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Abstract: As the sustainability of the environment is a very much concerning issue for developed
countries, the drive of the paper is to reveal the effects of nuclear, environment-friendly, and non-
friendly energy, population, and GDP on CO2 emission for Italy, a developed country. Using the
extended Stochastic Regression on Population, Affluence, and Technology (STIRPAT) framework,
the yearly data from 1972 to 2021 are analyzed in this paper through an Autoregressive Distributed
Lag (ARDL) framework. The reliability of the study is also examined by employing Fully Modified
Ordinary Least Square (FMOLS), Dynamic Ordinary Least Square (DOLS), and Canonical Cointegra-
tion Regression (CCR) estimators and also the Granger causality method which is used to see the
directional relationship among the indicators. The investigation confirms the findings of previous
studies by showing that in the longer period, rising Italian GDP and non-green energy by 1% can
lead to higher CO2 emissions by 8.08% and 1.505%, respectively, while rising alternative and nuclear
energy by 1% can lead to falling in CO2 emission by 0.624%. Although population and green energy
adversely influence the upsurge of CO2, they seem insignificant. Robustness tests confirm these
longer-period impacts. This analysis may be helpful in planning and developing strategies for future
financial funding in the energy sector in Italy, which is essential if the country is to achieve its goals
of sustainable development.

Keywords: ARDL; CO2 emission; renewable energy; fossil fuels; STIRPAT model; Italy

1. Introduction

Efforts to transition energy networks away from environmentally hazardous fossil
fuels and toward cleaner, more sustainable forms of power have led to a greater emphasis on
shifting the energy balance in nature [1]. Most of the climate-altering and planet-warming
chemicals we release into the atmosphere are carbon dioxide (CO2).

Environmental issues on a global scale, such as warming temperatures are becoming
worse. The rise in carbon dioxide emissions (CO2) is one of the most critical environmental
problems confronting the world today. To boost industrial production also causes less
eco-friendly technology to use more fossil fuels and CO2 [2–6]. Dynamic development
of individual countries and increasing production will increase Co2 emissions, and no
one will stop it anytime soon. Unfortunately, situations where the politics and interests of
ruling parties have a negative impact on the development of energy policy are increasingly
noticed [7–9], unless the government introduces tax incentives which have positive and
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considerable outcomes on CO2 [10]. Yuelan et al., in the Chinese case, and Halkos and
Paizanos, in the case of the United States, both study fiscal instruments and obtain results,
which stress that economic policies have significant effects on CO2 and environmental
degradation [11,12].

The energy transition to a system completely free from carbon sources is considered a
necessary objective to respect the limits in the growth of global temperatures established
in international agreements and treaties. This is now the most important problem facing
the whole world. However, there are studies that show a positive relationship between
the increase in the share of renewable energy and the growth of gross domestic product.
Bogdanov et al. [13] analyzes the positive relationship between the production of renewable
energy and the reduction of CO2 emissions in South America over the period 1980–2010.
A. Hdom [14] verifies the presence of a positive relationship between renewable energy
production, CO2 reduction, and gross domestic product growth in a panel of 84 countries
between 1991 and 2012. Another research considers the positive effects that the political
economic incentive for renewable energy installations has had on households in Germany
and other countries [15–17].

Another study analyzes the positive impact of renewable energy in terms of eco-
nomic growth in 38 countries during the period between 1990 and 2018 [18]. The results
show the presence of a positive relationship between renewable energy production and
economic growth.

However, it should be taken into account that the transition towards renewable energy
is associated with an initial increase in energy prices, which should be associated with
appropriate government support for households. If the government also points out that
such changes will have a positive impact on the environment and the health of citizens,
the direction of changes should be one of support, regardless of the economy, economic
development, and costs.

Italy’s CO2 output in 2021 was 311.2 million metric tons. In spite of significant
fluctuations in recent decades, Italy’s carbon footprints have generally been decreasing
since 1972, and are projected to reach 311.2 million tons in 2021 [19,20]. Disentangling the
most crucial triggers of CO2 releases is pertinent for responding rapidly to the climate crisis
and reducing emissions.

Energy is a key economic input often overlooked in environmental discussions [21].
Energy remains crucial to a thriving economy, but it also challenges in reaching environmen-
tal sustainability objectives and cutting carbon emissions. The Arctic set a record-breaking
high temperature of 38 degrees Celsius on 14 December 2021, according to the World
Meteorological Organization, which should serve as a wake-up call for people everywhere
to reduce their carbon footprints and embrace greener ways of living so that we can help
Mother Nature heal and regenerate her natural wealth in a sustainable way for the benefit
of generations to come [22]. Extreme weather occurrences are becoming more of a problem
for people and ecosystems as a consequence of global warming. A rising human popu-
lation and improved infrastructure both contribute to an increase in the frequency with
which catastrophic events cause annual financial losses. Recent progress in reducing car-
bon pollution can be attributed to technological breakthroughs, patenting, and renewable
energy [23].

This research will use this context as a jumping-off point to look into the primary
factors that led to variations in CO2 emissions in Italy between 1972 and 2021. Since
Italy is an upper-earning nation divided into North and South zones, a phenomenon not
frequently observed among European Union (EU) member states, it makes for an intriguing
case study [24]. The investigation enlarges the existing empirical works by expanding the
Stochastic Impacts by Regression on Population, Affluence, and Technology (STIRPAT)
model to include not just one but three different pathways of atmospheric carbon release:
the economic channel’s path, the population channel, and the technological infrastructure
pathway [25].
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In 2019, renewable energy sources (RES) comprised 18% of Italy’s total energy pro-
duction. By 2030, the government aims to have the nation rely 30% on renewable energy,
primarily wind and solar. While incentives are primarily geared toward businesses and
households, the construction building stock and transportation sectors are major focal
points of energy-saving initiatives [26]. One practical strategy for cutting emissions, says
Dogan and Seker [27,28], involves boosting the proportion of renewables in the energy
balance. By 2030, the Italian government will project 4 million electric vehicles and 2 million
hybrids on Italian roads. The innovative biofuels, mainly biomethane, will help Italy reach
its goal of a 22% renewable energy proportion in transportation by 2030. By the year 2030,
Italy anticipates that its electricity production from wind and solar power will have risen by
respective factors of three and two. Italy’s energy policy seems to be an example for many
countries. The basic document presenting the assumptions of Italy’s energy policy is the
National Integrated Plan for Energy and Climate (PNEIC) adopted in January 2020. PNEIC
assumes that in 2030, 55% of national electricity production is to come from renewable
sources. For this purpose, the following assumptions have been made:

• The promotion of electromobility is to be a means to reduce carbon dioxide emissions.
• Increase the infrastructure created to use alternative energy sources.

Italy also makes very good use of its geographical conditions. In steeply sloping
areas such as the Alps and mountains in general, hydropower plays a major role and has
been one of the most widespread alternatives to fossil fuels since the beginning of the
last century. Where the sun is stronger, as in the south of the country, there is room for
photovoltaic technology, which in recent years, thanks to various government incentives,
has become increasingly popular in private homes and businesses. On large islands such
as Sicily and Sardinia, there are also many wind turbines that can convert wind energy into
electricity distributed throughout the territory. In addition, those who do not want to go
for the most advanced energy production systems are increasingly choosing to use energy
sources located in their garden, installing heat pumps that can extract energy from the air
or groundwater and using it for heating or cooling rooms in their apartments. It seems,
therefore, that the actions presented in Italy’s energy strategy have so far been a model to
be followed by other countries.

Recently, Italy has adopted a new policy regarding fossil fuels, and this fresh legislation
will enable SACE (Servizi Assicurativi del Commercio Estero, an export authority of Italy)
to assist with a variety of fossil fuel initiatives, such as exploration, production, storage, and
distribution. The decision has encountered harsh denigration from climate experts. The
experts contend that it would violate commitments globally and impede the transition to a
green economy that the country is undergoing [29]. Air pollution caused by burning fossil
fuels and driving automobiles, as asserted by Dogan and Aslan [30], is a major contributor
to the buildup of global warming gases in countries. When it comes to fossil fuels, Italy is
a net consumer. This means Italy must rely on foreign suppliers for its natural gas needs.
After Germany and the United Kingdom (UK), Italy was Europe’s third-largest gas importer
and user in 2017. Over 90% of Italy’s gas supply comes from abroad, mainly as fossil fuel
imports [31]. In 2020, nearly 80% of Italy’s aggregate power generation originated from
fossil fuels. In 2020, nearly 80% of Italy’s gross electricity production was generated from
non-green energy, including non-clean fuel accounting for the vast majority of this figure.
Thermal power plants generate most of Italy’s new electricity capacity [32]. If Ember is
correct, Italy will generate more significant amounts of electricity from fossil gas than any
other European Union (EU) country by 2030 [33].

Nuclear energy plays a crucial role as an alternative to green power in the meantime
when the expense of the power is high, but supply is inadequate, and demand is massive
and when it is an urgent need to alleviate pollution because CO2 is strongly correlated with
economic activities and development [34]. Even though there was a 2011 referendum in
which 94% of Italians voted against bringing back nuclear power, a new referendum has
been proposed in Italy to encourage different nuclear power plants, which would be the
country’s first since the closure of nuclear power plants in 1990. Even as the European
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Commission mulls over whether or not to officially recognize nuclear energy and gas from
the ground as green sources of generated energy, the notion that moving back to nuclear
power could help Italy lower its energy costs is currently being supported there [35]. A
boost in nuclear-powered electricity production may help mitigate the impact of global
warming [36–38]. As oil costs rise, nuclear power is touted as a way to reduce reliance on
foreign countries to meet domestic energy needs while also lowering environmental impact.

Therefore, the core theme of the research is to investigate the influence of energies like
alternative and nuclear, transparent and non-clear, population, and gross domestic product
(GDP) on CO2 upsurges in Italy. This is also the research question regarding whether these
variables influence CO2 emanation in Italy. Moreover, the research hypothesis (alternative
hypothesis) is that nuclear, transparent and non-clear energy, population, and GDP have
an impact on CO2 emission. More precisely, GDP, population, and non-clear energy have
a positive influence on CO2 and clean and nuclear energy have a negative influence on
CO2. As these variables are ignored altogether in the previous literature, this research
contributes a new aspect regarding sustainable environment in Italy which is very much
concerning. This paper also contributes to filling the study gap on the importance of
nuclear, renewable, and alternative energies in production without carbon emission in Italy.
Also, this paper is unique in terms of using Autoregressive Distributed Lag (ARDL) as
well as Dynamic Ordinary Least Square (DOLS), Fully Modified Ordinary Least Square
(FMOLS), and Canonical Cointegration Regression (CCR) methods which have not yet
been employed in this type of research. Citizens, academic researchers, economists, and
politicians will benefit from a deeper comprehension of the issue and the crucial data
and evidence provided by this study’s findings. The conclusions of this research have
significant policy and regulatory ramifications for environmental safeguarding authorities.

This research is divided into the following sections: a description of previous works,
methods used, results found, and an ending note.

2. Literature Review

The stimulus of gross domestic product, green energy, and technical progress in Group
of Seven (G7) countries’ efforts toward lowering CO2 emissions from 1990 to 2020 was
analyzed by Mehmood et al. [39]. CO2 emissions negatively correlate with GDP and
renewable energy usage in this CS-ARDL (Cross-Sectional Autoregressive Distributed Lag
Model) analysis. Rising GDP and cleaner power sources have helped lower emissions. In
ten African nations from 1997 to 2021, Voumik et al. [40] employed the Augmented Mean
Group (AMG) and Mean Group (MG) procedure to look into the implications of GDP,
renewable energy, and fossil fuels on ecological quality. Findings showed that decreasing
ecological harm was achieved through greater utilization of green power and increasing
efficiency, whereas the utilization of non-green power elevated atmospheric carbon dioxide
emissions. Utilizing the ARDL approach, Bento and Moutinho [41] looked at data for Italy
between 1960 and 2011 to see how GDP and green energy affected CO2 emissions. Growth
in GDP was found to reduce pollution levels in the predicted model. Renewable energy
generation lowered the ecological damage level. Ali et al. [42] examined how GDP and
population changed CO2 emissions in Malaysia between 1970 and 2014. A larger population
and higher GDP were found to be significant factors in higher levels of ecological damage
in Malaysia.

Another study used the AMG method to examine the implications of various en-
ergy sources, including renewables, fossil fuels, and nuclear power, on CO2 emissions in
SAARC (South Asian Association for Regional Cooperation) nations from 1982 to 2021 [43].
The findings revealed that fossil fuels boosted the ecological deterioration level, in con-
trast to green energy and nuclear energy, which were found to reduce pollution levels.
Omri and Saadaoui [1] analyzed how nuclear power, fossil fuels, and income influenced
CO2 emissions in France from 1980 to 2020. The concluding result of the Nonlinear ARDL
(NARDL) demonstrated that nuclear power supported lowering France’s ecological foot-
print. However, these emissions were exacerbated by the utilization of green power. Using
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data from the world’s top ten nuclear-generating nations, Zhang et al. [44] compared the
effects of nuclear and renewable power on CO2 emissions. The findings implied that
population, GDP, and nuclear or renewable power all contributed to ecological damage and
pointed to the need for measures to reduce the population’s size and improve its quality, as
well as the implementation of a sustainable economy and the improvement of nuclear and
green energy that is secure.

Jahangir et al. [45] and Sadiq et al. [46] demonstrated that nuclear power boosted
the ecological compatibility level in top nuclear power usage countries. Another study
researched by Kartel et al. [47] looked into the implications of nuclear power, GDP, and
renewable power on ecological compatibility levels in the United States between 1965
(1st quarter) and 2018 (4th quarter). According to the findings, nuclear energy, green energy,
and financial advancement all slow the progression of environmental deterioration in the
middle and higher tails of the distribution. In contrast, improving the economy negatively
impacts environmental compatibility in the upper quarters. Majumder et al. [48] looked
into the impression of various kinds of electricity production upon the number of CO2
emanations produced in South Asian nations from 1972 to 2015. As per the outcomes
of the Quantile Regression (QR) analysis, all of the different types of power generation
and the variables that are connected to them receive beneficial encouragement on CO2
emanations. The environmental quality is adversely squeezed by power stations that burn
coal as fuel. On the contrary, sustainable energy sources have the least detrimental effect
on the deterioration of the environment.

Another study on the G7 nation’s ARDL method revealed that sustainable power, ur-
banization, and nuclear power alleviated the ecological impairment from 1979 to 2019 [49].
After reviewing the relevant literature, this research concludes that rising population, GDP,
and energy usage contribute to environmental deterioration and rising CO2 emissions [50–60].
The proof presented here considers these factors a major contributor to climate deterioration
that boosts emissions.

Only a few studies exist regarding the Italian region, and no studies have occurred in
recent years. Therefore, this paper will fill this gap by applying the theoretical STIRPAT
model and the ARDL model. In addition, the heftiness of the ARDL, the DOLS, FMOLS,
and CCR methods are also employed for inspection. Moreover, the Granger causality
method has also been utilized to see the association between the regressand and regressors.
In Italian regions, no studies applied this econometric application to observe the implication
of GDP, population, green power, non-green power, and nuclear energy on CO2. Therefore,
this investigation perfectly matches this regard and will fill the literature gap.

3. The Methodology of the Research
3.1. Outline of the Theory

The aim of this paper can only be attained with the help of a model that considers the
influence of fossil fuels, energy from nuclear plants, and green power usage on damage
to the environment. STIRPAT is the most renowned theoretical framework to assess the
consequences of CO2 emissions in the modern period. The STIRPAT model analysis is the
most common approach to predict future carbon pollution. Starting with the assumption
that people, wealth, and technology are the primary drivers for ecological pressing pressure,
followed by a population (P), affluence (A), and technology (T) impact (I) (IPAT) model [61]
for which Dietz and Rosa [62] developed an enhanced version called STIRPAT.

The widely used STIRPAT structure was put to use in this investigation. A common ap-
proach among academics, the STIRPAT framework is a modification of the IPAT framework
explicitly developed to address the challenge of alleviating ecological stress. Population
(P), wealth (A), and technology (T) have an ongoing connection in terms of their effect on
the ecosystem, and this relationship was first articulated by American environmentalists
Ehrlich and Holdren [61] and Commoner et al. [63] in the form of the IPAT equation. Al-
though the IPAT framework has randomness and can estimate each coefficient as a separate
parameter, it is limited in its ability to account for the interplay of the people, economy, and
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technology. The extended version of the technique is suggested to address the shortcomings
of the original STIRPAT framework and has found widespread application [64,65].

Without considering the influence of wealth, population growth, and technological
advancement, the IPAT-identifying method is doomed to failure. This section explains the
IPAT’s Equation (1):

I = PAT (1)

For each “I” in “Impact” and “P” in “Population”, A describes the level of wealth
experienced, such as GDP, and T describes energy efficiency innovations that benefit the
environment. Due to its shortcomings, the IPAT paradigm will be replaced by STIRPAT. It
performs better and takes up less time. The STIRPAT framework, stated as the resulting
formula, offers a robust quantifiable structure to observe the impact of environmental vari-
ables. Equation (2) demonstrates the association between population, affluence, technology,
and environment and describes how these variables impact the environment.

I = βPα
t · A

γ
t · T

ϕ
t εt (2)

Given that the IPAT model precludes non-comparative changes in the robust mecha-
nisms, its usefulness remains severely limited [66]. In contrast to the IPAT model, which
includes all of the IPAT’s drawbacks, the STIRPAT approach includes only the IPAT’s pros.
The STIRPAT model allows a precise calculation of all coefficients and factor separation. The
STIRPAT paradigm also investigates the causes of shifts in the ecosystem and recognizes
the critical reasons for policy interventions [67]. The STIRPAT paradigm produces more
reliable results in nearly all types of data [68]. The STIRPAT paradigm is utilized current
research investigations to see the factors that encourage CO2 emanations [69,70].

The following framework in Equation (3) is proposed for studying the impressions of
people, GDP, green power, nuclear energy, and fossil fuels on CO2 emission:

CO2 =
∫
(GDP, Population, Technologies) (3)

All of these crucial metrics are incorporated into the augmented STIRPAT framework.
This research employs GDP as a stand-in for affluence (A), following the technique of other
researchers [67–70]. Recent research has integrated renewable and nuclear power to better
reflect tech-how (T) into the STIRPAT framework [69,71,72]. Here, nuclear power, fossil
fuels, and renewable energy are employed as technology. Furthermore, the population was
adopted to examine the impact of the population on CO2. There were three technological
factors employed in the assessment.

Equation (2) can be rewritten as follows:

CO2 =
∫
(GDP, POP, REN, FOS, NUC) (4)

where GDP is for gross domestic product, POP is for population, REN is for renewable
energy, FOS is for fossil fuels, and NUC is for nuclear energy.

The accompanying Equation (5) displays the adjusted version of (4):

CO2t = β0 + β1POPt + β2GDPt + β3RENt + β4FOSt + β5NUCt + εt (5)

The corresponding logarithmic expression is as follows:

LCO2t = β0 + β1LPOPt + β2LGDPt + β3LRENt + β4LFOSt + β5LNUCt + εt (6)

where LCO2 represents CO2 emanations at time t in logarithmic (log) notation, LRENt is
the amount of green energy available at time t in log notation, LNUCt is the log of nuclear
energy, and LFOSt is the amount of fossil fuel available at time t in log notation.
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Several researchers today have utilized the STIRPAT framework to explain the envi-
ronmental implications [73–79].

3.2. Data

Yearly numerical information for Italy from 1972 to 2021 is used in this study. The
World Development Indicators database was primarily used to accumulate the data.

Table 1 demonstrates the features of the variables (symbol, source, and definition)
chosen for the analysis. The variables of interest rate include CO2 emission employed as an
explained indicator, and the regressors are gross domestic product, population, and energy
consumption (renewable, fossil fuels, and nuclear energy).

Table 1. Details of regressors and regressand.

Variable Symbol Definition Source

CO2 emissions LCO2 CO2 emissions (kt)

World Bank
Development

Indicator

Gross domestic product per capita LGDP GDP per head (fixed 2015 USD)
Population LPOP The aggregate number of people

Renewable energy consumption LREN Green energy usage (% of aggregate ultimate
energy usage)

Fossil fuels LFOS Non-green energy usage (% of aggregate ultimate
energy usage)

Nuclear energy LNUC Substitute and nuclear power (% of aggregate
ultimate energy usage)

Table 2 shows a compilation of the variables’ summary statistics. There are no sur-
prising tendencies in the numerical information. The average information is trustworthy
for all indicators. Some factors, including population and fossil fuel, are more prone to
fluctuations than others, as illustrated by the standard deviation. The POP ranks highest,
while alternative nuclear energy is towards the bottom.

Table 2. Summary of the data.

Variables N Mean SD Min Max

T 50 1997 14.58 1972 2021
LCO2 50 12.90 0.0942 12.67 13.07
LGDP 50 10.21 0.207 9.708 10.44
LPOP 50 17.87 0.0286 17.81 17.92
LREN 50 2.083 0.414 1.330 2.849
LFOS 44 4.505 0.0476 4.364 4.549
LNUC 44 1.356 0.385 0.789 1.955

3.3. Econometric Methodology

Through the help of the cutting-edge, dynamic ARDL simulations method, the ex-
pected shorter- and longer-period coefficients of the regressors in question have been
identified [80,81]. This model can autonomously assess the shorter- and longer-period
associations amidst indicators, as well as induce and visualize charts of (upward and
downward) shifts in those indicators. This model can autonomously assess the shorter-
and longer-period associations amidst indicators, as well as induce and visualize charts
of (upward and downward) shifts in those indicators. Moreover, ARDL is appropriate for
the mix of I(0) and I(1) data. According to Abumunshar et al. [82], to confirm the long-run
estimation of ARDL methods, FMOLS, DOLS, and CCR has to be used which have been
applied in this paper also. These chronological econometric procedures are also used by
Olorogun [83] and Adebayo et al. [84]. Following Abumunshar et al. [82], this paper also
utilized several model stability tests. Therefore, the steps of the econometric procedures of
this paper are valid and justified.
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3.3.1. Unit Root Test

Before looking into potential relationships between the periods, it is perilous to de-
termine if the data are stable. Before continuing, the paper performed a regression test
to ensure that none of the variables had unit roots. This matters since factors with a unit
root or non-stationary data need help clarifying a larger percentage of the outcomes or
else, they might contribute to erroneous conclusions [85,86]. This paper employed the well-
established Augmented Dickey–Fuller (ADF) test, Kapetanios and Shin unit root (KSUR)
test, and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) standard unit root techniques to
look for a unit root. The ADF test has gained widespread favor because of its capacity to
regulate serial autocorrelation [87]. The ADF technique is extra robust and can be applied
to more complex methods as opposed to the Dickey–Fuller (DF) procedure [88].

Due to its ability to model time series nonlinearity and asymmetry, the KSUR test
procedure is used in this work. Nonlinearities caused by the recession’s depth and duration,
as Blanchard claimed [89], are linked to departures from the natural rate theory. If there
are major discrepancies in the data, the KSUR method outperforms the linear stationarity
model [90]. The KSUR test stands for an expansion on the original stationary procedure
developed by Kapetanios et al. [91], and that is extra comprehensive than the original
stationary procedure. The KSUR test is modified by Otero and Smith [92], who use Monte
Carlo models and “response surface regressions” to improve the original method.

Researchers in [93] developed the first version of the KPSS test. In contrast to the ADF
test, this stationarity test was initially conceived as an adjunct to the stationarity check. The
technique proposes that the yearly data be disintegrated into a stationary error, an arbitrary
component, and a deterministic pattern.

The following Equation (7) illustrates the outline of the standard ADF evaluation:

∆Yt = β0 + β1 + δYt−1 +∆Yt−i + Et (7)

where ∆Yt represents associated variable; β0, β1 represent model parameters; i represents
lag order for the Dickey–Fuller enhancement; period pattern; Et is zero-mean Gaussian
white noise that may exhibit correlations over some time interval t.

For the KPSS test, the time sequence can be depicted as follows:

Yt = δt + rt + et (8)

where δt reflects a deterministic pattern, rt shows a random component and et narrates the
error term. An illustration of the random walk is given below:

rt =rt−1+vt (9)

The null hypothesis asserts that σ2
v = 0. If Yt is stationary, the KPSS test is tested in rt

when δ is not zero.
The hypothesis for the KPSS procedure is illustrated below:

H0. There is no discernible pattern in the data.

H1. Non-stationarity is present in the yearly data.

The test measure, a one-sided Lagrange Multiplier, is deduced as follows:

LM =
∑t

t=1 S2
T

σ̂2
e

(10)

where σ̂2
e is the error variance and ST

2 shows the sum of the error.

3.3.2. ARDL Cointegration Method

The following phase is established based on the fixed outcomes and integration levels.
When examining indicators with I(0), I(1), or diverse orders of integration (but no I(2) or greater



Energies 2023, 16, 5845 9 of 21

orders), the Autoregressive Distributive Lag (ARDL) Bounds method is applicable [93,94].
This overcomes the restrictions imposed by the cointegration stages [85,95], which require
variables to be integrated in similar order. This paper considers the ARDL Bounds
testing [95] method to evaluate the sturdiness of the cointegration test proposed by Bayer
and Hanck [96]. Unlike conventional cointegration tests, the ARDL Bounds testing method
can be utilized if the indicators are integrated at the I(0) or I(1) level. This method is helpful
because it can yield reliable results even when working with a limited sample number. It is
possible to gauge both shorter- and longer-period factors simultaneously. The Formula (8)
demonstrates the longer-period association between CO2, GDP, POP, REN, FOS, and NUC.
This approach was developed to help establish ARDL Bounds:

∆(LCO2)t = θ0 + ∑t
i=1 θ1∆LCO2t−i+∑t

i=1 θ2∆LGDPt−i+∑t
i=1 θ3∆LPOPt−i+∑t

i=1 θ4∆LRENt−i+

∑t
i=1 θ5∆LFOSt−i + ∑t

i=1 θ6∆LALNUCt−i+λ 1 LCO2t−1 +λ2 LGDPt−1+λ3 LPOPt−1+λ4 LRENt−1+

λ5 LFOSt−1+λ6 LNUCt−1+εt

(11)

Here t represents the time, t− i represents the previous time, and the Akaike infor-
mation criterion (AIC) determines the optimum lag. Moreover, εt is the error notation,
∆ represents the first difference operator, and λ analyzes the longer-period correlation.
The bound approach necessitates a hypothesis assessment with the intent to figure out a
sustained relationship between the analyzed variables. With no cointegration and proof of
cointegrations, both the null and alternate hypothesis is derived below:

H0 : lag coefficient 1 = lag coefficient 2 = lag coefficient 3 = lag coefficient 4 = lag coefficient 5
= lag coefficient 6 = 0

H1 : lag coefficient 1 6= lag coefficient 2 6= lag coefficient 3 6= lag coefficient 4 6= lag coefficient 5
6= lag coefficient 6 6= 0

This method checks the calculated F values against the tabulated numbers established
by the low and high limits. Estimated F statistics that fall short of the upper bound number
do not disprove the null hypothesis. If the estimated F value is larger than the tabulated
value, then the alternative hypothesis is accepted, and the variables are likely to be related
over the long run [97–100].

3.3.3. ARDL Long-Run Estimation

In this study, the longer- and shorter-period factors were projected utilizing the dy-
namic ARDL replications method generated by Jordan and Philips [97,98]. To better
understand the longer- as well as shorter-period connections amidst the factors of interest,
this model was developed to address the shortcomings of the canonical ARDL structure.
Further, the dynamic replicated ARDL method can evaluate, model, and produce charts to
foretell the impact of hypothetical changes to a single predictor variable on the explained
indicator, with the rest of the explanatory indicators held unchanged [97,98,100]. To imple-
ment the dynamic ARDL modeling method, the included data must be integrated at I(1),
and the series should be cointegrated [97,98]. In addition, this technique produces both
longer- and shorter-period coefficients, which can be used to draw practical policy conclu-
sions. Similarly, the ARDL approach includes a word for error correction that explains how
near-term actions can eventually lead to far-reaching outcomes [101].

The error correction term is very important to prove cointegration in the present
setting [102,103]. Sample numbers between 30 and 80 can be split into two groups with
different critical values [104]. This research uses a large data set (51 observations) to
estimate error-correcting models for short-run relationships, yielding proper critical values.
To further investigate the link amidst CO2 release and the analyzed regressors, both in the
shorter as well as the longer period, the current study used the ARDL testing methodology,
as shown in Equation (9), which provides a representation of the ARDL testing model.
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Also, Equation (2) provides a visual representation of the error correction of the estimated
model (ECTt−1):

∆(LCO2)t = θ0 + ∑t
i=1 θ1∆LCO2t−1+∑t

i=1 θ2∆LGDPt−1+∑t
i=1 θ3∆LPOPt−1+∑t

i=1 θ4∆LRENt−1+

∑t
i=1 θ5∆LFOSt−1 + ∑t

i=1 θ6∆LNUCt−1+θ7 ECTt−1 + εt
(12)

Adjustment pace is represented by the θ7 coefficient, the initials ECT indicate “error
correction term”, t symbolizes “time”, and εt is an error symbol. A negative and statisti-
cally significant ECT value is required. After that, we run stability and diagnostic tests to
ensure our model meets everything. Diagnostic tests look into problems like heteroscedas-
tic nature, autocorrelation, and functional arrangement. The cumulative sum of squares
(CUSUMSQ) procedure and cumulative sum (CUSUM) techniques are utilized to examine
the consistency of shorter- and longer-period coefficients, correspondingly [105,106]. If the
suggested model’s coefficients are reliable and the plots of the CUSUM and CUSUMSQ
graphs fall within the critical limits of a 5% significance value, then the null hypothesis
could be rejected. The stability of the outcomes under scrutiny is confirmed via Lagrange
Multiplier (LM), Breusch–Pagan–Godfrey and Ramsey’s RESET tests. The heteroscedas-
ticity was evaluated with the Breusch–Pagan–Godfrey and Autoregressive Conditional
Heteroscedasticity (ARCH) tests, and the serial correlation was identified with the Breusch–
Godfrey Lagrange Multiplier (LM) test. Finally, the Ramsey RESET test is used to verify
the accuracy of the model’s expression. These tests are followed by Abumunshar et al. [82].

3.3.4. FMOLS, DOLS, CCR

In the current research, yearly numerical information was analyzed utilizing Dy-
namic Ordinary Least Square (DOLS), an expanded formula of Ordinary Least Square
(OLS). The DOLS procedure includes independent indicators along with leads and lags
of their early difference expressions to control endogeneity and compute standard errors
utilizing a covariance graph of errors tolerant to autocorrelation. The DOLS estimators
provide a trustworthy measure of statistical significance. Assessing the endogenous indi-
cator on exogenous indicators in levels, leads, and lags is an efficient method for dealing
with varied orders of integration, as it permits the incorporation of distinct factors in
the cointegrated framework [28]. On the other hand, the main advantage of the DOLS
prediction is that it allows varied order integration of distinct factors within the cointe-
grated framework [106–108]. This approximation eradicates difficulties of shorter sample
bias, endogeneity, and autocorrelation by combining information about when each ex-
planatory variable was measured [109]. The DOLS estimation results will be found using
Equation (13). Equation (13) estimates the long-run coefficient values in Indonesia from
1972 to 2021:

∆(LCO2)t = θ0 + ∑t
i=1 θ1∆LCO2t−i+∑t

i=1 θ2∆LGDPt−i+∑t
i=1 θ3∆LPOPt−i+∑t

i=1 θ4∆LRENt−i+

∑t
i=1 θ5∆LFOSt−i + ∑t

i=1 θ6∆LNUCt−i+λ 1 LCO2t−1+λ2 LGDPt−1+λ3 LPOPt−1+λ4 LRENt−1+

λ5 LFOSt−1+λ6 LNUCt−1+εt

(13)

This study used two additional methods, Fully Modified OLS (FMOLS) and Canonical
Cointegrating Regression (CCR), to confirm the legitimacy of the DOLS results. Hansen
and Phillips [110] created the FMOLS analysis. The FMOLS technique amends the least
squares method when dealing with cointegration and its impacts on autocorrelation and en-
dogeneity in the explanatory factors. The difficulties associated with high power regression
of determined factors, unit root problems, and integrated procedures have been reduced.

Park [94] also invented the CCR method, which transforms numeric info using just the
stationary part of an interconnected system. When data are transformed in this way, the
cointegrating connection generated by the cointegration model remains unchanged. Error
terms in cointegrating models are decoupled from zero-regularity explanatory variables
using the CCR modification. This leads to a roughly effective estimation and simultaneously
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chi-square tests. FMOLS and CCR approaches achieve asymptotic cohesion by investigating
the impact of correlation. As shown in Equation (13), the FMOLS and CCR coefficients are
used to evaluate longer-period flexibility.

3.3.5. Granger Cause of Pairwise Variables

This paper aims to identify the factors that cause the detected correlations. Con-
sequently, to find out the causal relationship amidst the indicators, the pairwise linear
causality test suggested by Granger [111,112] was applied in the research. This research uses
the “statistical concept of causality based on prediction”. Granger causality is a prediction-
based statistical notion that has numerous benefits over other methods of studying time
series [113]. This test’s primary benefit is that it can look at many lags simultaneously
while discounting the significance of higher-order lags. Yearly Y is said to “Granger-cause”
yearly X if it can be used to forecast X in the future. The yearly data for these two indicators
consist of T, where Xt and Yt (t = 1,2, . . ., T) are the numbers for the variables at time t,
correspondingly. The following Equations (14) and (15) can be used to apply a bivariate
autoregressive framework to models Xt and Yt:

Xt = ∑ρ

t=1(b11,1 Xt−1 + b12,1 Yt−1)+εt (14)

Yt = ∑ρ

t=1(b21,1 Xt−1 + b22,1 Yt−1) + ξt (15)

Here, ρ is the serial of the model, bij,1 (i,j = 1, 2) represents the coefficients, and εt and
ξt are the stochastic error. The coefficients can be calculated utilizing the OLS method, and
Granger causation amidst X and Y are measured utilizing the F procedure.

In addition, the causative collaboration among LCO2, LGDP, LPOP, LREN, LFOS, and
LNUC is looked into using the Granger causality test in the present research and is narrated
in Equations (16)–(21). Short-term variations in the series under scrutiny are identified
using ECT for the causation test. As shown in the following equations, the EC-Model
Equations (16)–(21) look like this:

∆(LCO2)t = θ0 + ∑t
i=1 θ1∆LCO2t−1+∑t

i=1 θ2∆LGDPt−1+∑t
i=1 θ3∆LPOPt−1+∑t

i=1 θ4∆LRENt−1+

∑t
i=1 θ5∆LFOSt−1 + ∑t

i=1 θ6∆LNUCt−1+θ7 ECTt−1 + ε1t
(16)

∆LGDPt = θ0 + ∑t
i=1 θ1∆LGDPt−1+∑t

i=1 θ2∆LCO2t−1+∑t
i=1 θ3∆LPOPt−1+∑t

i=1 θ4∆LRENt−1+

∑t
i=1 θ5∆LFOSt−1 + ∑t

i=1 θ6∆LNUCt−1+θ7 ECTt−1 + ε1t
(17)

∆LPOPt= θ0 + ∑t
i=1 θ1∆LPOPt−1+∑t

i=1 θ2∆LCO2t−1+∑t
i=1 θ3∆LGDPt−1+∑t

i=1 θ4∆LRENt−1+

∑t
i=1 θ5∆LFOSt−1 + ∑t

i=1 θ6∆LNUCt−1+θ7 ECTt−1 + ε1t
(18)

∆LRENt= θ0 + ∑t
i=1 θ1∆LRENt−1+∑t

i=1 θ2∆LCO2t−1+∑t
i=1 θ3∆LGDPt−1+∑t

i=1 θ4∆LPOPt−1+

∑t
i=1 θ5∆LFOSt−1 + ∑t

i=1 θ6∆LNUCt−1+θ7 ECTt−1 + ε1t
(19)

∆LFOSt= θ0 + ∑t
i=1 θ1∆LFOSt−1+∑t

i=1 θ2∆LCO2t−1+∑t
i=1 θ3∆LGDPt−1+∑t

i=1 θ4∆LPOPt−1+

∑t
i=1 θ5∆LRENt−1 + ∑t

i=1 θ6∆LNUCt−1+θ7 ECTt−1 + ε1t
(20)

∆LNUCt= θ0 + ∑t
i=1 θ1∆LNUCt−1+∑t

i=1 θ2∆LCO2t−1+∑t
i=1 θ3∆LGDPt−1+∑t

i=1 θ4∆LPOPt−1+

∑t
i=1 θ5∆LRENt−1 + ∑t

i=1 θ6∆LFOSt−1+θ7 ECTt−1 + ε1t
(21)

The research employs the pairwise Granger causality testing approach to figure out
short-term causal associations among the factors to explore the potential for causation.
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4. Results
4.1. Unit Root Test

Table 3 shows the stationarity outcomes of the KSUR [93], ADF [87], and KPSS [90]
tests. KSUR shows that LCO2, LGDP, LPOP, and LFOS are integrated at level one, as the test
statistics of the respective variables are not significant at the base form when significant at
level two at a 1% level of significance. On the other hand, LREN and LNUC are integrated
at a level as the test statistics are significant at that level. ADF and KPSS tests of stationarity
show similar results also. Here, the significance of statistics means not accepting the null
hypothesis of not stationarity. Consequently, the results explain that LCO2, LGDP, LPOP,
and LFOS are I(1) while LREN and LNUC are I(0). As there is no I(2) or higher-level
integrated found, ARDL tests can be applied.

Table 3. Stationarity tests.

Indicators
KSUR ADF KPSS Comment

Base Form 1st Difference Base Form 1st Difference Base Form 1st Difference I(1)

LCO2 −0.478 −4.387 *** −0.350 −5.522 *** −1.431 −6.993 *** I(1)
LGDP 1.905 −3.380 *** 2.452 −3.531 *** 0.939 −7.733 *** I(1)
LPOP 2.684 −3.531 *** 2.195 −3.380 *** 1.811 −7.319 *** I(1)
LREN −5.518 *** −5.518 *** −4.491 ** I(0)
LFOS −0.124 −6.051 *** −0.052 −6.512 *** −0.7121 −6.921 *** I(1)
LNUC −4.142 ** −4.056 *** −4.584 ** I(0)

(a) AIC and SIC chose the lag length. (b) Intercept and trend are assumed in the stationarity test. (c) More stars
mean significant at less significant level (*** = less than 1% and ** = less than 5%).

4.2. ARDL Bounds Cointegration Test

Table 4 shows the Bounds Cointegration Test [113] to find the existence of a longer-
period association amidst the explained variable and explanatory variables.

Table 4. Bounds Cointegration Test.

Test Statistic Value K

F-Statistic 3.077 5
Critical Value Bounds

Significance level I(0) I(1)
10% 2.26 3.35
5% 2.62 3.79
2.5% 2.96 4.18
1% 3.41 4.68

Table 4 shows that the alternative hypothesis of cointegration is established at the
2.5% level. Therefore, the longer-period association is confirmed in the model. Here, the
longer-period imposing indicators are GDP, alternate and nuclear energy, renewable energy,
fossil fuels, and population. The preceding conclusion has the consequence that variations
in the mentioned variables are followed by variations in the release of CO2.

4.3. ARDL Long- and Short-Run Results

As regressors and regressand are integrated at level or first difference, and there found
longer-period cointegration, the ARDL test [80,81] is recruited to find the longer- and
shorter-period value of coefficients. Table 5 represents all the results. In a shorter period,
if GDP upsurges by 1%, then on average, CO2 upsurges by 0.274%. Similarly, if LFOS
upsurges by 1%, then CO2 upsurges by 0.158% on average. Moreover, if LPOP, LREN, and
LNUC upsurge by 1%, CO2 declines by 1.663%, 0.0304%, and 0.0131%, respectively, on
average. However, all these coefficients are insignificant as the p-value is greater than at
least a statistically 10% significance.



Energies 2023, 16, 5845 13 of 21

Table 5. ARDL long-run and short-run outputs.

Variables ADJ LR SR

D.LGDP 0.274 (0.240)
D.LPOP −1.663 (2.565)
D.LFOS 0.158 (0.729)
D.LREN −0.0304 (0.0388)
D.LNUC −0.0131 (0.0320)
L.LGDP 8.08 *** (1.174)
L.LPOP −2.720(4.839)
L.LFOS 1.505 *** (0.381)
L.LREN −7.717(0.44)
L.LNUC −0.624 *** (0.154)
L.LCO2 −0.172 (0.114)
Constant 23.48 (18.78)
Observations 42 42 42
R−squared 0.653 0.653 0.653

Standard errors are given in the first bracket. More stars mean significant at less significant level (*** = less than 1%).

In the long run, if GDP upsurges by 1%, then on average, CO2 upsurges by 8.08%.
Kirikkaleli et al. [114] found similar results for Portugal using the NARDL model. Similarly,
if LFOS upsurges by 1%, then CO2 upsurges on average by 1.505%. A study on China using
quantile ARDL (QARDL) found an adverse effect of fossil fuels on CO2 emission [112–115].
Furthermore, if LPOP, LREN, and LNUC upsurge by 1%, CO2 declines on average by
2.720%, 7.717%, and 0.624%, respectively. However, among these coefficients, LGDP, LFOS,
and LNUC coefficients are significant as p-values of the respective coefficients are smaller
than at least 1% statistical significance. Again, the coefficients of LPOP and LREN were
found insignificant. Researchers [116] confirm the negative influence of nuclear power on
CO2 release. Again, Researchers [117] confirm that renewable power shows no long-run
influence on CO2 upsurges. Although Rehman et al. [118] challenge the not significant
influence of population on CO2 as they found a significant positive impact on CO2 of
population growth, they support the insignificant result of the impact of renewable energy
on CO2 upsurges. However, the system GMM technique of Jiang and Khan [119] found
a negative but insignificant impact of population on CO2 emission, which matches this
research’s findings. Therefore, a significant positive impact of LGDP and LFOS on CO2
release and the negative impact of LNUC on CO2 release has been established. Furthermore,
the negative coefficient of the lag value of LCO2 confirms the clarity of the results.

Finally, as for the discussion, an alternative hypothesis of the positive impact of GDP
and non-clear energy on CO2 is accepted as these long-run coefficients are positive and
significant. However, an alternative hypothesis of the positive impact of population on
CO2 cannot be accepted as the coefficient of population was found insignificant. Moreover,
another alternative hypothesis of the negative impact of clear and nuclear energy on CO2
is accepted because of their negative sign and significant nature.

4.4. Robustness Check

The outputs of Table 5 found from the ARDL technique are assessed by using another
solo formula estimator named DOLS (Dynamic Ordinary Least Square) method [107]. The
main advantage of the DOLS technique is that it also considers the cointegrated method’s
mix order of integrating the relevant factors. Regressing each of the I(1) indicators with
the other I(1) and I(0) indicators while taking the method’s leads (p) and lags (−p) into
account is how the DOLS is estimated. Thus, this estimate addresses the issues of probable
endogenous variables and biases in tiny samples. Additionally, the cointegrating matrices
produced by the DOLS estimates are asynchronously effective. FMOLS [110] and CCR [111]
have also been applied (Table 6).
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Table 6. Robust outputs.

FMOLS DOLS CCR

LGDP 0.391 *** (0.141) 0.904 *** (0.137) 0.444 *** (0.158)
LPOP −2.865(1.853) −0.951(1.432) −3.328 ** (1.853)
LREN −0.235 (0.156) 0.143 (0.162) −0.247 (0.159)
LFOS 1.452 ** (0.773) 4.238 *** (0.710) 1.500 ** (0.674)
LNUC −0.136 *** (0.054) −0.112 ** (0.069) −0.126 *** (0.057)
C 53.266 1.079 50.740
R−squared 0.774 0.950 0.759

Standard errors are given in the first bracket. More stars mean significant at less significant level (*** = less than 1%
and ** = less than 5%).

In the FMOLS model, a 1% increment in LGDP uplifts 0.391% of the CO2 average, and
a 1% increment in LFOS uplifts 1.452% of the CO2 average. These values are significant and
support the outputs regarding ARDL as shown in Table 5. On the contrary, a 1% increment
of LPOP leads to a 2.865% decline in CO2 average, a 1% increment of LREN leads to a
0.235% decline in CO2 average, and a 1% increment of LNUC leads to a 0.136% decline in
CO2 average. Here, the coefficients of LPOP and LREN are insignificant, while the LNUC
coefficient is significant, similar to the ARDL results.

In the DOLS model, a 1% increment in LGDP, LREN, and LFOS uplift an average of
0.904%, 0.143%, and 4.238% in CO2 emission. These LGDP and LFOS values are significant,
and the LREN value is insignificant, which supports the results of ARDL in Table 6 in
terms of significance. On the contrary, a 1% increment of LPOP and LNUC leads to,
on average, a 0.951% and 0.112% decline in CO2, respectively. Here, the coefficient of
LPOP is insignificant, while the coefficient of LNUC is significant, which is similar to the
ARDL results.

CCR results also show a similar pattern except for the significant result in the case of
LPOP. In the CCR model, a 1% increment in LGDP and LFOS uplift an average 0.444% and
1.500% of CO2 emission. On the contrary, a 1% increment of LPOP, LREN, and LNUC lead
to, on average, 3.328%, 0.247%, and 0.126% decline in CO2, respectively.

4.5. Granger Causality

Table 7 represents the causal association between the explained and explanatory
indicators. It is found that the alternative hypothesis of LGDP Granger causes LCO2 cannot
be accepted, as the p-value of F statistic is larger than 10% statistical significance. However,
the alternative hypothesis of LCO2 Granger causes LGDP is accepted at 5%. Therefore,
there exists one-way causality from LCO2 to LGDP. Similarly, there was found significant
both-way causality amidst LPOP and LCO2, significant one-way causality from LCO2
to LREN, significant bidirectional causality amidst LFOS and LCO2, and no significant
causality between LNUC and LCO2.

Table 7. Granger causality test results.

Alternate Hypothesis: Obs F-Value Prob.

LGDP Granger causes LCO2 48 1.20303 0.3102
LCO2 Granger causes LGDP 4.65097 ** 0.0148
LPOP Granger causes LCO2 48 10.0298 *** 0.0003
LCO2 Granger causes LPOP 4.67718 ** 0.0145
LREN Granger causes LCO2 48 2.3155 0.1109
LCO2 Granger causes LREN 4.17895 ** 0.022
LFOS Granger causes LCO2 42 2.99743 * 0.054
LCO2 Granger causes LFOS 3.46322 ** 0.0418
LNUC Granger causes LCO2 42 0.25927 0.773
LCO2 Granger causes LNUC 0.8145 0.4506

(a) AIC and SIC chose the lag length. (b) More stars mean significant at less significant level (*** = less than 1%,
** = less than 5%, and * = less than 10%).
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4.6. Diagnostic Check Outputs

For the validation of the model’s coefficients, a few tests have been conducted related
to the diagnostic check given in Table 8.

Table 8. Diagnostic check of the ARDL outputs.

Name of the Test Null Hypothesis Statistic Value p-Value

ARCH Heteroskedasticity test H0: Homoskedasticity 0.348
(F-value) 0.558

Breusch–Godfrey
autocorrelation LM test

H0: No autocorrelation up
to 2 lags

1.916
(F-value) 0.170

Ramsey RESET test H0: The functional form of
the model is correct

3.192
(F-value) 0.086

Sources: The authors’ estimates.

The diagnostic techniques include autocorrelation, heteroscedasticity, and specifica-
tion of the regression. The outputs described in Table 8 specify that no misspecification,
heteroskedasticity, or autocorrelation exists in the outputs. Moreover, the functional form
used in the model is also correct, as the null hypothesis of the Ramsey RESET procedure
is accepted. This makes it clear that the findings of this inquiry can be used to reliably
draw conclusions.

For the stability test of the model, CUSUM and CUSUMQ tests have also been con-
ducted (Figure 1). Both figures show that the blue curve remains in the middle of the
boundary curves which confirms the constancy of the research.
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5. Conclusions

A sustainable environment is one of the critical challenges for developed countries in
this century. This study tries to find a solution to reduce CO2 emissions, which is a vital
element of environmental degradation in Italy. Italy is an established developed country
which makes good use of geographical and environmental conditions and systematically
introduces renewable energy. Hence, this paper focuses on finding out the consequences
of GDP, nuclear energy, green and non-green power, and population on CO2 emissions
in Italy. The data range used for this study is from 1972 to 2021. The ARDL model
is used for analytical purposes, and FMOLS, DOLS, and CCR methods are applied for
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their confirmation. Moreover, the STIRPAT model gives the theoretical foundation of
the research.

The STIRPAT model research shows that GDP and fossil fuel usage are the pri-
mary contributors to Italy’s CO2 emissions. This result received support from other
researchers [114,115]. Although the data reveal that renewable energy has a role in low-
ering Italy’s CO2 emissions, increased utilization of renewable energy is correlated with
decreased carbon emissions. A few other types of research [117,118] also found similar
outcomes. However, nuclear energy appears to have a significant appreciable effect on Italy,
lowering CO2 emissions. Voumik et al. [116] confirm this relationship. The population is
also found to reduce CO2 emissions, which is found insignificant [119].

As a result, Italy’s efforts to cut its carbon footprint should prioritize changing
the nation’s energy profile to be less reliant on carbon-based fuels and more toward
renewable fuels.

5.1. Policy Recommendations

Italy can reduce the impression of GDP expansion on carbon release by adopting a
number of policy measures. Firstly, lowering carbon emissions and stimulating economic
growth can be accomplished by investments in sustainable infrastructure like renewable
energy systems, sustainable transport systems, and green buildings. Secondly, firms’ and
industries’ carbon footprints can be reduced while new economic opportunities are created
by supporting innovation in sustainable technology and practices. Thirdly, sustainable
finance laws, such as green bonds, can assist in channeling capital towards environmentally
responsible endeavors and enterprises, boosting the economy and simultaneously lowering
carbon emissions. Fourthly, firms and industries can benefit from increased growth and a
smaller carbon footprint if they implement circular economy methods like decreasing waste
and recycling resources. Promoting economic growth while lowering power usage and
carbon release is possible by encouraging investments in energy-efficient technology and
infrastructure. Incentivizing commercial and residential customers to make energy-efficient
choices like appliance replacements and building redesigns would accomplish this goal.
Solar and wind power, in particular, have enormous promise in Italy. Strategies that assure
the usage of green power bases could lessen the consequences of GDP expansion on carbon
release and cut down on our dependency on fossil fuels. Internalizing the cost of carbon
emissions and incentivizing businesses and individuals to decrease their carbon footprint
can be achieved through carbon-valuing appliances like carbon tax and cap-and-trade
schemes. Carbon pricing could produce enough money to fund initiatives that advance
sustainable energy and lifestyles. In Italy, a lot of the country’s harmful gas releases
originate in the transportation industry. Emissions can be reduced, and economic growth
in the transportation sector can be boosted by encouraging the use of environmentally
friendly modes of transportation, such as electric or hybrid vehicles, bicycling, and public
transportation. All these solutions are slowly being introduced in Italy, which can be a
model for other European countries.

5.2. Limitations and Future Research

The elements contributing to Italy’s CO2 emissions are clarified by examining the
STIRPAT model. Nonetheless, it is important to keep in mind that this study has a number
of important caveats. The assumption that the association between GDP, population,
renewable energy, nuclear and fossil fuels and CO2 release is linear is one of the model’s
limitations. Changes in land use, deforestation, and agricultural techniques are all outside
this study’s scope yet may affect Italy’s CO2 emissions.

The complexity of the associations amid CO2 release and its key indicators may be
better captured in future studies if additional variables are included in the analysis and
more sophisticated statistical models are used. Carbon taxes, subsidies for renewable
energy, and limitations on fossil fuel consumption are only a few examples of policy
interventions that could be studied to understand better their impact on lowering Italy’s
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carbon emissions. Last but not least, studies might investigate how carbon capture and
storage and other promising new technologies could help reduce Italy’s CO2 output.
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