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Abstract: Sets of Arrhenius parameters, determined according to known different equations for
dynamic conditions, in the vast majority form the Kinetic Compensation Effect (KCE). Converting
these data to the simplified components of the Eyring equation comes down to Enthalpy–Entropy
Compensation (EEC), which is consistent with the second law of thermodynamics. It has been
proved that the impact of the generally known Coats−Redfern solution on the equation in differential
form results in an isokinetic form of the equations and a very important coordinate [T0; α0] (initial
temperature and conversion degree), depending on the heating rate. This makes it possible to
determine the parameters of Arrhenius’ law for both in silico and experimental data. An analytical
method for determining this coordinate has been proposed. These considerations have given rise
to an analysis of the relationship between two temperatures: initial and isokinetic. The sense of
isokinetic temperature has been verified by the parameters CQF and K. Going further, it was found
that the effects of EEC can be transformed into KCE and vice versa, which means that the two
temperatures should be identical, i.e., Tiso = Tc. However, the experimental data indicate that
the analyzed temperatures form a sequence T0 ↔ T iso ↔ Tc ≤ Teq , where Teq is the equilibrium
temperature.

Keywords: isokinetic and compensation temperature; isokinetics; kinetic compensation effect;
enthalpy–entropy compensation

1. Introduction

The compensation effects described in the literature occur during both kinetic and
thermodynamic studies. In the case of kinetic studies, they are related to the Arrhenius law
and are described by the Kinetic Compensation Effect (KCE). KCE is sometimes called the
Iso-Kinetic Relation (IKR) [1] or less commonly IE (Isokinetic Effect) [2]. In thermodynamic
analysis, compensation effects called EEC (Enthalpy Entropy Compensation) result from
van’t Hoff’s law. Freed [3] lists 54 references relating to various possibilities of EEC
occurrence. The common feature in both cases (for both types of compensation effects) is
the occurrence of characteristic temperatures as constant values: isokinetic for KCE (Tiso)
and compensation for EEC ( Tc), respectively.

1.1. Outline of the Problem

Taking the most general course of consideration according to [4], the mentioned effects
can be presented in the form of Equations (1)–(3) for β, γ = const:

ln Ai =γ +
Ei
Rβ

(1)

∆H+
i = γ + β∆S+

i (2)

Energies 2023, 16, 5692. https://doi.org/10.3390/en16155692 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16155692
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-7243-9715
https://orcid.org/0000-0003-1629-2506
https://doi.org/10.3390/en16155692
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16155692?type=check_update&version=1


Energies 2023, 16, 5692 2 of 28

or
∆H∅

i = γ + β∆S∅
i (3)

In Equations (1)–(3), the β symbol stands for Tiso (Equation (1)) and Tc (Equations
(2) and (3)) suggesting that these are the same temperatures in a value sense. Provided
between Equations (1) and (2) there are approximate, although reliable relationships, the
reference of the same equations to thermodynamic standard functions is not obvious. The
formal notation of Equation (3) has been demonstrated for many chemical, biochemical or
physicochemical reactions/processes [1,4–9].

In the Gold Book [10] Equation (2) is presented as isokinetic relationship:

∆H+
i − β∆S+

i = const (4)

and Equation (3) is related to chemical reaction as the isoequilibrium relationship:

∆r H − β∆rS = const (5)

Equations (4) and (5) and also (1) express the view of Freed [3], who (briefly) postulates
that the compensation or isokinetic temperature is determined by the identity of the
chemical equilibrium constants or kinetic constants, respectively. In the first case, van’t
Hoff’s isobar together with the Gibbs free energy is used in the proof and reduced to
EEC, and the second is commonly known and accepted as KCE, and is related to the
Arrhenius equation.

By way of theoretical considerations, Starikov proved the validity of Equation (3)
based on Bayesian statistical mechanics [11]. Equations (2) and (4) contain thermodynamic
activation functions derived from Eyring’s theory from 1935 [12]. The theory has been
adapted for modeling complex reaction/process pathways, as well as for the practical
use of selected relationships captured by Equations (2)–(5) [1,3,5,8,9,13–20]. Some of the
mentioned works combine Eyring’s theory with the Arrhenius equation [13,14,18].

Analyzing the experimental data obtained under isothermal and dynamic conditions, a
large discrepancy in the values of determined isokinetic temperatures can be observed. The
application of isothermal, dynamic or isoconversional kinetic functions for modeling does
not lead to one common isokinetic temperature value [20]. Thus, it can be expected that
the reliability of Equation (2) or Equation (4) is dependent on the parameters determined
from kinetic equations or reduced to thermokinetics, consistent with the classical Arrhenius
equation, i.e., ln A vs. E. Consequently, the possibility of confronting the isoconversion and
compensation temperature relationships arises.

In this type of analysis, temperatures defining the initial temperature [21] or [22] and
isokinetic are still useful. The equilibrium temperature follows from Equation (5) when we
introduce const = 0, i.e.,

Teq =
∆r H∅

∆rS∅ when ∆rG∅ = 0 (6)

In this work, an attempt is made to use the isokinetic (Tiso ) and compensation (Tc ) tem-
peratures as quantities representative for considered kinetic functions f (α) to demonstrate
isokinetics, which is largely understood as the closeness of the Arrhenius law parameter
values determined by the known equations.

1.2. Aim of the Paper

Kinetic considerations provide an opportunity to assess isokinetic relationships based
on general kinetic equations [23,24] and selected initial conditions that depend on the
heating rate. This creates a temperature sequence in observing the progression of the
reaction/process from an initial state to an irreversible state with respect to temperature
under conditions of its linear increase q > 0:

T0 = var vs. q; Tm = var vs. q; Tiso, Tc and Teq = const when P = const (7)
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Temperatures with symbols T0, Tm, Tiso are determined by kinetic experiments. Tem-
perature Tc can be of both kinetic and thermodynamic meaning, while Teq is only thermo-
dynamic. The temperature Tm denotes the temperature of the maximum reaction/process
rate characteristic for dynamic conditions.

The following equation is the starting point for the analysis of kinetics of processes/
reactions tested under non-isothermal conditions, also called dynamic conditions:

dα

dT
=

A
q

f (α)e−
E

RT (8)

Approximations in the form presented in the works [21,23,25–30] are most often used
as solutions of Equation (8), while other known solutions will be omitted here.

In practice, the Coats−Redfern approximation is most commonly used in the form of
a temperature integral (or, less commonly, an incomplete gamma function):

g(α) =
ART2

qE
e−

E
RT , q = const (9)

Presenting the occurrence of the isokinetic temperature at low conversion degrees
(α = 0.01− 0.05) [21] will mean there is an initial state:(

dα

dT

)
T0

=
1
T0

(10)

The aim of this study is to determine from Equations (8)–(10) in what form we observe
the isokinetic relationship of the selected models described symbolically as f (α) or g(α), in
order to further analyze the variability of the temperature series presented in Equation (7)
and the mutual relations between these temperatures.

2. Methods
2.1. General Kinetic Equation for Dynamic Conditions

If we introduce Equation (9) into Equation (8), we obtain the equation also found in
the literature [27], and earlier in [28]:

dα

dT
= f (α)·g(α)· E

RT2 (11)

Presenting Equation (11) in form:∫ dα

f (α)·g(α) = − E
RT

+ C (12)

the integral on the left-hand side of the equation after substitution: dα = f (α)·dg(α) leads
to the form:

ln[g(α)] = − E
RT

+ C (13)

Equation (13) satisfies the criteria of the mathematical formalism for different kinetic
functions g(α)–however, deviations from the assumed activation energy can be expected.

Table A1 uses the proposition from the book [31] having in mind explicitly given
variables and coefficients depending on the definition of the function f (α). It can also be
considered that these are the most common kinetic models. It should be noted that Table A1
(see: Appendix A) does not present all known functions–0th kinetics (R1) and higher orders,
e.g., Johnson-Mehl-Avrami [27], D4 Ginstein-Brouhnstein [32], Dahme-Junker [33], or more
complicated ones like Šesták-Berggren (SB) [32,34], are missing.

Thus, the intercept in Equations (12) and (13) can be represented as ( ln[g(α)] vs. 1/T):

C = ln[g(α0)] +
E

RT0
(14)
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As in the work [23], the functions g(α) were replaced with sufficient accuracy by the
first term of the expansions into a power series (ln[g(α0)] for small α0 in Table A1).

The constant written in the form of Equation (14) contains the sought after two
unknowns as the coordinate [T0; α0] at the initial point and requires a special solution,
when the kinetic function is a priori unknown.

Expressions for the simplified constant C
(

C = nln
( α0

m
)
+ E

RT0
, n, m = const

)
are in-

cluded in Table A1.
For arbitrary data, the combination of Equation (8) to Equation (10) was proposed for

the coordinate [T0, α0] establishing the relation:

f (α0)·g(α0) =
RT0

E
(15)

The integration constant in Equation (14) can be transformed into a complex form
with the following components:

C = ln[g(α0)] +
[

f (α0)·g(α0)]
−1 (16)

The pre-exponential factor is determined from Equation (9) after reference to tempera-
ture T = T0.

ln A = ln[g(α0)] +
E

RT0
+ ln

(
qE

RT2
0

)
(17)

According to Equation (14) the first two terms to the right of Equation (17) are the
integration constant, hence we obtain:

ln A = C + ln

(
qE

RT2
0

)
(18)

Equation (18) is valid for all kinetic models, including those for which f (α0) 6= 1, as
can be shown by inserting the logarithmized Equation (9) into Equation (14) for T = T0.
In Equation (17) after rearranging the products under the logarithms (or substituting into
Equation (18) the integration constant from Equation (14)) we obtain Equation (19):

ln A = ln
[

g(α0)·
E

RT0

]
+

E
RT0

+ ln
(

q
T0

)
(19)

and after using Equation (15) and performing operations we obtain:

ln A = −ln[ f (α0)] +
E

RT0
+ ln

(
q
T0

)
(20)

For the most commonly used models it can be assumed that for F1 f (α0) ∼= 1 (for R1:
f (α0) = 1, so Equation (15) takes the form:

g(α0) =
RT0

E
(21)

which for f (α0) = 1, g(α0) = α0 and so Equation (21) leads to the next form:

α0 =
RT0

E
(22)

After introducing Equation (17) into Equation (16), we obtain an expression containing
only the unknown temperature T0:

C =
E

RT0
− ln

(
E

RT0

)
(23)
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In turn, introducing Equations (21) and (22) we obtain an expression containing only
the unknown conversion degree α0:

C =
1
α0

+ ln α0 (24)

Knowing the intercept in the relationship ln[g(α)] vs. 1/T, the initial conversion degree
can be determined from Equation (24). In Equation (20), the inversion of the coordinate
system for T = T0 and after double-sided logarithmizing leads to:

ln
(

q
T0

)
= ln A + ln[ f (α0)]−

E
RT0

,
q
T0

= var (25)

Such inversion is similar to the transformation of Equation (9) into the well-known
KAS equation. For most kinetic models, the term ln[ f (α0)] can be neglected, and if the
analytical form of the kinetic function and α0 is known, it is not a problem to determine
this value. It directly affects the accuracy of the determination of ln A.

2.2. Data Set for Verification of Kinetic Models

Two data sets were used in this study, the first resulting from the simulation of the
assumed Arrhenius parameters and for Equation (9) and g(α) = 〈α〉, i.e., E = 200 kJ·mol−1,
A = 1014s−1 and five heating rates q = 0.01; 0.03; 0.1; 0.3; 0.5K·s−1, respectively. The
calculations were carried out for the temperature range T = 298− 1000 K with a step
∆T = 1 K, choosing the α values from the range [0; 1], similarly to what was adopted
in [21]. To distinguish the notation for individual cases of the function g(α) values, a
single-column matrix is marked as:

g(α) = 〈α〉 or g(α) = g〈α〉, 〈α〉 ∈ [0; 1] (26)

when 〈α〉 is an invariant of the kinetic models.
The second set of experimental data was taken from the work [19], which was exten-

sively analyzed in full by the ICTAC congress in 2000 [35]. They concern the dissociation of
calcite in a nitrogen atmosphere, the most preferably proposed kinetic model being R1, F1
or fractional.

3. Results
3.1. Results of the Calculations

For kinetic models (Table A1) and exponents n for P4 (n =1/4), P3 (n =1/3), P2 (n = 1/2),
P2/3 (n = 3/2), D1 (n = 2) and R1 (0th order, n = 1), the left-hand side of Equation (13) is
as follows:

nln〈α〉 = − E
RT

+ C (27)

which reduces the listed models to 0th order kinetics.
Similarly for models F1 (n = 1), A4 (n = 1/4), A3 (n = 1/3), A2 (n = 1

2 ):

nln[−ln(1− 〈α〉)] = − E
RT

+ C (28)

For models R2 or R3 (n = 1) we obtain, respectively:

ln
(

1−
√

1− 〈α〉
)
= − E

RT
+ C (29)

or:

ln
(

1− 3
√

1− 〈α〉
)
= − E

RT
+ C (30)
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For the popular D3 model:

g(α) =
[

1− 3
√

1− 〈α〉
]2

(31)

after logarithmizing Equation (31) it transforms into R3 (Equation (30)).
For the control test, the reference model Equation (27) for n = 1 and for the assumed

conditions (E, A, q), Figure 1. Table 1 shows the calculated activation energies, integration
constants (intercept of linear equations), temperatures and the corresponding conversion
degrees as [T0; α0].
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Figure 1. Kinetic approach Equation (27) for n = 1 for the assumed five heating rates.

Table 1. Summary of calculated parameters of Equation (27) for five assumed heating rates and
n = 1

(
r2 = 1

)
.

Heating Rate
q, K s−1

E, kj mol−1

acc. Equation (27)
Intercept C

acc. Equation (27)
T0 K

from Equation (23)
α0 from

Equations (22) or (24)

lnA
(A in s−1)

acc. Equation (18)

0.01 207.03 40.890 557.2 0.02238 33.762
0.03 207.13 39.822 571.5 0.02294 33.738
0.1 207.23 38.651 587.9 0.02359 33.718
0.3 207.33 37.583 603.7 0.02422 33.686
0.5 207.38 37.087 611.4 0.02450 33.688

average
± standard deviation 207.22 ± 0.14 38.807 ± 1.569 586.3 ± 22.4 0.02353 ± 0.00088 33.718 ± 0.029

The numerical data summarized in Table 1 were verified using Equation (25). A
graphical representation of the relationship obtained is presented in Figure 2. From the
parameters of the obtained linear relationship:

ln
(

q
T0

)
= −23400

T0
+ 32.144

(
r2 = 1.0000

)
(32)

The activation energy E = 199.53 kJ·mol−1 and the pre-expotential factor A = 1013.966 s−1

were determined. As one can easily see, both determined parameters have slightly lower
values than those used for calculations (A = 1014 s−1, f (α0) = 1).
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The intercept value in Equation (32) is dependent on deviations of the activation
energy and errors resulting from the observed variability of constants occurring in the
kinetic functions.
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Figure 3 presents the relationship (30) function D3 (Jander) but as R3: ln
(

1− 3
√

1− 〈α〉
)

(R3).
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Table 2 gives as an example the integration constant calculated according to Equation (14),
but also comparatively Equations (16), (23) and (24) were used–all the mentioned formulas
turn out to be equivalent.
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Table 2. Analysis of the kinetic function D3 as R3 by means of Equation (30), r2= 0.9999.

Heating Rate
q, K s−1

Slope in
Equation (30)

Intercept in
Equation (30)

E,
kJ mol−1

Intercept acc.
Equation (14)

lnA
(A in s−1)

acc. Equation (20)

0.01 25043 40.115 208.21 40.054 * 34.017
0.03 25069 39.072 208.42 38.999 34.010
0.1 25069 39.072 208.42 37.804 33.962
0.3 25106 36.843 208.73 36.776 33.980
0.5 25119 36.356 208.84 36.285 33.976

average ± standard deviation - 38.29 ± 1.31 208.52 ± 0.23 37.984 ± 1.392 33.989 ± 0.021

* For [T0; α0] of Table 1 and slope in Equation (30).

Thus, if this model accepts the coordinates [T0; α0] then by force of facts Equation (25)
remains unchanged in the analytical form of Equation (32).

Model D2 is very interesting because starting from infinitesimally small conversion
degrees it goes from R1 through D1 to D2.

The consequences of the considerations for the assumed values of kinetic parame-
ters E = 200 kJ·mol−1 and A = 1013.966 s−1 also provide an opportunity to analyze the
isoconversion models.

The adopted methodology and the performed cycle of calculations indicate the possibil-
ity of extending the interpretation of Equation (9) it can be written in a form as KAS equation:

ln

(
q

T2
i

)
= − E

RTi
+ ln A− ln

(
E·g(αi)

R

)
(33)

For each point with coordinates [Ti; αi], an intercept is created: ln A− ln
(

E·g(αi)
R

)
= const,

and for the presented considerations the relationship g(αi) = αi has been assumed, what fol-
lows from considerations on Equation (13) and further ones. Figure 4 and Table 3 summarize
the results of calculations for five different heating rates and for constant values of the conver-
sion degree αi from 0.1 to 0.8.
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Figure 4. Analysis of the theoretical data Equation (33) for the assumed values of the parameters
of the Arrhenius law in isoconversion approach for eight positions of α = const and five different
heating rates.
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Table 3. Summary of calculation results for five different heating rates and for constant values of the
conversion degree α0. log A = 14.00 ln A = 32.236 r2 = 1.0000.

Conversion Degree, α0
E
R in Equation (33)

Intercept in
Equation (33)

lnA
(A in s−1)

E,
kJ mol−1

0.1 24056 24.451 32.236 200.00
0.2 24052 24.451 32.231 199.97
0.3 24053 23.347 32.231 199.97
0.4 24054 23.062 32.234 199.99
0.5 24055 22.840 32.235 199.99
0.6 24062 22.668 32.246 200.05
0.7 24055 22.504 32.235 199.99
0.8 24055 22.371 32.236 200.00

average ± standard deviation - - 32.236 ± 0.004 200.00 ± 0.02

The data presented in Table 3 show that with the relative error below 0.02% we deter-
mine the activation energy E and with a similar approximation, the pre-exponential factor
A. Despite the very small differences in values, we can derive KCE as an isoconversional
effect (α = const):

ln A = 0.1864E− 5.0363, E in kJ mol−1, Tiso = 645.27 K
(

r2 = 0.9923, sl = 0.0(6)
)

(34)

The determined isokinetic temperature is higher than that provided in Table 1 even
for heating rate q = 0.5 K·s−1, but more important is the fact that there appears a KCE that
is statistically significant only for the isoconversion method.

The starting point of the calculation is the integration constant Equation (13), which
initiates the possibility of confronting Equation (25), since formally in both cases E = const.
Considerations for simulated data show that the integration constant (C) in Equations (14),
(16), (19), (20) divides the kinetic data into a range of very low reaction/process rates from
those corresponding to the higher temperature range and heating rates dα

dlnT > 1.
The KCE phenomenon, conventionally written as Equation (1) for β = Tiso is charac-

terized by the fact that dln A
dE =

(
RTiso)

−1 = const , so there is no simple way to relate to
Equation (25) due to the variability of the ratio q

T0
= var for E = const. Note that even in

the simplest kinetic case for the simulated R1 model this effect does not occur (Table 1).
This fact is also confirmed by the data for model R3 (Table 2). A small increase in E leads to
a small decrease in ln A, which contradicts the classical Arrhenius law [2], but is possible
for physical processes. An example is the relationship between the two parameters of
viscosity in the Arrhenius-like equation, such as the energy and the pre-exponential factor;
see Figure 3b in [36].

At this stage of consideration, the importance of the initial temperature (T0) is con-
firmed, but there is not enough strong evidence to consider the isokinetic temperature (Tiso)
as an undisputed quantity. From the data considered, it appears that Tiso > T0.

3.2. Thermokinetic Analysis of Experimental Data

The starting point for kinetic considerations is Equation (13) and the assumption
that g(α) = α (e.g., Anderson in [35]). This is supported by Equation (33) as well as the
calculations presented in Table 4, although it will be necessary to verify this assumption.
The calculations were based on the experimental data presented in [19] (Table 1a in [19])
for thermal dissociation of calcite in nitrogen under dynamic conditions.

Bearing in mind the need to determine E and ln A, it was found that there are at least
two possibilities to analyze the experimental data. The first option is to use the relationship:

ln
( α

T2

)
= ln

(
A·R
q·E

)
− E

R·T , q = const (35)

while the second one uses the Doyle approximation for the intercept presented in [20]:
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ln α = ln
(

0.005·A·E
q·R

)
− E

R·T , q = const (36)

Table 4. Analysis of experimental data of thermal dissociation of calcite in nitrogen based on Equation
(36)–Doyle approximation.

Heating Rate, q,
K·(60s)−1

E
R

in Equation (36)
Intercept

in Equation (36) r2 E,
kJ·mol−1

lnA
( A in s−1)

T0, K
acc. Equation (23)

1 24,576 24.712 0.9994 204.32 15.81 876.3
3 24,651 23.798 0.9986 204.95 15.99 909.7
5 24,222 22.849 0.9988 201.38 15.57 927.6

7.5 24,612 22.837 0.9991 204.62 15.94 943.0
10 24,565 22.484 0.9992 204.23 15.88 954.6
15 24,685 22.176 0.9997 205.23 15.97 971.4
25 24,836 21.850 0.9997 206.49 16.15 990.6

average
± standard deviation - - 204.46 ± 1.44 15.90 ± 0.17 939.0 ± 35.6

Equations (35) and (36) can be applied to isoconversional analyses in the form:

ln

(
q

T2
0

)
= ln

(
A·R
E·α0

)
− E

R·T0
, α0 = const (37)

when Equation (37) is a special case of Equation (33) and Equation (38):

ln q = ln
(

0.005·A·E
R·α0

)
− E

R·T0
, α0 = const (38)

Experimental data of the thermal dissociation of calcite in nitrogen for the seven
heating rates in the coordinate system of Equation (35) are presented in Figure 5.
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Figure 5. Experimental data of thermal dissociation of calcite in nitrogen for seven heating rates and
nines positions of α = const. in the coordinate system of Equation (35).

Equations (35)–(38) generate KCE and therefore the individual estimators were statis-
tically verified–all relationships are significant with a probability of at least 99.99%. The
relevant graphs are shown in Appendix A in Figures A1–A4, while whether the determined
isokinetic temperatures can be considered authoritative will be presented later in the paper.
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Equation (36) can be taken as analogous to Equation (13) for g(α) = α, by which,
using Equation (19), the initial temperature T0 can be determined. The obtained data were
collected in Table 4, resulting in a confrontation similar to Equation (25)—Figure 6; this is a
methodological comparison to Figure 2.
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Figure 6. Experimental data of the thermal decomposition of CaCO3 in nitrogen for seven heating
rates in the coordinate system of Equation (25).

Based on the data summarized in Table 4, the following form of Equation (25)
was determined:

ln
(

q
T0

)
= −23212

T0
+ 15.6671

(
r2 = 0.9989

)
(39)

from which E = 192.99 kJ·mol−1 and A = 106.80 s−1(ln A = 15.67) were calculated assum-
ing f (αiso) = 1 (Figure 6).

The data from Table 4 [ q; T0], as presented in Figure 6, confirm sufficient agreement
with the data presented in the descriptions of Figures A1–A4, in particular, the value of
both the activation energy and the frequency constant are close to the values given in
the description of Figure A2. Obviously, the average values given in Table 4 [ln A; E] are
identical to those given in Figure A3a.

Continuing the discussion, it should be stated that the experimental data analyzed with
Equation (36) are interpreted twice. Originally, according to Equation (36), the intercept
being a Doyle approximation allows us to determine the frequency constant A and the slope
(the activation energy E). Hence, one obtains the KCE relation and further the isokinetic
temperature Tiso. On the other hand, the intercept was interpreted according to Equation
(19) by iteratively determining T0 for each heating rate (Table 4).

Analytical determination of the coordinate [T0; α0] for any kinetic data is complicated.
An interesting approach to the problem of determining this values [T0; α0] is the use

of a three-parameter equation [19,23,27,37]. Equation (40) allows a different approach than
that proposed in the paper [38]:

ln α = A0 −
A1

T
− A2 ln T (40)

after differentiation of Equation (40) relative to temperature, for T = T0 and introducing
Equation (10) we obtain:

1
T0

= α
0

(
A1

T2
0
− A2

T0

)
(41)
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and after multiplying both sides by T2
0 and after ordering, we get:

T0 =
α0·A1

1 + α0·A2
(42)

The approximate methods can be used to determine the coordinates [T0; α0] from the
system of Equations (40) and (42).

After introducing Equations (42)–(40) for T = T0 we obtain:

1
α0

+ ln α0 + A2ln
(

α0 A1

1 + α0 A2

)
= A0 − A2, A2 6= 0 (43)

This way we can skip the tedious analytical determination of higher order derivatives
referred to in [38] in order to calculate T0.

Table 5 summarizes the results of the experimental data analysis of the thermal
decomposition of CaCO3 in nitrogen for seven heating rates using the three-parameter
Equation (40). The initial temperature T0 was determined by an iterative method using the
system of Equations (40) and (42), which omits the complicated search for this temperature
discussed in works [21,22,38].

Table 5. Results of the analysis of experimental data on the thermal decomposition of CaCO3 in
nitrogen for seven heating rates using the three-parameter Equation (40).

Heating Rate
q, K·(60s)−1 A0

A1·10−5,
K

A2 r2 α0 acc.
Equation (43)

T0, K acc.
Equation (42)

Tα=0.05, K
[5]

1 893.70 1.302 110.52 0.9993 0.0266 879.05 894.95
3 552.88 0.911 66.97 0.9999 0.0303 911.24 925.14
5 530.03 0.889 64.05 1.0000 0.0315 928.01 942.14

7.5 405.68 0.741 48.25 0.9999 0.0330 943.31 956.64
10 463.43 0.824 55.46 0.9999 0.0325 955.59 969.13
15 278.84 0.587 32.23 1.0000 0.0354 970.59 983.63
25 366.81 0.717 43.17 0.9999 0.0343 991.37 1004.62

average
± standard
deviation

0.0319 ± 0.0027 939.88 ± 34.88

From the data presented in Table 5 it can be seen that with increasing heating rate the
value of isokinetic temperature increases. According to the notation of Equations (10) and (42),
it can be concluded that, with an increase in the heating rate, the reaction rate decreases
monotonically. For the heating rates analyzed in this paper, the variation of the isokinetic
temperature was less than 4% hence, all the data can be taken as one average value.

The comparison of the initial temperatures provided in Tables 4 and 5 is surprisingly
consistent, despite their determination on two independent paths.

3.3. Consequences of the Analysis of Experimental Data

It should be noted that the relations ln α vs. 1
T are known in the literature as the temper-

ature criterion [39] and are also discussed in works [40,41]. Equations (40) with (42), (43)
are new elements in this respect and allow the determination of the isokinetic temperature.

As is known, the temperature criterion is valid for low conversion degrees. In the
meantime, in this work, both in the part concerning model analyses (Figure 1) and ex-
perimental data of the thermal dissociation of calcite (Table 4), a linear relationship was
obtained for all data, i.e., for the analyzed range of variation of conversion degree: as well
for total range, as with its limitation, respectively.

While for model considerations this is acceptable, then for other more complicated
solid decompositions after an initial stage with a high activation energy its value decreases
with the conversion degree. The observations provided in [31] show that, in practice,
different kinds of dependences of E on α can occur (E = E(α)). On the other hand, in
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Equations (35)–(38) with assumed Arrhenius parameters, the 0th order kinetics, g(α) = α
was used.

Nevertheless, what distinguishes this work from previous considerations is the pos-
sible range of variation of α ∈ [0.05; 0.9] to be analyzed, which omits the extremely
important initial range for low conversion degree, as well as the end of the process. The
first remark that comes to mind for comparison is the value of initial temperature–for the
model it is equal to average T0 = 586.3 K, while for the experimental data (Figures A1–A4)
it depends on the adopted kinetic function and, see Table 4, on average it is equal to
T0 = 939.0 K (depending on q). When the experimental data for q = const are analyzed
using Equations (35) and (36), then Tiso = 950− 1061 K. On the other hand, when we use
isoconversion methods (α = const) using Equations (37) and (38), we observe a wider
range of variation Tiso = 1074− 1298 K, which authorizes the conclusion that isoconversion
methods are characterized by a much weaker increase in the ln A factor in relation to
activation energy.

It should be noted that the parameters of the Arrhenius equation determined in
this work from experimental data of the thermal decomposition of CaCO3 in nitrogen
have similar values and are in agreement with the data collected in [35] (e.g., Anderson):
E = 191 kJ·mol−1, ln A = 15.4/ Ain s−1.

For the four cases resulting from Equations (35)–(38), the determined Arrhenius law
parameters can be treated as average values, as evidenced by the very small standard
deviations. Nevertheless, these small variations generate an observable KCE.

Comparing the results of the analysis of the model and experimental data, it is
clear that, in both cases, the values of the activation energies are similar, however, the
frequency constant calculated for the experimental data reaches a much lower value:
A = 106.80 s−1(ln A = 15.67), which makes the determined isokinetic temperatures take
much higher values.

The kinetic Equations (35–38) were derived according to the presented model consid-
erations, taking into account that the most important functional factor is the expression(
− E

RT

)
. However, since in order to create the single column matrix (26) the relation (9)

was used, in the derived equations also the occurring variable T2 had to be taken into
account. Therefore, it can be assumed that going from Equations (35) and (36) this variable
weaves into the free expression and only slightly changes the values of the estimators,
remaining in accordance with KCE, i.e., the values of estimators ln A and E increase or
decrease simultaneously.

4. Discussion
4.1. Isokinetics and Initial Temperature

Accepting the general thermokinetic Equation (11), it was proved that the great ma-
jority of kinetic equations can be generalized to a single relationship (13), which contains
the most important component

(
− E

RT

)
. Using the relationship (13) and forming the one-

column matrix according to (26) one obtains a very practical for analysis of experimental
data, Equations (27)–(31) with the intercept Equations (16), (19), (20), allowing us to de-
termine the Arrhenius equation parameters and the initial (Equations (17) and (19)) or
isokinetic temperature (Equation (1)).

We have complete agreement, when for the kinetic models presented in Table A1 the
n factors provided there will be used as proposed in [23,24]. Using Equation (25) and the
single-column matrix 〈α〉 we obtain the basis for inferring the substitutability of kinetic
functions of thermal dissociation processes of the solid phase. By forming the single-column
matrix for the assumed Arrhenius law parameters, we can reproduce these parameters
using a modification of Equation (25), e.g., in the form of Equation (34)–Table 3. The
situation is even more favorable for experimental data, which are illustrated in Figure 6.

Despite the observed variation of the initial temperature values T0 with heating rate
during analysis of both model and experimental data (Tables 2, 4 and 5), the averaged
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values of E and ln A can be taken as correct. For these reasons, Equations (13) and (19),
from which we determine the activation energy and the initial temperature, become signifi-
cantly important.

In the case of experimental studies there is a possibility that Equations (13) and (19)
will be valid in the whole experimentally determined range of conversion degree increase
or in its selected range.

With the heating rate, the initial temperature T0 increases, but the changing parameters
of the Arrhenius law lead to a constant isokinetic temperature, Tiso = const.

The general forms of the Equation (13) can be reduced to the practical notation of
Equation (24), which clearly indicates an extremely important element in thermogravi-
metric analysis for dynamic conditions, which is T0. Its determination is much more
convenient and simpler, when we use the three-parameter Equation (40) along with
Equations (42) and (43).

4.2. Isokinetic Temperature

As demonstrated by Lente in his book [42], the problem of determining kinetic param-
eters can lead to incorrect or unjustified quantities. Generally, justified considerations on
the correctness of the determined parameters of the Arrhenius equation may undoubtedly
include another element connected with it–the isokinetic temperature Tiso or compensation
temperature Tc, to which many works have been devoted, among others [4,21,41–47].

The temperature Tiso is determined by both Equation (1) and the classical KCE equation
in the form, where intercept is expressed by the Arrhenius law, which formally makes it
a tautology:

ln A =
E

RTiso
+ ln(kiso) (44)

where:
kiso = A·e−

E
RTiso = const (45)

When, in Equation (45), for each coordinate pair [E; ln A], the determined Tiso = const
leads to kiso = const, then this is the “true” isokinetic temperature. The KCE in terms of
(44) with (45) exhibits features of self-consistent equations. As will be shown further on,
the fluctuation of the constant is relatively high despite r2 > 0.99.

Thus, it can be considered that this leads to a KCE called horizontal (isoconversional).
According to the analyses presented in [43–46], the isoconversional KCE, characteristic
of isoconversional methods, can be described as the statistical compensation effect [45]
characterized by high isokinetic temperatures.

The fundamental problem, however, is whether the general notation of KCE (Equation (1)),
and specifically in the form of Equation (34) and in Figures A1–A4, makes physicochemical
sense for a significant statistical level, as defined by high value of determination coefficient.

For this purpose, two criteria: CQF (Compensation Quality Factor) and K according
to [48,49] were used. The analytical distinction in the KCE (and EEC) relations in both
physicochemical and statistical sense for high determination coefficients

(
r2) for a specific

number of N measurements was proposed. The K parameter can be called the position
parameter.

For KCE assessment it is proposed:

CQF = 1−
√√√√ 1− r2

1
r2

(
Tiso
T∗

)2
− 2
(

Tiso
T∗

)
+ 1

, 0 ≤ CQF ≤ 1 (46)

K = 2
1

Thm
− 1

Tmin
1

Tlow
− 1

Thigh

, Tmin =
Tiso
r2 (47)
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For a probability of 99% [48]:

CQF99 = 0.29 +
1.41
N0.57 (48)

The meaning of the symbols and more methodological and interpretive details are
included in Appendix A.

Starting from the evaluation of the veracity of the determined isokinetic temperature
in Equation (34), an important issue is the determination of the temperature designated
as Tlow. On the one hand, according to the data presented in Table 1, this is the average
initial temperature (Tlow = 586.3 K), but simulation analyses were carried out starting
from a temperature of 298 K. The average temperature for α = 1 was taken as the Thigh
temperature, i.e., Thigh = 643.2 K.

For the first case using Equation (46) we get: CQF = 0.37 for N = 8 and according to
Equation (48) CQF99 = 0.721 and Equation (47) K = 1.22, that is, the isokinetic temperature
does not meet the criterion Equation (48). On the other hand, for the second version of
Tlow = 298 K we similarly obtain: CQF = 925 K; K = 1.019 and accept the physicochemical
sense of the isokinetic temperature.

In this paper, the position parameter according to Equation (47) can be transformed to
the form:

K =

(
1− Thm

Tiso
r2
)
·
Thigh + Tlow

Thigh − Tlow
(49)

which makes it possible to carry out a position analysis according to the characters in
the expression shown in brackets, i.e.,

(
1− Thm

Tiso
r2
)
≤ or ≥ 0, and K ≤ 0 or K ≥ 0.

The favourable case can be defined as the inequality: Thm > Tiso when r2 = 1, because
Tiso → Tlow , which means approaching to the initial temperature To. When Thm � Tiso,
then this condition [43] characterizes isoconversional methods (α = const) relative to
classical methods (q = const).

For simplicity, still assuming r2 = 1, this position parameter informs us about the
relation between the isokinetic temperature and the range of tested temperatures in which
it was determined, that is (Figure A5):

(a) K = 0; Tiso = Thm;
(b) K < 0(K = −1); Tiso < Tlow(Tiso = Tlow);

(c) K > 0(K = +1); Tiso > Thigh

(
Tiso = Thigh

)
.

Case (c) can lead to excessively high isokinetic temperatures.
Returning to the calculations presented in Figures A1–A4, it can be noted that, despite

statistically satisfactory significance levels, none of the items meet the CQF criteria. Thus,
the isokinetic temperatures are experimentally determined quantities that do not satisfy
the CQF in the physicochemical sense.

These considerations indicate that an important issue is the temperature range in
which we observe KCE, and it is advantageous that it is as wide as possible. Due to the
“quality” of KCE, when Thm > Tiso, then Tiso is closer to T0 than to the final temperature of
the reaction/process, which is relatively unfavorably much larger.

The criteria proposed in the works [48,49] may make it necessary to revisit many
already published works.

4.3. Compensation Temperature

Eyring has derived an equation describing the reaction rate constant as a function of
temperature and the free enthalpy of activation ∆G+(p = p∅ = 0.1MPa) depending on
the reaction mechanism limited by the formation of the active complex A + B→

(
AB)+

in gaseous phase [12]. The theses proposed in work [12] were adapted into the form of
relations, in which the transmission coefficient and threshold energy distribution functions
of the reactants were omitted [16,50–54] and only the “universal frequency term” kBT

h was
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left [51]. This expression is directly proportional to the product of (R·T) half equal to
potential and kinetic energy [16]. The equation in its most common form is as follows:

kTST = BTe−
∆G+

RT , B =
kB
h

= 2.08364·1010(K·s)−1 (50)

where:
∆G+ = ∆H+ − T∆S+ (51)

For the solid phase dissociation process following the reaction scheme: A(s) → B(s) + C(g)

or A(s) → C(g) and the value of the stoichiometric coefficient for the substrate
A(s) (νA = 1, ∑ ν+ = 1− νA = 0) the equation is known in the form of Equations (50) and
(51) [53]. The use of the presented approach seems to be common for thermal dissociation of
the solid phase, such as for the complete decomposition of calcium oxalate (CaC2O4·H2O) to
CaO [16].

Using the concepts of a certain convergence between the Arrhenius (k) and Eyring
(kTST) equations, from the equation dln k

dT = dln kTST
dT we obtain:

∆H+ = E− RT (52)

while from the direct comparison of the constant rates (k = kTST) we obtain:

∆G+ = E− RT ln
A

BT
(53)

Therefore, from Equation (51) and Equations (52) and (53) we determine the entropy
of activation:

∆S+ = R
[

ln
(

A
BT

)
− 1
]

(54)

However, it should be noted that, despite the widespread acceptance of the presented
comparison, there are premises which do not accept the concept of using the same set of
input data [52].

On this basis, relationships between both activation thermodynamics and kinetics
(parameters of the Arrhenius equation) are derived by taking the temperature of the
maximum reaction rate as the activation temperature for dynamic conditions [53,54]:

∆H+ = E− RTm (55)

∆S+ = R
[

ln
(

A
BTm

)
− 1
]

(56)

Suppose that Equations (55) and (56) satisfy the EEC, with a slope called the compen-
sation temperature Tc (see Equation (2)), which directly follows from the second law of
thermodynamics:

∆H+ = Tc∆S+ + H (57)

or:
H = ∆H+ − Tc∆S+ = ∆G+(Tc) = const (58)

By substituting Equations (55) and (56) into the form (57) and dividing the sides by
(R·TC), after transformation we get:

E
RTc

= ln A− ln (BTc) +
H

RTc
− ln

(
Tm

Tc

)
+

Tm

Tc
− 1 (59)

The sum of the last three components of Equation (59) is close to 0, which is evident
either for Tm = Tc or by taking the approximation: ln

(
Tm
Tc

)
∼= Tm

Tc
− 1. The derivation is
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also valid by taking T = Tm, so it shows features of generality, and Equation (59) takes the
form KCE:

ln A =
E

RTc
+ ln (BTc)−

H
RTc

(60)

The intercept in Equation (60) is:

ln k(Tc) = ln(BTc)−
H

RTc
= const (61)

and is the logarithmic form of Equation (50) containing the EEC expressed by Equation (58).
Ultimately, Equation (60) takes the typical form for KCE:

ln A =
E

RTc
+ ln k(Tc) (62)

which means the identity of the isokinetic and compensating temperatures, Tiso = Tc. The
reverse possibility of transition from KCE (Equations (44) or (1)) to EEC (Equations (57) or
(2)) can also be demonstrated.

From Equations (52) and (54) we extract the relevant Arrhenius parameters from the
activation function at temperature T = Tiso:

E = ∆H+ + RTiso (63)

ln A =
∆S+

R
+ ln(BTiso) + 1 (64)

and after inserting Equations (63) and (64) into the KCE structure we obtain:

∆H+ = Tiso∆S+ + RTisoln
(

BTiso
kiso

)
(65)

Equation (65) satisfies the EEC expression of Equations (57) and (58). In addition, by
substituting Equation (65) in the intercept: Tiso = Tc and using the Arrhenius equation for
kiso = kc, we again obtain Equation (53).

The treatment of the presented considerations is a continuation of papers [1,4,5,20]
and is based on the relationship between the parameters of the Arrhenius law and Eyring’s
theory, from which it follows that the isokinetic temperature is equal to the compensation
temperature. However, in the light of propositions to verify the physicochemical sense
of the first mentioned [48,49] and one presented in Figures A1–A4 (see Appendix A), the
determined quantities are reliable only from the point of view of statistical evaluation.

4.4. Isokinetic Temperature Again

In order to clarify the methodology of the experimental determination of isokinetic
temperature, the parameters of the Arrhenius equation were used.

For the assumptions: f (α0) = 1, g(α0) = α0, Equation (22) determines the activa-
tion energy:

E = R
T0

α0
(66)

and using both Equation (19) and Equation (66) we obtain:

ln A =
1
α0

+ ln
(

q
T0

)
(67)

The data illustrated in Figure A1 (N = 7) and according to Equations (66) and (67)
(N = 7) were combined with an additional coordinate considered in this work as a reference
in [35] (e.g., Anderson) (N = 15) and are presented in Figure 7.
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The determined activation energies presented in Figure 7 form two resultant groups,
in fact, they are combined in the form of one simple KCE. Results of the scoring method
(much higher values–red) can be classified as quasi-isoconversional (α0 ∼= const). On the
other hand, values that are lower (blue) or close to the reference data (E = 191 kJ/mol,
lnA = 15.4/ A in s−1) [35], e.g., Anderson) are determined for individual heating rate-
dependent curves by the Coats−Redfern equation for a range of changes α ∈ [0.1− 0.9].

For the data presented in Figure 7 for Equation (46) and Tiso = 914.29 K, r2 = 0.9980
and temperatures: Tlow = 976 K, Thigh = 1069.27 K (for α ∈ [0.1− 0.9], see [5]) and
setting up T∗, Thigh, Thm = 1020.51 K for N = 15 and probability at least 99% (sl = 0.01)
(Equation (48)):

CQF = 0.7017, CQF99 = 0.29 +
1.41

150.57 0.591

and from Equation (49):
K = 2.50

This result shows the reliability of the determined isokinetic temperature, which is
ahead of the range of tested temperatures (Tiso < Tlow). It therefore has the character of an
extrapolated quantity.

4.5. Summary of Equations for Experimental Data

The resolution of the significance of the determined temperatures is described by three
equations:

• typical KCE equation (Figure 7):

ln A =
E

R·914.29
+ ln

(
5.455·10−5

)
, r2 = 0.9980 (68)

• slope in Equation (57) provided in [43] concerning calcite dissociation from different
references:

∆H+ = 1164.6·∆S+ + 342.22·103 (69)

• from the linear relationship between the parameters of the three-parameter equation,
Table 5 (slope in Equation (70)):



Energies 2023, 16, 5692 19 of 28

A1 = 896.29·A2 + 31440 r2 = 0.9977 for 7 heating rate (70)

However, according to Equation (45), for the constant temperature provided in

Equation (68) Tiso = 914.29 K, a relatively large range is obtained:
−
k iso = 5.541·10−5 ±

9.899·10−6 s−1.
In turn, we calculate only one compensation constant: kc = 0.0108 s−1 from Equation (61)

for the constants given in Equation (69). The value of this constant is much higher than the

calculated average value of the isokinetic constant
−
k iso. Thus, the intercept in KCE is literally a

quantity that averages a wide range of variation in the kinetic constant at the isokinetic point.
Synoptic Figure 8 explains the discrepancy between T0 and the experimentally ob-

tained KCE. The analytical considerations take into account a very wide range of conversion
degree variations up to the co-ordinate [T0; α0] while the research scope focuses on higher
conversion degrees. By making selections in the base of single column matrix 〈α〉 towards
α ∈ [0.1− 0.9], the slope, or activation energy, increases.
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Figure 8. An illustrative comparison of using experimental data to determine the KCE equations.

According to Table 6, the relationships between the obtained temperature quantities
are not very different from each other. The identity between Tiso and Tc is not confirmed
(according to Equation (62)), and in turn Tc = 1164.6 K approaches Teq = 1172.4 K [19].
The initial temperatures are consistent for the snapshots given in Tables 4 and 5 and, as it
were, in their interval “absorb” the isokinetic temperature of Equation (68), which fulfills
the indicator criterion of CQF, K [48,49].

The experimental data in terms of Equations (44) and (68) form a sequence of in-
equalities Tc > Tiso, while the exact isokinetic temperature is calculated from the formula:
slope =

(
RTiso)

−1 . In the correlation calculus using the ratio 1/T for the exact calculation
of T was emphasized in the work [43], by which the accuracy of the numerical values
between KCE and EEC (Equations (68) and (69)) should be distinguished, which was also
pointed out in [55].

However, when too large a fluctuation of the assumed constancy of Tc is observed,
it becomes necessary to carry out selection according to the proposal of Perez-Benito
et al. [5,20]. The simplest approach is represented by inequality (71):

Tc > T (71)
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where T corresponds to temperature Tm in Equations (55) and (56) and is determined in [20]
as a working temperature.

Table 6. Summary of temperatures determined for experimental data (Teq = 1172.4 K [19]).

Equations/Table
or Figures T0, K Tiso, K Tc, K Remarks

(65) - 914.29 - -
(66) - - 1164.6 -
(67) 896.29 - - -

Table 4 876.3–990.6
(939.0) - - -

Table 5 879.05–991.37
(939.88) - - -

Figures A1–A4
for q = const - 949.5–1060.6 -

Tiso is only of
correlation−statistical

meaning

Figures A1–A4
for α = const - 1074.0–1298.4 -

Tiso is higher for
isoconversional method

(α = const.)

According to the findings of (71), the inequality is satisfied by Equations (68) and (69)
in relation to the temperature of the maximum reaction rate, equal to T = Tm = 1125.52 K
for a heating rate of 25 K/min (Table 5). In contrast, Equations (10) and (70) are closer to
the definition of initial temperature. These findings remain consistent with the proposal
of [43].

Following the concepts already used in Equations (46)−(49), the physicochemical sense
of isokinetic and compensation temperature, which according to Equation (62) should be
the same, it is most advantageous to verify in two steps based on the work [48,49] for
statistically significant correlations.

It was proved experimentally that for chemical reactions of four chemically similar
compounds (dissociation of hexacene dimers) the Eyring plot (ln(k/T) vs. 1/T) indicates
the fact of occurrence of Tc several times in a narrow temperature range [56].

EEC expands our understanding of the little-studied quantitative aspects of organic
reactions. Experimental evidence of its physical reality in a number of cross reaction
series is considered through non-catalytic and pyridine-catalyzed reactions of aryloxiranes
with organic acids of various classes. In the context of the compensation effect, there
are transitions from one state of reaction systems in which the enthalpy term of the free
activation energy acquires a zero value (∆H+ = 0, ∆G+ = −T∆S+), to another, in which
the contribution to the free energy of activation of the entropy term disappears (∆S+ = 0,
∆G+ = ∆H+) [57]. Mentioned in parentheses is that the thermodynamic states of the
activation process are included in Equation (58).

On the other hand, from a physicochemical point of view, a very interesting example
is presented in [46] concerning temperature programmed desorption (TPD), when the
surface coverage decreases with increasing temperature. Analyzing this phenomenon as a
reversible process, while the isosteric heat of adsorption–once the entropy is determined–
leads to EEC [6], the constant surface coverage condition is not respected–as is the case in
isothermal sorption kinetic measurements–we observe a rather large scatter in terms of
KCE [47].

4.6. Some Remarks to All the Elements

For dynamic conditions, the equation in differential form, Equation (8), is commonly
recognized as the starting point for consideration. If the approximate form of the solution
of Equation (8), referred to by the authors as the Coats−Redfern equation (Equation (9)),
interacts with this equation, it leads to Equation (13). This equation has an identical
mathematical structure, independent of the heating rate and pre-exponential factor. The
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consequences of analyzing the adoption of specific analytical forms of the integration
constant open up new possibilities for comparison of the Arrhenius parameters obtained
through different paths, including Vyazovkin’s, discussed in detail in the book [31]. In
contrast to isoconversion concepts, in this work one still stays with the classical variant
(q = const) and for this possibility and for simulated “in silico” data the very important
significance of the coordinate [T0, α0] is presented, thanks to which Equation (25) reproduces
the activation energy E and also the constant ln A· f (α0). For many models, f (α0) can be
calculated or simply ignored.

In relation to the proposal to determine the “elbow” point coordinate, based on the
knowledge of higher order derivatives [38], the methodology has been simplified, which
boils down to determining the isokinetic temperature from the constant in Equation (19)
and calculating the initial transformation step from Equation (27) or (40).

On the other hand, consideration of simulated data does not provide a basis to demon-
strate the existence of the KCE, which appears for experimental data. It is necessary not only
to verify it statistically, but also using the CQF and K indicators via Equations (46)−(49) to
give the isokinetic temperature a physicochemical sense.

In the association of works [5,20,21,43], the experimentally determined considered
temperatures form a sequence, where Teq denotes the thermodynamically determined
equilibrium temperature of the reaction (Equation (6)), sometimes also called the inver-
sion temperature:

T0 ↔ T iso ↔ Tc ≤ Teq (72)

The current work proved that the temperatures Tiso and Tc are theoretically equal
(compare Equations (44) and (62)), while the temperature sequence given in Equation (72)
follows from many factors. These are: sample quality (mass, degree of purity, moisture
content, crystalline/amorphous form, analysis conditions: isothermal/dynamic, heating
rate, atmosphere, flow, reactor type) and workshop issues (variation of α, calculation
techniques, distinguishing variants: q = const, α = var or q = var, α = const). In light of
these considerations, the isokinetic temperature Tiso is of lesser reliability than the initial
temperature T0 or even the compensation temperature Tc, which is implicit in the kinetic
relationship.

As noted in [52], Equation (69) is derived from various sources, and Equation (68)
is composed of correlation and point analysis–both equations involve the same reac-
tion/process of thermal decomposition of calcite.

The omitted analysis of Equation (3) in conjunction with Equation (2) was hinted at in
the paper [43].

5. What’s Next?

From the point of view of the equations used, the starting point is the generally
used Equation (8) for dynamic conditions and its most commonly used approximate
Coats−Redfern solution (Equation (9)). The relation of Equations (8) with (9) leads to
the differential Equation (11) with the analytical solution Equation (13). The condition
of Equation (10) allows the determination of several equivalent forms of the integration
constant in Equations (23) and (24). The final form of Equation (25) determines the activation
energies using the heating rate (q) and initial temperature (T0). In further steps, a new
way of determining the coordinates [T0;α0] in Equations (40)−(43) is proposed. Further
procedures use the relations of KCE, EEC and their constant characteristic temperatures
against a narrowly variable initial temperature (T0).

6. Conclusions

1. The relationship between KCE and EEC is mutually possible and it has been shown
that the relationship Tiso = Tc theoretically should occur. In light of these considerations,
the isokinetic temperature Tiso is of less reliability than the initial temperature T0 or even the
compensation temperature Tc. The analysis for the same data of the thermal dissociation of
calcite in nitrogen comes down to a sequence of temperatures T0 ↔ T iso ↔ Tc ≤ Teq .
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2. The effect of the generally known Coats−Redfern solution influence on the differen-
tial kinetic equation for dynamic conditions (Equation (8)) and on the resulting isokinetic
mathematical forms (Equation (13)) has been used. For in silico and experimental data
in the case of thermal dissociation of simple solid chemical compounds, a relationship
between the initial temperature T0 and the heating rate has been demonstrated, which
enables the determination of the Arrhenius equation parameters. An analytical way of
determining the coordinate [T0, α0] based on the three-parameter equation considering the
derivative at temperature T0, dα/d ln T ≡ 1 has been proposed.

3. In solid-phase thermokinetic analysis, isokinetic relationships have been known
for years. Equation (13) is independent of the heating rate and the activation energy is in
turn invariant with the conversion degree. The integration constant in this equation can be
expressed analytically in various ways. The possibility of its determination by quantities
included in the coordinate [T0; α0], when E = const, has been demonstrated. This type of
viewpoint presents a different approach from the isoconversion methodology, for which
E = E(α) is very often observed.

4. Using the parameters CQF and K as in [48,49], it has been shown that KCE in
the physicochemical sense favors wide ranges of parameter variations of the Arrhenius
law. The CQF index determines the reliability of even a very high probability of a linear
relationship of the KCE. On the other hand, the position parameter K, assuming r2 = 1,
indicates that, for −1 ≤ K ≤ 1, the isokinetic temperature is within the range of tested
temperatures and for the other values it has an extrapolative character.
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Nomenclature

Ao, A1, A2 coefficients of the three-parametric Equation (40), A1 in K,
A pre-exponential factor, s−1,
B=2.08364·1010(K·s)−1, ratio of Boltzmann to Planck’s constant,
C integrals constant,
CQF Compensation Quality Factor as in [48,49],
E activation energy, J mol−1,
f(α), g(α) kinetics functions,
∆G free enthalpy, Jmol−1

H = 6.62607×10−34 Js, Planck constant
H = ∆G+(Tc) free enthalpy of activation in Tc temperature, Equation (58), J mol−1,
∆H enthalpy, Jmol−1,
k,kTST rate constant and dependent on T, s−1,
kB = 1.38065·10−23 JK−1 Boltzmann constant,
−
kiso average value of the isokinetic constant, s−1,
K position of coalescence as in [49], or position parameter,
m coefficients,
n exponent,
N number of data,
p pressure, Pa,
r2, R2 coefficients of linear or multiple determination,
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R = 8.314 J (mol·K)−1 universal gas constant,
q heating rate, K s−1,
sl significance level,
∆S entropy, J(mol*K)−1,
T absolute temperature, K,
T0 initial temperature, K,
x E/RT,
α conversion degree, 0 < α ≤ 1,
〈α〉 single column matrix,
β, γ constants in Equations (1)–(3),
ν stoichiometric coefficient.
Subscripts:
c compensation,
eq equilibrium,

low, high, hm
relate to mean values of initial and final temperatures and their
harmonic mean respectively,

i ith value,
Iso isokinetic values,
m maximum of rate reaction/process,
Superscripts
+ activation functions,
* auxiliary quantity, Equations (A1), (A2),
g, s gas, solid,
∅ standard condition
Abbreviations
EEC Enthalpy−Entropy Compensation,
ICTAC International Confederation for Thermal Analysis and Calorimetry,
KAS Kissinger−Akahira−Sunose equation,
KCE Kinetic Compensation Effect (also IKR, IE),
TPD Temperature Programmed Desorption.

Appendix A

Table A1. List of kinetic functions as in [31] and approximation of the first term in Equation (14)
( 0 < α < 1).

Code f(α) g(α) f(α)·g(α) lng(α) for α0
*

P4 4α3/4 α1/4 4α 1
4 ln α0

P3 3α2/3 α1/3 3α 1
3 ln α0

P2 2α1/2 α1/2 2α 1
2 ln α0

P2/3 2
3 α−1/2 α3/2 2

3 α 3
2 ln α0

D1 1
2 α−1 α2 1

2 α 2ln α0
F1 1− α −ln(1− α) −(1− α)ln(1− α) ln α0
A4 4(1− α)[−ln(1− α)]

3/4 [−ln(1− α)]
1/4 4(1− α)[−ln(1− α)] 1

4 lnα0
A3 3(1− α)[−ln(1− α)]

2/3 [−ln(1− α)]
1/3 3(1− α)[−ln(1− α)] 1

3 lnα0
A2 2(1− α)[−ln(1− α)]

1/2 [−ln(1− α)]
1/2 2(1− α)[−ln(1− α)] 1

2 lnα0

D3 3
2 (1− α)

2/3
[
1− (1− α)

1/3
]−1 [

1− (1− α)
1/3
]2 3

2 (1− α)
2/3
[
1− (1− α)

1/3
]

2ln(α0/3)

R3 3(1− α)
2/3 1− (1− α)

1/3 3(1− α)
2/3
[
1− (1− α)

1/3
]

ln(α0/3)

R2 2(1− α)
1/2 1− (1− α)

1/2 2(1− α)
1/2
[
1− (1− α)

1/2
]

ln(α0 /2)

D2 [−ln(1− α)]−1 α + (1− α)ln(1− α) α+(1−α)ln(1−α)
[−ln(1−α)] 2ln

(
α0√

2

)
* Maclaurin expansion was used, for model D3–after squaring. Stopped at the first term of the equation.

Analysis of KCE for Experimental Data

The KCE resulting from the analysis of the experimental data on the thermal disso-
ciation of calcite in nitrogen is presented in Figure A1. While Figure A1a presents the
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KCE resulting from the analysis of data according to Equation (35) for seven different
heating rates. Figure A1b presents the KCE for six different heating rates, omitting data for
q = 1/60 K·s−1.
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Figure A1. KCE for experimental data of thermal dissociation of calcite in nitrogen: (a) source:
Equation (35), N = 7 heating rates, Tiso = 1014.7 K, E = 187.45 ± 1.34 kJ·mol−1, lnA = 14.88 ± 0.16 (A
in s−1), sl = 0.0(3)14; (b) source: Equation (35), N = 6 heating rates (data for q = 1/60 K·s−1 is omitted),
Tiso = 949.5 K, E = 187.27 ± 1.37 kJ·mol−1, lnA = 14.87 ± 0.17, (A in s−1). sl = 0.0(4)19.

Despite the small variability of the parameters of the Arrhenius law, they meet the
KCE at a sufficient level of significance. The average results provided in the description of
Figure A1 are consistent with the data presented by Anderson [21] for the 0th order kinetics
(E = 191 kJ·mol−1, lnA = 15.4/A in s−1).

The average values obtained with the use of the kinetic function (37) are slightly
different, as presented in Figure A2.

In relation to the analysis presented in Figure A2. the isoconversional approach of
Equation (37) for the average values of E and ln A is not too much of an outlier and falls
within the ranges presented in [21] but with an unsatisfactory coefficient of determination.
However, it should be noted that the calculated isokinetic temperatures differ significantly
depending on the data selection method. In the case of experimental research, when we
analyze only the available range of increase in the conversion rate from temperature (here
α ∈ [0.1− 0.9]) a different type of KCE is observed for the constant heating rate analyses
and a different type for the isoconversional method. The position presented in [5] is
thus confirmed.
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Figure A2. KCE for experimental data of thermal dissociation of calcite in nitrogen: (a) source:
Equation (37), N = 9 positions α = const., Tiso = 1074.0 K, E = 192.45 ± 0.90 kJ·mol−1,
lnA = 15.49 ± 0.10 (A in s−1), sl = 0.0(5)8; (b) source: Equation (37), N = 8 positions α = const. (data
for α = 0.1 is omitted), Tiso = 1246.8 K, E = 192.24 ± 0.71 kJ·mol−1, lnA = 15.46 ± 0.07 (A in s−1),
sl = 0.0(4)8.
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Figures A3 and A4 show the KCE resulting from the analysis of experimental data of
thermal dissociation of calcite in nitrogen from Equations (36) and (38).
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Figure A3. KCE for experimental data of thermal dissociation of calcite in nitrogen: (a) source: Equa-
tion (36), 9 positions for α = const and N = 7 heating rates, Tiso = 1052.2 K, E = 204.46 ± 1.44 kJ·mol−1,
lnA = 15.90 ± 0.17 (A in s−1), sl = 0.0(3)15; (b) source: Equation (36), 9 positions for α = const and
N = 6 heating rates (data for q = 1/60 K·s−1 is omitted) Tiso = 1060.6 K, E = 204.48 ± 1.56 kJ·mol−1,
lnA = 15.92 ± 0.18 (A in s−1), sl = 0.0(4)2.
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Figure A4. KCE for experimental data of thermal dissociation of calcite in nitrogen: (a) source: Equa-
tion (38), 7 heating rates and N = 9 positions for α = const, Tiso = 1264.4 K, E = 209.45 ± 1.01 kJ·mol−1,
lnA = 16.46 ± 0.10 (A in s−1), sl = 0.0(5)1; (b) source: Equation (38), 7 heating rates and N = 8 posi-
tions for α = const (α = 0.1 is rejected, Tiso = 1298.4 K, E = 209.35 ± 1.04 kJ·mol−1, lnA = 16.45 ± 0.10
(A in s−1), sl = 0.0(5)4.

Physicochemical sense of isokinetic temperature

Temperature T∗ in Equation (46) follows from implication, when:∣∣∣∣∣ 1
Tmin

− 1
Thigh

∣∣∣∣∣ <
∣∣∣∣ 1
Tmin

− 1
Tlow

∣∣∣∣.then T∗ = Tlow (A1)

∣∣∣∣∣ 1
Tmin

− 1
Thigh

∣∣∣∣∣ >
∣∣∣∣ 1
Tmin

− 1
Tlow

∣∣∣∣. then T∗ = Thigh (A2)

In Equation (48), the quantity 0.29≈ 1–
√

1
2 is the CQF threshold for an infinite number

of N measurements.
The individual temperatures denote the test temperature interval: Tlow is the arithmetic

mean of the initial temperatures, Thigh is the mean temperature of the end of the interval
and Thm is the harmonic mean of the temperatures Tlow. Thigh.

For Equation (46) limit values are observed:

• in the simplest variant: r2 ≡ 1 CQF = 1.
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when T∗ = Tiso.CQF = 1−
√

r2= 1− r (A3)

which means that the isokinetic temperature is the beginning/end of the temperature
interval.

when lim
T∗→∞

.CQF = 1−
√

1− r2 (A4)

when lim
T∗→0

.CQF = 1 (A5)

it represents the very favorable case where the test range of the temperature interval tends
towards very low temperatures in relation to Tiso.

In turn, the position parameter K indicates the location of Tiso relative to the range of
temperatures used–Figure A5.

Always Thm <
Tlow+Thigh

2 thus in Equation (49) K = 0 is parallel when Thm = Tiso
r2 = Tmin

(Equation (47).
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