The Effects of Electrospinning Structure on the Ion Conductivity of PEO-Based Polymer Solid-State Electrolytes
Abstract
:1. Introduction
2. Experimental Methods
2.1. Materials
2.2. Preparation of PEO/SA Composite Membranes and Cross-Linked Membranes
2.3. Preparation of Solid Polymer Electrolytes (SPE)
2.4. Characterization
3. Results and Discussion
3.1. Effects of Spinning Solution Concentrations
3.2. Effects of Spinning Voltage
3.3. Effects of TCD
3.4. Effects of SA and PEO Ratio
3.5. Characterizations of Cross-Linked Membranes and PEO/SA-SPE
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiu, G.; Sun, C. A quasi-solid composite electrolyte with dual salts for dendrite-free lithium metal batteries. New J. Chem. 2020, 44, 1817–1824. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Y.; Gao, H.; Huang, J.; Li, C.; Liu, P. An all-solid-state lithium battery using the Li7La3Zr2O12 and Li6.7La3Zr1.7Ta0.3O12 ceramic enhanced polyethylene oxide electrolytes with superior electrochemical performance. Ceram. Int. 2020, 46, 11397–11405. [Google Scholar] [CrossRef]
- Homann, G.; Stolz, L.; Neuhaus, K.; Winter, M.; Kasnatscheew, J. Effective Optimization of High Voltage Solid-State Lithium Batteries by Using Poly(ethylene oxide)-Based Polymer Electrolyte with Semi-Interpenetrating Network. Adv. Funct. Mater. 2020, 30, 2006289. [Google Scholar] [CrossRef]
- Wang, S.; Sun, Q.; Peng, W.; Ma, Y.; Zhou, Y.; Song, D.; Zhang, L. Ameliorating the interfacial issues of all-solid-state lithium metal batteries by con-structing polymer/inorganic composite electrolyte. J. Energy Chem. 2021, 58, 85–93. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, R.; Sun, J.; Wu, M.; Zhao, T. Polyoxyethylene (PEO)|PEO−Perovskite|PEO Composite Electrolyte for All-Solid-State Lithium Metal Batteries. ACS Appl. Mater. Interfaces 2019, 11, 46930–46937. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.; Xu, H.; Xu, B.; Li, X.; Li, Y.; Goodenough, J.B. Reaction Mechanism Optimization of Solid-State Li-S Batteries with a PEO-Based Elec-trolyte. Advanced Functional Materials 2020, 31, 2001812. [Google Scholar] [CrossRef]
- Banitaba, S.N.; Semnani, D.; Fakhrali, A.; Ebadi, S.V.; Heydari-Soureshjani, E.; Rezaei, B.; Ensafi, A.A. Electrospun PEO nanofibrous membrane enable by LiCl, LiClO4, and LiTFSI salts: A versatile solvent-free electrolyte for lithium-ion battery application. Ionics 2020, 26, 3249–3260. [Google Scholar] [CrossRef]
- Abdollahi, S.; Sadadi, H.; Ehsani, M.; Aram, E. Highly efcient polymer electrolyte based on electrospun PEO/PAN/single layered graphene oxide. Ionics 2021, 27, 3477–3487. [Google Scholar] [CrossRef]
- Banitaba, S.N.; Semnani, D.; Karimi, M.; Heydari-Soureshjani, E.; Rezaei, B.; Ensafi, A.A. A comparative analysis on the morphology and elec-trochemical performances of solution-casted and electrospun PEO-based electrolytes: The effect of fiber diameter and surface den-sity. Electrochim. Acta 2021, 368, 137339. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.; Li, S.P.; Fan, L.Z.; Nan, C.W.; Goodenough, J.B. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceram-ic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176–184. [Google Scholar] [CrossRef]
- Xue, Z.; He, D.; Xie, X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19218–19253. [Google Scholar] [CrossRef]
- Chen, R.; Qu, W.; Guo, X.; Li, L.; Wu, F. The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons. Mater. Horiz. 2016, 3, 487–516. [Google Scholar] [CrossRef]
- Yu, J.; Kwok, S.C.; Lu, Z.; Effat, M.B.; Lyu, Y.Q.; Yuen, M.M.; Ciucci, F. A Ceramic-PVDF Composite Membrane with Modified Interfaces as an Ion-Conducting Electrolyte for Solid-State Lithium-Ion Batteries Operating at Room Temperature. ChemElectroChem 2018, 5, 2873–2881. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Kou, W.; Yang, Z.; Zhai, P.; Liu, Y.; Wang, J. A flexible, ion-conducting solid electrolyte with vertically bicontinuous transfer channels toward high performance all-solid-state lithium batteries. Chem. Eng. J. 2021, 404, 126517. [Google Scholar] [CrossRef]
- Bai, C.; Wu, Z.; Xiang, W.; Wang, G.; Liu, Y.; Zhong, Y.; Guo, X. Poly (ethyleneoxide)/Poly (vinylidenefluoride)/Li6.4La3Zr1.4Ta0.6O12 composite electrolyte with a stable interface for high performance solid state lithium metal batteries. J. Power Sources 2020, 472, 228461. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, G.; Chao, L. Three–dimensional fiber network reinforced polymer electrolyte for den-drite–free all–solid–state lithium metal batteries. Energy Storage Mater. 2021, 41, 631–641. [Google Scholar] [CrossRef]
- Aulova, A.; Bek, M.; Kossovich, L.; Emri, I. Needleless Electrospinning of PA6 Fibers: The Effect of Solution Concentration and Electrospinning Voltage on Fiber Diameter. J. Mech. Eng. 2020, 66, 421–430. [Google Scholar] [CrossRef]
- Zubir, A.A.M.; Khairunnisa, M.P.; Surib, N.A.; NorRuwaida, J.; Rashid, M. Electrospinning of PLA with DMF: Effect of polymer concentration on the bead diameter of the electrospun fibre. Mater. Sci. Eng. 2020, 778, 012087. [Google Scholar]
- King, E.W., III; Gillespie, Y.; Gilbert, K.L.; Bowlin, G. Characterization of Polydioxanone in Near-Field Electrospinning. Polymers 2020, 12, 1. [Google Scholar] [CrossRef] [Green Version]
- Maurya, A.K.; Narayana, P.L.; Bhavani, A.G.; Jae-Keun, H.; Yeom, J.T.; Reddy, N.S. Modeling the relationship between electrospinning process parameters and ferrofluid/polyvinyl alcohol magnetic nanofiber diameter by artificial neural networks. J. Electrost. 2020, 104, 103425. [Google Scholar] [CrossRef]
- Topuz, F.; Uyar, T. Electrospinning of Cyclodextrin Nanofibers: The Effect of Process Parameters. J. Nano-Mater. 2020, 2020, 10. [Google Scholar] [CrossRef]
- Angel, N.; Guo, L.; Yan, F.; Wang, H.; Kong, L. Effect of processing parameters on the electrospinning of cellulose acetate studied by response surface methodology. J. Agric. Food Res. 2020, 2, 100015. [Google Scholar] [CrossRef]
- Premasudha, M.; Bhumi Reddy, S.R.; Lee, Y.J.; Panigrahi, B.B.; Cho, K.K.; Nagireddy Gari, S.R. Using artificial neural networks to model and in-terpret electrospun polysaccharide (Hylon VII starch) nanofiber diameter. J. Appl. Polym. Sci. 2021, 138, e50014. [Google Scholar] [CrossRef]
- Utkarsh; Hegab, H.; Tariq, M.; Syed, N.A.; Rizvi, G.; Pop-Iliev, R. Towards Analysis and Optimization of Electrospun PVP (Polyvinylpyrroli-done) Nanofibers. Adv. Polym. Technol. 2020, 2020, 9. [Google Scholar]
- Liu, J.; Shang, S.; Jiang, Z.; Zhang, R.; Sui, S.; Zhu, P. Facile Fabrication of Chemically Modified Sodium Alginate Fibers with Enhanced Mechanical Performance. AATCC J. Res. 2022, 9, 35–42. [Google Scholar] [CrossRef]
- Shang, S.; Zhang, K.; Hu, H.; Sun, X.; Liu, J.; Ni, Y.; Zhu, P. Magnetic field responsive microspheres with tunable structural colors by controlled assembly of nanoparticles. RSC Adv. 2022, 12, 5656–5664. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, S.; Shi, J.; Huang, M.; Shi, Z.; Wang, H.; Yan, Z. High performance porous poly(ethylene oxide)-based composite solid electrolytes. Chem. Eng. J. 2023, 468, 143795. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Shi, J.; Huang, M.; Shi, Z.; Wang, H.; Yan, Z. Poly (ethylene oxide) based solid polymer electrolyte improved by multifunctional additives of poly (acrylamide) and LiI. Electrochim. Acta 2023, 445, 142062. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Liu, Z.; Zhu, P.; Liu, J.; Shang, S. The Effects of Electrospinning Structure on the Ion Conductivity of PEO-Based Polymer Solid-State Electrolytes. Energies 2023, 16, 5819. https://doi.org/10.3390/en16155819
Sun Q, Liu Z, Zhu P, Liu J, Shang S. The Effects of Electrospinning Structure on the Ion Conductivity of PEO-Based Polymer Solid-State Electrolytes. Energies. 2023; 16(15):5819. https://doi.org/10.3390/en16155819
Chicago/Turabian StyleSun, Qihang, Zhanna Liu, Ping Zhu, Jie Liu, and Shenglong Shang. 2023. "The Effects of Electrospinning Structure on the Ion Conductivity of PEO-Based Polymer Solid-State Electrolytes" Energies 16, no. 15: 5819. https://doi.org/10.3390/en16155819
APA StyleSun, Q., Liu, Z., Zhu, P., Liu, J., & Shang, S. (2023). The Effects of Electrospinning Structure on the Ion Conductivity of PEO-Based Polymer Solid-State Electrolytes. Energies, 16(15), 5819. https://doi.org/10.3390/en16155819