DSVM-Based Model-Free Predictive Current Control of an Induction Motor
Abstract
:1. Introduction
2. Induction Motor and Two-Level Voltage–Source Inverter
2.1. Discrete-Space Vector Modulation Method
2.2. Model-Free Predictive Current Control of Induction Motor
2.2.1. Ultralocal Model-Based MFPCC
2.2.2. MFPCC Parameter Design
3. Proposed DSVM-Based MFPCC
4. Results
4.1. Simulation Results
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cortes, P.; Kazmierkowski, M.P.; Kennel, R.M.; Quevedo, D.E.; Rodriguez, J. Predictive Control in Power Electronics and Drives. IEEE Trans. Ind. Electron. 2008, 55, 4312–4324. [Google Scholar] [CrossRef]
- Kouro, S.; Cortes, P.; Vargas, R.; Ammann, U.; Rodriguez, J. Model Predictive Control—A Simple and Powerful Method to Control Power Converters. IEEE Trans. Ind. Electron. 2008, 56, 1826–1838. [Google Scholar] [CrossRef]
- Rodriguez, J.; Kazmierkowski, M.P.; Espinoza, J.R.; Zanchetta, P.; Abu-Rub, H.; Young, H.A.; Rojas, C.A. State of the Art of Finite Control Set Model Predictive Control in Power Electronics. IEEE Trans. Ind. Inform. 2012, 9, 1003–1016. [Google Scholar] [CrossRef]
- Mousavi, M.S.; Davari, S.A.; Nekoukar, V.; Garcia, C.; Rodriguez, J. Finite-Set Model Predictive Current Control of Induction Motors by Direct Use of Total Disturbance. IEEE Access 2021, 9, 107779–107790. [Google Scholar] [CrossRef]
- Rodriguez, J.; Garcia, C.; Mora, A.; Flores-Bahamonde, F.; Acuna, P.; Novak, M.; Zhang, Y.; Tarisciotti, L.; Davari, S.A.; Zhang, Z.; et al. Latest Advances of Model Predictive Control in Electrical Drives—Part I: Basic Concepts and Advanced Strategies. IEEE Trans. Power Electron. 2021, 37, 3927–3942. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, H.; Xia, B. Model-Predictive Control of Induction Motor Drives: Torque Control Versus Flux Control. IEEE Trans. Ind. Appl. 2016, 52, 4050–4060. [Google Scholar] [CrossRef]
- Prince; Hati, A.S.; Chakrabarti, P.; Abawajy, J.H.; Keong, N.W. Development of energy efficient drive for ventilation system using recurrent neural network. Neural Comput. Appl. 2021, 33, 8659–8668. [Google Scholar] [CrossRef]
- Prince; Hati, A.S.; Kumar, P. An adaptive neural fuzzy interface structure optimisation for prediction of energy consumption and airflow of a ventilation system. Appl. Energy 2023, 337, 120879. [Google Scholar] [CrossRef]
- Prince; Hati, A.S. A comprehensive review of energy-efficiency of ventilation system using Artificial Intelligence. Renew. Sustain. Energy Rev. 2021, 146, 111153. [Google Scholar] [CrossRef]
- Kumar, P.; Hati, A.S. Sensor-less Speed Control of Ventilation System Using Extended Kalman Filter For High Performance. In Proceedings of the 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Dehradun, India, 11–13 November 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Boileau, T.; Leboeuf, N.; Nahid-Mobarakeh, B.; Meibody-Tabar, F. Online Identification of PMSM Parameters: Parameter Identifiability and Estimator Comparative Study. IEEE Trans. Ind. Appl. 2011, 47, 1944–1957. [Google Scholar] [CrossRef]
- Dang, D.Q.; Rafaq, M.S.; Choi, H.H.; Jung, J.-W. Online Parameter Estimation Technique for Adaptive Control Applications of Interior PM Synchronous Motor Drives. IEEE Trans. Ind. Electron. 2015, 63, 1438–1449. [Google Scholar] [CrossRef]
- Fliess, M.; Join, C. Model-free control and intelligent PID controllers: Towards a possible trivialization of nonlinear control? IFAC Proc. Vol. 2009, 42, 1531–1550. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, X.; Zhang, B.; Yang, H. A Robust Model-Free Predictive Current Control of Induction Motor Drives. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Casadei, D.; Serra, G.; Tani, K. Implementation of a direct control algorithm for induction motors based on discrete space vector modulation. IEEE Trans. Power Electron. 2000, 15, 769–777. [Google Scholar] [CrossRef]
- Wei, X.; Chen, D.; Zhao, C. Minimization of torque ripple of direct-torque controlled induction machines by improved discrete space vector modulation. Electr. Power Syst. Res. 2004, 72, 103–112. [Google Scholar] [CrossRef]
- Vazquez, S.; Leon, J.I.; Franquelo, L.G.; Carrasco, J.M.; Martinez, O.; Rodríguez, J.; Cortes, P.; Kouro, S. Model Predictive Control with constant switching frequency using a Discrete Space Vector Modulation with virtual state vectors. In Proceedings of the 2009 IEEE International Conference on Industrial Technology, Gippsland, Australia, 10–13 February 2009; pp. 1–6. [Google Scholar]
- Holtz, J. The representation of AC machine dynamics by complex signal flow graphs. IEEE Trans. Ind. Electron. 1995, 42, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Le-Huy, H. Comparison of field-oriented control and direct torque control for induction motor drives. In Proceedings of the Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370), Phoenix, AZ, USA, 3–7 October 1999; Volume 2, pp. 1245–1252. [Google Scholar] [CrossRef]
- Alberti, L.; Bianchi, N.; Bolognani, S. Field oriented control of induction motor: A direct analysis using finite element. In Proceedings of the 2008 34th Annual Conference of IEEE Industrial Electronics, Orlando, FL, USA, 10–13 November 2008; pp. 1206–1209. [Google Scholar] [CrossRef]
- Osman, I.; Xiao, D.; Alam, K.S.; Shakib, S.M.S.I.; Akter, P.; Rahman, M.F. Discrete Space Vector Modulation-Based Model Predictive Torque Control With No Suboptimization. IEEE Trans. Ind. Electron. 2019, 67, 8164–8174. [Google Scholar] [CrossRef]
- Gonzalez-Prieto, I.; Duran, M.J.; Aciego, J.J.; Martin, C.; Barrero, F. Model Predictive Control of Six-Phase Induction Motor Drives Using Virtual Voltage Vectors. IEEE Trans. Ind. Electron. 2017, 65, 27–37. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, J. Finite-control-set model predictive direct torque control with extended set of voltage space vectors. In Proceedings of the 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, Australia, 11–14 August 2017; IEEE: Piscataway, NJ, USA; pp. 1–6. [Google Scholar]
- Fliess, M.; Join, C. Model-free control. Int. J. Control 2013, 86, 2228–2252. [Google Scholar] [CrossRef] [Green Version]
Real Voltage Vector | |
---|---|
[0, 0, 0] | |
[1, 0, 0] | |
[1, 1, 0] | |
[0, 1, 0] | |
[0, 1, 1] | |
[0, 0, 1] | |
[1, 0, 1] | |
[1, 1, 1] |
Discrete Voltage Vector | ||
---|---|---|
Index | Discrete Voltage Vector |
---|---|
Real | Vs1, Vs2, Vs3, Vs4, Vs5, Vs6 |
Short | Vs8, Vs9, Vs10, Vs11, Vs12, Vs13 |
Large | Vs14, Vs15, Vs16, Vs17, Vs18, Vs19 |
Zero | Vs0, Vs7 |
Induction-Motor Parameters | Symbols | Value |
---|---|---|
DC Voltage | 700 V | |
Rated Power | 2.2 kW | |
Rated Voltage | 415 V | |
Rated Current | 4.4 A | |
Rated Frequency | 50 Hz | |
Rated Torque | 14 Nm | |
Pole Pairs | p | 2 |
Stator Resistance | 4.125 Ohm | |
Stator Inductance | 300.37 mH | |
Rotor Resistance | 2.486 Ohm | |
Rotor Inductance | 300.37 mH | |
Mutual Inductance | 284.80 mH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M.A.; Hati, A.S.; Chakrabarti, P.; Hung, B.T.; Bolshev, V.; Panchenko, V. DSVM-Based Model-Free Predictive Current Control of an Induction Motor. Energies 2023, 16, 5657. https://doi.org/10.3390/en16155657
Hussain MA, Hati AS, Chakrabarti P, Hung BT, Bolshev V, Panchenko V. DSVM-Based Model-Free Predictive Current Control of an Induction Motor. Energies. 2023; 16(15):5657. https://doi.org/10.3390/en16155657
Chicago/Turabian StyleHussain, Md Asif, Ananda Shankar Hati, Prasun Chakrabarti, Bui Thanh Hung, Vadim Bolshev, and Vladimir Panchenko. 2023. "DSVM-Based Model-Free Predictive Current Control of an Induction Motor" Energies 16, no. 15: 5657. https://doi.org/10.3390/en16155657
APA StyleHussain, M. A., Hati, A. S., Chakrabarti, P., Hung, B. T., Bolshev, V., & Panchenko, V. (2023). DSVM-Based Model-Free Predictive Current Control of an Induction Motor. Energies, 16(15), 5657. https://doi.org/10.3390/en16155657