.
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Unevenness
θ Flow verticality
γ Speed uniformity index
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