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Abstract: The current work focuses on establishing the parameters that influence the wind’s behavior
over the Aegean and Ionian Seas and estimating the wind potential in the region based on long-
term historic climate data. Combining a downscaling technique performed with the well-founded
WRF-ARW computational algorithm and a number of simultaneous meteorological station time
series, an attempt is made to investigate how regional changes may affect low-altitude wind speed
distribution at hub height (100 m a.s.l.). The provided time-series coastal data span the entire region of
interest from north to south. WRF-ARW v.3.9 is utilized to associate the geostrophic wind distribution
obtained from long-term Copernicus ERA5 wind data with the localized wind potential over lower
altitudes. Evaluation and correlation of the observational data to the predicted wind climate are
performed, and the statistical differences that arise are investigated. High-accuracy wind resource
potential maps are thus obtained in the region. Also, a few distinctive flow patterns are identified,
such as wind speed cut-off regions and very high wind speed distributions, which are presented in
specific southern regions of the Aegean Sea.

Keywords: dynamical downscaling; WRF-ARW; wind resource assessment; wind observational data;
power density

1. Introduction

In order to enhance the precision of results in regions of interest located near coastlines
and incorporate long-term historical wind data, downscaling techniques for climatic data
are employed. Numerous wind-related projects (see, e.g., [1–5]) utilize both satellite and
local climate data, owing to their capability to link microscale and mesoscale weather
events. This approach effectively accounts for the driving geostrophic winds to estimate
low-altitude wind distribution. In Weather Research & Forecasting Model (WRF) Advanced
Research WRF (WRF-ARW) v.3.9 [6], a 1/3 nesting ratio is utilized to enhance the spatial
resolution of the spatial grid, resulting in a 3000 × 3000 m grid, which leads to increased
computational accuracy in the investigated regions, thereby enabling the detection of
finer-wind-scale phenomena.

Since large-scale satellite data merely take the orography into account, it is necessary
to correct the computational results by incorporating input from actual local wind measure-
ments from meteorological stations located at different positions that span the investigated
region. The role of the meteorological station data is twofold. First, cross-correlating
simultaneous results over large distances provides an accurate estimate of the local wind
distribution for large periods of time. One could argue that, in lack of other supporting
tools, this could provide a rough estimate of how the regional topography may influence
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the wind distribution, by comparison to a nearby region. Second, meteorological station
data distribution can be easily incorporated into the current numerical methodology to
account for wind changes arising from the influence of local climatology and topography.

Dynamic downscaling relies on high-resolution modeling by calculating the regional
atmospheric flow. This is a much more computationally expensive approach compared
to statistical downscaling and is itself subject to errors due to imperfect parametrizations
and numerical diffusion. Wang et al. [7], Fowler et al. [8] and Solomon et al. [9] provide
a detailed overview of current regional modeling techniques. One commonly utilized
method is the nesting technique or dynamical downscaling approach, which involves em-
ploying measurements from global circulation models (GCMs) to establish lateral boundary
conditions, sea-surface temperature (SST) and initial land-surface conditions for a subspace
model. Due to the localized nature of extreme events and their close relationship with
topography, it is anticipated that regional downscaled projections of extreme events will ex-
hibit significantly improved accuracy compared to those obtained solely from GCMs. This
expectation has already motivated numerous investigations focusing on climate extremes
at the regional level, as evidenced by studies conducted by Kim [10], Solomon et al. [9] and
others.

Downscaling techniques based on WRF-ARW have been extensively employed in
various research fields, e.g., climate change, extreme weather phenomena, ecodiversity
impacts, wind energy resource assessments and wave modeling. For instance, Larsen
et al. [11] used the WRF mesoscale model to better understand storm episodes over an
extended domain. Mentaschi et al. [12] utilized WRF for improving the spatial resolution of
wind forcing data in order to enhance coastal and marine computational models. Galanis
et al. [13] downscaled 10-year forcing data using WRF to investigate wave energy potential
in the eastern Mediterranean Sea (Med.) area. Zodiatis et al. [14] applied WRF downscaling
techniques to enhance the CYCOFOS (CYprus Coastal Ocean Forecasting and Observing
System) and to evaluate the final results using a novel Calibrate/Validate (Cal/Val) method-
ology [15]. García-Díez et al. [16] and Soares [4] utilized downscaled wind datasets to
estimate the accuracy of wind-power projects in Spain and Portugal, respectively, by corre-
lating them with in situ land and sea datasets. Li et al. [17] downscaled forcing parameters
to drive WAVEWATCH III [18] and SWAN [19] wave models around the Hawaiian Islands
using WRF. Similarly, Markina et al. [20] utilized WRF and WAVEWATCH III for similar
investigations in the North Atlantic. The utilization of WRF-ARW in the above-mentioned
methodologies is mainly due to the need for the input grid of forcing parameters to be of
similar size to the resulting wave parameter grid. While it is common practice to utilize
coarser resolution for the former, in order to conserve computing power, this practice
can have a negative impact on the precision of the outcomes. This is especially true in
near-coastal areas where the interaction between wind and dry land plays a significant role.
The authors of [21] for example, using just the reanalysis wind data without downscaling,
showed great reliability for offshore and flat areas and lower reliability for coastal and
mountainous sites. Sensitivity studies of the WRF in offshore areas show great promise as
well; see, for example, an application in the Baltic Sea in [22].

In weather prediction, regardless of the chosen grid resolution, there exist important
physical procedures that inherently occur on smaller spatiotemporal scales (subgrid scales),
such as cloud microphysics, boundary layer turbulent vertical mixing, and interactions
between the atmosphere and the underlying surface. These processes must be parameter-
ized within the numerical model by an approximation method which is based on known
fixed parameters, or on semiempirical functions, that attempt to account for the arising
subgrid-scale phenomenon. To account for turbulent flow between WRF-ARW vertical
atmospheric levels, one must resolve turbulent closure functions. A full three-dimensional
representation of the atmospheric boundary layer (which WRF and other mesoscale models
are incapable of performing by design) will require immense computational resources
in order to capture the intricate flow interactions that take place. Also, certain arising
processes occur in such minuscule spatial and temporal scales (e.g., cloud microphysics)
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that are merely impossible to be accounted for. While guided to some extent by theory,
these parameterizations are largely empirical in nature and are treated as such. To allow
for a better parametrization of the WRF-ARW v.3.9 model, the problem setup found in
the work of Caldwell et al. [23] is used. This setup is widely referenced and reportedly
provides better results for regional analysis. The parameterizations that can be chosen by
the user in the latest model distribution are as follows: Thompson microphysics (Thompson
et al. [24]), Kain and Fritsch [25] convection, Rapid Radiative Transfer Model (RRTM) long-
wave radiation (Mlawer et al. [26]), Dudhia [27] shortwave radiation, Yonsei University
(YSU) boundary layer scheme (Hong et al. [28]) and Rapid Update Cycle (RUC) surface
parameterization (Smirnova et al. [29,30]). The motive behind the specific choices is given
by Chin [31]. Arasa et al. [32] and Aligo et al. [33] also present detailed information on
parametrization and vertical level selection.

Various techniques have been developed to adjust regional climate models (RCMs) to-
wards large-scale input data. These techniques range from tuning to nudging, with the aim
of minimizing the drift of the RCMs and improving their accuracy. Examples of nudging
techniques include reinitializing the RCMs from the Global Circulation Model (GCM) data
on a monthly basis and nudging the model towards large-scale fields throughout the RCM
domain. These techniques have been found to significantly influence the model results.
Studies by Kida et al. [34] and von Storch et al. [35] have investigated various nudging
techniques for improving RCM performance. Similarly, Caldwell et al. [23] have employed
monthly reinitialization from GCM data to prevent the regional model from deviating. Fur-
thermore, this approach offers the advantage of enabling the execution of simulations for
multiple months simultaneously, resulting in a substantial enhancement of the processing
capacity. The current work focuses on the application of a coupled downscaling method by
using the RCM to downscale the ERA5 data [36], applying the output to the calculation of
the wind energy potential and producing the necessary data parameters over a very fine
computational grid. The uncertainties associated with using reanalysis datasets like the
ERA5 for wind data are critically reviewed in [21] and show great promise.

The RCM [6] is used to perform the downscaling of ERA5 meteorological data to
higher-resolution grids (3000 m × 3000 m) for the Aegean and Ionian Seas. The input data
collected and archived have been used as initial and boundary conditions for the WRF
model. The sea-surface and near-sea-surface level data originating from the observation
buoys [37] and meteorological stations [38] in the eastern Med. region are used to correct
the local climatology within the WRF model and produce high-quality results over the finer
computational grids. The produced results have been thoroughly tested using correlation
and sensitivity analysis techniques, given in detail in the current paper. Both model input
and setup parameters have been thoroughly modified to examine case and parameter
sensitivities.

The wind potential (U) and power density (PD = 1/2ρU3, where ρ is the air density),
can be derived from the wind speed, which is obtained either from models [39,40] or
reanalysis datasets [41–43] or observed by satellites [44,45]. These studies aim at assessing
the wind resource spatial characteristics under future climate change to better inform
decisions. A study that combines the Sentinel-1 satellite images and downscaling WRF
model can be found in [46] with the same goal. Lastly, clustering techniques have been used
for offshore wind resource management; for example, see [47], which uses self-organizing
maps. The interest in this field of research is increasing as power needs increase and the
transition to renewable and sustainable energy is being implemented.

The novelties and new findings that this study presents are as follows: (i) A 40-year
duration (1980–2019), 3000 m grid-size investigation of the regional nearshore and offshore
wind distribution over Greek waters is presented. This is the first instance in the literature
where this particular grid size and duration combination is used. (ii) The WRF algorithm is
calibrated and evaluated for the entire Greek island complex and the eastern Mediterranean
Sea using ERA5 reanalysis as forcing input data, also a first in the area. (iii) Aegean Sea
locations with heightened wind speed and power density distributions are pinpointed
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and studied. This study aims to identify regions with wind energy potential suitable for
sustainable nearshore and offshore wind farm installations. In terms of power density
distribution, it is important to show all possible locations (both with higher and lower
values) and namely isolate only those that display a promising wind potential. (iv) This
study includes the presentation and evaluation of the temporal history of and variability
in the local wind speed and power density over a 40-year period using annual and 5-year
temporal averaging techniques. This presents the interannual variability in the wind energy
potential and at the same time provides a more detailed insight into the way the wind
potential changes over time.

This paper is structured as follows: In the next section, the region of interest is
discussed along with the description of the downscaling model for meteorological data.
Details about the calibration and validation of the model are given as well. After that, the
results section follows, where outputs of the model focusing on wind speed and power
density over 40 years in the area of interest are shown. Finally, the paper concludes with a
discussion of the results.

2. Downscaling of Meteorological Data
2.1. Region of Interest

The study region comprises the Aegean Sea and the Ionian Sea near the shoreline, as
well as parts of the Cretan Sea and Libyan Sea, particularly those in the vicinity of Crete
and surrounding areas, covering the entire Hellenic waters. Figure 1 shows the entirety of
the proposed study area, along with some specifically mentioned key locations.

1 
 

 

Figure 1. Orientation map and extent of the computational domain. Specific locations that are
mentioned in the current work are identified.

2.2. Model Description

The meteorological model WRF produces time-series data of wind vector distribution,
air temperature, humidity, total solar radiation, sensible and evaporative heat fluxes, etc. at
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each grid cell. The following flowchart summarizes the entire calculation process starting
from the stored data in the database, followed by the calculation processes and finally the
postprocessing of results and output storage (Figure 2).
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Figure 2. Proposed flowchart summarizing the calculation process.

The datasets used for topography, land use and land–water mask interpolation were ob-
tained from the USGS Global Multi-resolution Terrain Elevation Dataset (GMTED2010) [48,49]
and the Copernicus Land Monitoring Service EU-DEM product. The initial and boundary
conditions for the atmosphere model were derived from the ERA5 “reanalysis” dataset [36]
that provides meteorological data from 1950 onwards. The ERA5 reanalysis dataset is
a fifth-generation ECMWF atmospheric reanalyzed dataset that integrates models with
satellite-sourced information as well as in situ land-based sensors to create a consistent his-
torical record of meteorological conditions. Throughout the entire hindcast period, annual
simulations were conducted with updated analyses. More specifically, the atmospheric
initial conditions were reinitialized every 24 h. The boundary conditions were imposed
every 3 h to ensure accurate and consistent results. This setup is similar to the work carried
out in [50].

WRF-ARW [6] is a FORTRAN 90-based algorithm. The Weather Research and Forecast-
ing (WRF) model’s equation set is non-hydrostatic, fully compressible and Eulerian, with
an option for hydrostatic run-time. It is built to conserve the scalar variables and employs
a terrain-following, hydrostatic pressure coordinate system. The horizontal grid follows
the Arakawa-C convention and spatial discretization ranges from a 2nd- to 6th-order
Runge–Kutta scheme. The model can be set up with various lateral boundary condition
options and for spatial nesting; there is availability for one-way, two-way or moving nest
options. The model is built for a distributed memory environment and uses the Message
Passing Interface (MPI) for calculations, which were performed at the Greek National HPC
facility—ARIS.
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WRF version 3.9.1 was applied to ERA5 forcing data to produce results on a horizontal
grid spacing of 3000 m. The simulation period spanned a hindcast period of 40 years and
6 months, from 1 January 1980 to 30 June 2020. The model domain covers the eastern
and western Med. Sea to be able to capture the predominant wind direction. The vertical
structure of the model domain is divided into 50 levels, where the first 400 m of height are
discretized into increments of approximately 25 m with a gradual increase in the increment
size. The model has approximately 22 levels below 1 km height and is topped at 50 hPa.
The setup parameterization follows the one documented in [3].

2.3. Choice of Model Parameters and Setup

The physical parameterizations employed in the study consist of several schemes,
including the microphysics WSM 3 class and 5 class single-moment scheme [51], the
Kain–Fritsch Scheme cumulus scheme [52] and the Yonsei University Scheme (YSU) plane-
tary boundary layer scheme [28]. In addition, the study uses the Rapid Radiative Transfer
Model (RRTM) [26] longwave radiation, the Revised MM5 Surface Layer Scheme [53], the
Unified Noah Land Surface Model [54] and the Dudhia shortwave radiation [27]. These
parameterizations were selected based on their reliability and computational cost, as sup-
ported by previous studies. The details of the motivation for their selection are provided
in [23,31]. Moreover, these options have been utilized in previous climate studies [55].

Certain authors have highlighted the challenges that regional climate models (RCMs)
such as WRF may encounter when attempting to depict large-scale characteristics due
to the constraints imposed by boundary forcing [56]. To mitigate this problem, grid
nudging [57,58] was used at the full extent of the computational domain. Every 6 h, the
nudging process is carried out on all levels above the planetary boundary layer, except for
those below the 10th grid level. The technique of nudging was initially presented in the
work of Waldron et al. [59] and von Storch et al. [35] and has since been further improved
and explored in numerous studies. However, its implementation is not universally adopted,
as evidenced by the works of Alexandru et al. [60] and Miguez-Macho et al. [61]. This
disagreement arises from debates surrounding the benefits of constraining the large scales
of RCMs and the potential adverse effects that may arise. Some of the errors observed
at shorter time scales may be due to challenges in effectively coupling boundaries across
different models that the WRF uses.

Various methods of nudging have been developed; some involve fine-tuning while
others involve nudging towards larger regions across the entire domain of the RCM.
Examples of these techniques are described by Kida et al. [34] and von Storch et al. [35].
In the present simulation, in order to avoid model drift, each run is reinitialized every
three months using ERA5 data. This method, which is proposed among others by Pan
et al. [62], offers an added advantage as it enables the concurrent execution of simulations
for multiple months, leading to a substantial augmentation in computational output. It
also circumvents a problem that most regional climate models like WRF exhibit, which is
that they cannot conserve mass for longer temporal calculations due to the fact that they
were not designed for long runs.

2.4. Computational Environment

The required computational resources, for the dynamic downscaling of the climatic
conditions in the region using WRF 3.9.1., were provided by the National Infrastructures
for Research and Technology S.A. (GRNET S.A.) in the National HPC facility—ARIS.

In the current work, WRF 3.9.1 was successfully installed and configured to model the
entirety of the Hellenic region using a 3000 m × 3000 m grid. The vertical layer calculation
includes 50 layers. Each yearly calculation requires approximately 350 × 250 grid points
and 50 vertical layers in order to cover the entire Hellenic region for the finer grid. Us-
ing a moderate time-stepping of 15 s to 20 s for the finer grid, this translates to over
1.6 × 106 iterations for a yearly calculation. Several calculations were performed to val-
idate the accuracy of the results under different spatial and temporal resolutions. The
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aforementioned setup yields the best results possible and is in agreement with the litera-
ture. Our method of calculation of the wind climate of the area incorporates grid-nudging
techniques which are very sensitive to changes in boundary and initial conditions as well
as changes in the local topography.

In order to correctly set up a nudging-based calculation that will systematically pro-
duce realistic results, a significant number of calculations had to be performed over different
temporal periods in the past and with different parametrizations. Grid (or analysis) nudg-
ing is prone to numerical error, especially when inappropriate nudging coefficients are
used, which are in many cases dependent on the locality of the terrain and on the climatic
conditioning. Additional computing power was used to further investigate how to effi-
ciently set up grid nudging and tackle unexpected segmentation faults that occurred almost
randomly during the computational session, thus terminating the simulation procedure.

To check the validity of the results and investigate the reasons for the occurring segmen-
tation faults, multiple seasonal calculations were performed (approximately
30 calculations). With a 15 s time-step and a time-stepping duration of the order of 0.04 s
for a 480 core calculation (nudging is somewhat associated with weak scaling) and a total
of 518,400 iterations (see Table 1 for details) the required core-hours amount to 2764.8 h.
For 30 test calculations, this sums up to 80,000 core-hours approximately.

Table 1. Justification of required core-hours.

(A) Core No. (B) Days/
Season

(C)
Hours/Day

(D)
Seconds/Hour

(E = B × C ×
D) Total No.

S/Season

No. of
Iterations

(F = E/15 s)
(G) Duration
of Iteration

(H = A × F
× G/3600)

Core–Hours
480 90 24 3600 7,776,000 518,400 0.04 s 2764.8

In order to downscale the entirety of the domain for the 40-year hindcast period, an ex-
cess of 250,000 core-hours was required, in addition to the aforementioned
80,000 core-hours.

2.5. Sensitivity Analysis and Model Calibration

Several computations were conducted to accurately configure the model and effec-
tively simulate the climate characteristics within the computational domain in a customized
way that can address the complexity of the local climate. Both the Aegean and Ionian
Seas are confined by high-altitude mountainous regions, created as a result of the Hellenic
Volcanic Arc [63], thus creating a unique funnel-like wind flow in the area, especially in the
Aegean Sea, where the northern and northwestern wind directions are predominant. This
unique topography-dominated wind flow needs to be modeled with specific parametriza-
tion. To validate the realism of the model, it is necessary to use a stationary observational
dataset as a reference to establish the most appropriate model parameters.

In order to estimate how the changes in model parameters influence the results, this
study validated the proposed WRF test case results using observations from land-based
meteorological stations. The goal was the development of a validation system using in
situ ground observations versus the numerical model results. Four statistical indices were
utilized to evaluate the accuracy of the WRF test case results. These indices, namely
bias, RMSE, Nash–Sutcliffe model efficiency coefficient, and correlation coefficient, were
chosen for their established reliability. During the implementation of the methodology,
the respective statistical indices were calculated at each meteorological station and were
correlated with the corresponding WRF result at the same location for all the available times
that both simulated and observed data were available. Similarly, to derive one statistical
index per year, the mean value for all the locations that fell within the region of interest
was computed. Additional information about this methodology is shown in the work of
Kozyrakis et al. [15], Zhuk et al. [64] and Zodiatis et al. [14].

To evaluate the accuracy of the WRF results, several data sources were used, including
daily NOAA METAR ISH ground data obtained from the “NOAA National Centers for
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Environmental Information (2001): Global Surface Hourly” [38]. Priority was given to mete-
orological stations that fell within the border of the finer-grid domain and covered the Hel-
lenic waters (as shown in Figure 3). ISD/ISH is the Integrated Surface Database/Integrated
Surface Hourly data [65,66] composed of worldwide surface weather observations from
over 35,000 stations, providing mean hourly results. The meteorological station data
used in the study are based mainly on airport meteorological stations (summarized in
Figures 3 and 4). The stations used in the study use cup anemometers and wind vanes and
the provided results are quality-monitored by NOAA’s National Centers for Environmental
Information (NCEI). Wind parameters are normalized in accordance with WMO format
and quality standards so that a unified output format is consistent for the entire database.
The advantages of using the aforementioned data are that they practically cover the entire
globe, are easy to download, are readily available and in some cases span over 50 years in
the past, making them ideal for long-term evaluation campaigns.

Energies 2023, 16, x FOR PEER REVIEW 8 of 21 
 

 

was computed. Additional information about this methodology is shown in the work of 
Kozyrakis et al. [15], Zhuk et al. [64] and Zodiatis et al. [14]. 

To evaluate the accuracy of the WRF results, several data sources were used, includ-
ing daily NOAA METAR ISH ground data obtained from the “NOAA National Centers 
for Environmental Information (2001): Global Surface Hourly” [38]. Priority was given to 
meteorological stations that fell within the border of the finer-grid domain and covered 
the Hellenic waters (as shown in Figure 3). ISD/ISH is the Integrated Surface Database/In-
tegrated Surface Hourly data [65,66] composed of worldwide surface weather observa-
tions from over 35,000 stations, providing mean hourly results. The meteorological station 
data used in the study are based mainly on airport meteorological stations (summarized 
in Figures 3 and 4). The stations used in the study use cup anemometers and wind vanes 
and the provided results are quality-monitored by NOAA’s National Centers for Environ-
mental Information (NCEI). Wind parameters are normalized in accordance with WMO 
format and quality standards so that a unified output format is consistent for the entire 
database. The advantages of using the aforementioned data are that they practically cover 
the entire globe, are easy to download, are readily available and in some cases span over 
50 years in the past, making them ideal for long-term evaluation campaigns. 

 
Figure 3. NOAA ISD/ISH METAR station positions along the coastline of the Mediterranean Sea 
and selected stations for the Hellenic region (red rectangle). 

The results were compared to the NOAA ISD/ISH ΜΕΤΑR near-coast stations, effec-
tively demonstrating that the use of grid nudging gives larger correlation coefficient val-
ues that enhance performance. The literature consistently reports and anticipates the pres-
ence of higher wind-speed bias and root-mean-square error (RMSE) values; please refer 
to the work of Mass et al. [67] and Lorenz and Barstad [3]. The dynamical downscaling in 
most locations reduces the RMSE; although, a higher wind-speed RMSE is observed at 
some stations, as demonstrated in Figure 4. Considering that a downscaling from 27.75 
km to 3 km grid spacing is performed, the amount by which the RMSE increases is rea-
sonable. As described by Mass et al. [67], increasing the horizontal grid resolution typi-
cally leads to improved resolution of mesoscale atmospheric flow features. However, tim-
ing errors in the synchronization between the model and the actual flow are likely to be 
magnified and subsequently penalized in terms of RMSE. In Figure 4, the bar graph of the 
aforementioned statistical error indices is shown per meteorological station in the area of 
interest for the wind speed variable. The indices are calculated for the ERA5 wind input 
data (without downscaling) and the WRF. The downscaled results demonstrate signifi-
cant enhancement for all four statistical indices, with lower values of bias and RMSE ob-
served throughout the annual mean and better values of correlation and N-S efficiency 
coefficients. This improvement is significant when compared to the non-downscaled 

Figure 3. NOAA ISD/ISH METAR station positions along the coastline of the Mediterranean Sea
and selected stations for the Hellenic region (red rectangle).

Energies 2023, 16, x FOR PEER REVIEW 9 of 21 
 

 

ERA5 wind data and is observable for the entirety of the year in question, thus demon-
strating a highly promising outcome of the methodology followed. 

The ERA5-WRF case is more accurate with respect to the bias, RMSE and correlation 
coefficient indices. By introducing full grid-nudging to the ERA5 input data, the results 
are significantly improved over all the calculated statistical indices. Other researchers in 
the literature have also advocated for the use of analysis (grid) nudging [57,58] in wind-
related dynamical downscaling projects, including references [3,4,23,34,35,57–59,67,68].  

 
Figure 4. Bar graph with wind speed error metrics for one reference year based on the NOAA 
ISD/ISH ΜΕΤΑR near-coast stations for the Hellenic region. The gradient lines symbolize WRF-
ERA5 results, while the same colors in solid fills are the corresponding ERA5 errors per station. 

On the contrary, tests carried out using spectral nudging [61] generated outcomes 
that were comparatively less precise than the non-nudged ones, always using the land 
meteorological station data as a baseline. Therefore, the use of the aforementioned setup 
parameters, utilizing analysis nudging, is proposed as optimal parametrization for the 
subsequent calculations. 

3. Results 
Due to the sheer volume of the results for a 40-year period, the results are post-pro-

cessed and presented as annual and interannual mean distributions and seasonal and de-
viational distributions. 

There is significant variability in the downscaled wind climate during the 40-year 
hindcast period. The reason is twofold: firstly, the long-term climate periodicity; secondly, 
the climate-change effects. Long-term yearly periodicity is easily monitored, whereas cli-
mate-change variability is more difficult to prove, and as it is not within the scope of this 
project, it will not be further analyzed. The wind distribution obtained by the 3000 × 3000 
m grid resolution is not detailed enough to capture accurately the highest wind speeds 
near the coast in the southeastern Aegean Sea. It is expected that even finer grids would 
reveal higher wind speed values. However, this is not feasible with the current grid size. 
Despite this limitation, the wind results (Figures 5 and 6) agree well with the results re-
ported in previous studies [44,69,70]. All given results are computed at 100 m a.s.l. (meters 
above sea level), unless otherwise mentioned. 
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ISD/ISH METAR near-coast stations for the Hellenic region. The gradient lines symbolize WRF-
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The results were compared to the NOAA ISD/ISH METAR near-coast stations, effec-
tively demonstrating that the use of grid nudging gives larger correlation coefficient values
that enhance performance. The literature consistently reports and anticipates the presence
of higher wind-speed bias and root-mean-square error (RMSE) values; please refer to the
work of Mass et al. [67] and Lorenz and Barstad [3]. The dynamical downscaling in most
locations reduces the RMSE; although, a higher wind-speed RMSE is observed at some
stations, as demonstrated in Figure 4. Considering that a downscaling from 27.75 km to
3 km grid spacing is performed, the amount by which the RMSE increases is reasonable.
As described by Mass et al. [67], increasing the horizontal grid resolution typically leads to
improved resolution of mesoscale atmospheric flow features. However, timing errors in
the synchronization between the model and the actual flow are likely to be magnified and
subsequently penalized in terms of RMSE. In Figure 4, the bar graph of the aforementioned
statistical error indices is shown per meteorological station in the area of interest for the
wind speed variable. The indices are calculated for the ERA5 wind input data (without
downscaling) and the WRF. The downscaled results demonstrate significant enhancement
for all four statistical indices, with lower values of bias and RMSE observed throughout
the annual mean and better values of correlation and N-S efficiency coefficients. This
improvement is significant when compared to the non-downscaled ERA5 wind data and is
observable for the entirety of the year in question, thus demonstrating a highly promising
outcome of the methodology followed.

The ERA5-WRF case is more accurate with respect to the bias, RMSE and correlation
coefficient indices. By introducing full grid-nudging to the ERA5 input data, the results are
significantly improved over all the calculated statistical indices. Other researchers in the
literature have also advocated for the use of analysis (grid) nudging [57,58] in wind-related
dynamical downscaling projects, including references [3,4,23,34,35,57–59,67,68].

On the contrary, tests carried out using spectral nudging [61] generated outcomes
that were comparatively less precise than the non-nudged ones, always using the land
meteorological station data as a baseline. Therefore, the use of the aforementioned setup
parameters, utilizing analysis nudging, is proposed as optimal parametrization for the
subsequent calculations.

3. Results

Due to the sheer volume of the results for a 40-year period, the results are post-
processed and presented as annual and interannual mean distributions and seasonal and
deviational distributions.

There is significant variability in the downscaled wind climate during the 40-year
hindcast period. The reason is twofold: firstly, the long-term climate periodicity; secondly,
the climate-change effects. Long-term yearly periodicity is easily monitored, whereas
climate-change variability is more difficult to prove, and as it is not within the scope
of this project, it will not be further analyzed. The wind distribution obtained by the
3000 × 3000 m grid resolution is not detailed enough to capture accurately the highest
wind speeds near the coast in the southeastern Aegean Sea. It is expected that even finer
grids would reveal higher wind speed values. However, this is not feasible with the current
grid size. Despite this limitation, the wind results (Figures 5 and 6) agree well with the
results reported in previous studies [44,69,70]. All given results are computed at 100 m a.s.l.
(meters above sea level), unless otherwise mentioned.



Energies 2023, 16, 5965 10 of 20Energies 2023, 16, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 5. Mean yearly wind speed distribution over sea at 100 m a.s.l., based on long-term averaging 
(40 years). 

 
Figure 6. Mean yearly power density distribution over sea at 100 m a.s.l., based on long-term aver-
aging (40 years). 

Seasonal variability in wind speed is evident over the 40-year period (Figures 7 and 
8). The wind speed distribution during summer and winter is milder than that in other 
studies. During summer, high wind speeds are observed at the same time as the emer-
gence of Etesian winds [71,72] and occasional intense winds with a southern direction 
which are usually accompanied by Sahara dust incidents [73]. The wind flow during sum-
mer is typically north-northeasterly over the central Aegean, turning northwesterly over 
the southeastern Aegean, which is a common characteristic of the Etesian flow [71,72]. The 
spring and autumn distributions are found to be consistent with the literature. During the 
spring season, wind speeds in the southeastern region of the Aegean Sea, specifically be-

20°

20°

21°

21°

22°

22°

23°

23°

24°

24°

25°

25°

26°

26°

27°

27°

28°

28°

29°

29°

35° 35°

36° 36°

37° 37°

38° 38°

39° 39°

40° 40°

41° 41°

Cretan Sea
0.00
0.03
0.25
0.80
1.95
3.75
6.50
10.50
15.50
22.00
30.00
40.00
52.00
65.00
82.00
102.00
122.00
150.00
175.00
205.00
240.00
280.00
320.00
365.00
415.00

ERA5-WRF 
40-Years
Mean Annual
Power Density
@100 m a.s.l.
(W/m2)

Figure 5. Mean yearly wind speed distribution over sea at 100 m a.s.l., based on long-term averaging
(40 years).

1 
 

 

Figure 6. Mean yearly power density distribution over sea at 100 m a.s.l., based on long-term
averaging (40 years).

Seasonal variability in wind speed is evident over the 40-year period (Figures 7 and 8).
The wind speed distribution during summer and winter is milder than that in other studies.
During summer, high wind speeds are observed at the same time as the emergence of
Etesian winds [71,72] and occasional intense winds with a southern direction which are
usually accompanied by Sahara dust incidents [73]. The wind flow during summer is
typically north-northeasterly over the central Aegean, turning northwesterly over the
southeastern Aegean, which is a common characteristic of the Etesian flow [71,72]. The
spring and autumn distributions are found to be consistent with the literature. During
the spring season, wind speeds in the southeastern region of the Aegean Sea, specifically
between the islands of Karpathos, Rhodes and eastern Crete, exhibit a more gradual
distribution with higher values. The consistent high wind speeds between Karpathos and
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eastern Crete throughout the year can be attributed to the distinctive local topography of
these islands, where certain areas have terrain elevations exceeding 1200 m above sea level.
The presence of orographic speed-up effects and flow constriction, also known as Venturi
effects [71], causes the near-surface wind to follow specific pathways over the sea, resulting
in a shift towards northwesterly directions and naturally increasing the distribution of
wind speeds in the region.
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Annual variability (Figures 9–12) is also of great importance and presents an interesting
variation throughout the 40-year period. The 5-year and yearly mean wind speed deviations
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from the 40-year averaged distribution were used in this case because a much finer temporal
variation can be observed compared to the mean yearly wind speed distribution. White
contoured regions depict no variation from the 40-year mean, hot regions (red spectrum)
show increased wind speed and cold regions (blue spectrum) show decreased speed
compared to the 40-year mean. During the first decade (1980–1989), stronger yearly wind
speeds are found during the years 1981, 1982 and 1986. For 1982 and 1986, higher values are
found in the northeastern Aegean Sea. During the second decade (1990–1999), the year 1994
shows higher wind speed values in the entire area of interest, whereas for the third decade
(2000–2009), the years 2000, 2003 and 2006 display peak average wind speeds. During
the last decade (2010–2019), the year 2011 displays a very distinct difference compared
to all the previous years throughout the 40-year period. Such a strong wind distribution
is unique in the 40-year calculations. This wind distribution is strongly connected to
the double-dip La Niña event [74,75] that occurred in late 2010 and early and middle
2011. La Niña is a well-studied periodic cooling of ocean surface temperatures in the
central and east-central equatorial Pacific Ocean and accounts for the cold phase of the El
Niño–Southern Oscillation (ENSO) cycle. Although it seems unrelated to the local wind
climate, its influence has been documented in the literature on multiple occasions. For
example, Feng et al. [74] illustrate how sea level, sea-surface temperature and wind stress
anomalies were distributed under La Niña’s lasting influence during the 2010–2011 extreme
event. During the 40-year period, there exists an obvious alternating pattern in the wind
velocity, interchanging between the Aegean and Ionian Seas, but it is very difficult to
determine an exact frequency of alternation. The overall distribution remains bounded
throughout the years, displaying only occasional and non-periodic extremities.
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Figure 13 shows details on the area-mean wind speed over “Sea-only” and “Sea+Land”
masses for the region of interest, calculated within the limits of the computational grid.
This figure summarizes which years present higher wind speed values during the 40-year
period and how the area-mean wind speed over sea mass correlates to the wind speed
over the entire domain (both land and sea masses). The wind flow over the complex
terrain of the eastern Med. displays significantly lower velocities compared to the flow
over sea masses in the Aegean and Ionian Seas. Wind flow over terrestrial domains is
characterized by higher turbulence intensity distributions, flow separation and deflection
due to terrestrial formations, blockage effects, flow deceleration due to increased roughness
heights, etc. These effects significantly decrease terrestrial flow velocities compared to
the wind flow over sea masses, where these dependencies are less influential and the
sea-surface roughness (dynamic roughness due to wind-generated waves), fetch length,
flow duration and direction play a more important role.
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4. Discussion

An interesting phenomenon demonstrated in our results, more frequently observed
around the Aegean islands, is the existence of an upwind cut-off region in many islands,
accompanied by an orographic speed-up effect on the lee side of the island, with respect
to the prevailing wind direction [1,76] (Figure 5). Although this is counterintuitive at
first, it can easily be explained: On the upwind side, especially near islands with taller
topographic features (mountainous regions, hills, etc.), flow recirculation can be caused by
an elevated obstacle acting as a physical barrier to the oncoming wind flow. Additionally,
rapid changes in surface roughness occurring along the coastline significantly slow down
the wind flow. On the leeward side, a short distance from specific islands (e.g., locally
in Crete and Evia, Kasos, Karpathos, Ikaria, Samos, Amorgos and others), an increase in
wind flow velocity can be found, mainly due to orographic speed-up effects caused by
the same mountainous regions. Flow separation can easily occur along the ridgeline of
the mountainous formation, causing flow recirculation and a decrease in velocity on the
downwind side, but while moving further away from the obstacle, the influence of the
orographic speed-up effect is sustained, thus locally increasing the flow velocity. These
occurrences are found in specific regions in the Aegean Sea and are absent in others. This is
partly due to local atmospheric conditions; the shape, steepness, elevation and orientation
(aspect) of the terrestrial formations with respect to the prevailing wind direction; the local
wind intensity and quality (turbulence levels, wind shearing, etc.); and possibly other
factors.

The wind potential in the northern Ionian Sea is relatively low. The Ionian Sea
experiences significantly lower wind potential compared to the Aegean Sea, primarily due
to its geographical position that shields it from the northern and northeastern land masses
of Albania, western Greece and Epirus. The difference in wind potential between the two
regions is substantial, reaching several orders of magnitude. The annual wind speeds in the
region are generally low, ranging from 2.5–3.5 m/s close to the north up to 3.5–4.5 m/s in
the southern Ionian Sea. However, certain individual years within the 40-year calculation
period have shown annual mean wind speeds of up to 4.5 m/s in the area surrounding
southern Peloponnesus, Kithira Island and the western Cretan Sea, where the presence of
open fronts from the eastern and western ends provides greater fetch lengths, particularly
when north-northwesterly and westerly wind directions prevail. These wind directions
have a higher likelihood of occurring in the region. The mean wind speed distribution
during the summer months in the area can reach up to 6 m/s, while in the Aegean Sea,
it can exceed 7.5 m/s in certain locations during the same period. The region commonly
encounters wind directions predominantly from the north to northwesterly directions,
which further shift towards the northwesterly direction in the vicinity of the Cretan Sea.
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The land areas of Peloponnesus and Crete, with their mountainous topography shaped
under the influence of the Hellenic Volcanic Arc, are primarily influenced by these principal
wind directions while obstructing the rest.

5. Conclusions

Seasonal variations in wind speed distribution have been well established based on
40-year calculations. The wind speed distribution during summertime is generally mild,
while that for winter is more pronounced. The regions with high wind speeds have been
identified, with the southeastern Aegean Sea presenting a clear increase in wind speed,
showing the highest magnitude in the eastern Med. Sea, near Karpathos Island. The
wind potential in the northern Ionian Sea is relatively low. This is due to the region being
shielded by the northern and northeastern orography of Albania, western Greece and
Epirus, which significantly reduces its wind potential compared to the Aegean. However,
the area between the southern Ionian Sea and the western Cretan Sea displays increased
wind speed values. In the winter, the mean wind speed distribution can be as high as 6 m/s,
while in some specific locations in the Aegean Sea, it is more than 7.5 m/s during the same
period. Annual variability is evident in the region throughout the 40-year period with some
occasional and non-periodic extremities. There exists an alternating pattern in the wind
velocity, interchanging between the Aegean and Ionian Seas, but it is currently difficult
to quantify. This study has identified the high-wind regions within the Hellenic waters.
These findings provide valuable insights into the wind patterns and high-wind regions of
the Hellenic waters, which can inform future research and planning for renewable energy
projects. There is growing interest in harvesting the wind energy potential of the central
and southern Aegean Sea. Compared to the wind speed magnitudes, for example, of the
northeastern Atlantic coasts, the wind speeds are lower in the Hellenic region, but the
Hellenic Archipelago offers a number of significant benefits to potential investors. These
include the close proximity of the potential sites to the coastlines, the shorter connections
to the regional power grids, the existence of pockets of high wind energy in the central
and southern Aegean Sea and Cretan Sea, the increase in supplemented energy capacity,
and the additional electrification of Hellenic islands with renewable energy resources, thus
making future wind energy exploitation in the region very rewarding.
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76. Ulbrich, U.; Lionello, P.; Belušić, D.; Jacobeit, J.; Knippertz, P.; Kuglitsch, F.G.; Leckebusch, G.C.; Luterbacher, J.; Maugeri, M.;
Maheras, P.; et al. 5-Climate of the Mediterranean: Synoptic Patterns, Temperature, Precipitation, Winds, and Their Extremes. In
The Climate of the Mediterranean Region; Lionello, P., Ed.; Elsevier: Oxford, UK, 2012; pp. 301–346. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1175/JCLI-D-11-00073.1
https://doi.org/10.1175/2007JAMC1653.1
https://doi.org/10.1175/1520-0450(1994)033&lt;0416:MFDDA&gt;2.0.CO;2
https://doi.org/10.1175/1520-0493(1996)124&lt;0529:SOASFA&gt;2.0.CO;2
https://doi.org/10.1175/2008MWR2620.1
https://doi.org/10.1029/2003JD004495
https://doi.org/10.1175/1520-0493(1999)127&lt;0308:LSORCA&gt;2.0.CO;2
https://doi.org/10.1016/0040-1951(79)90131-8
https://doi.org/10.1175/2011BAMS3015.1
https://doi.org/10.1175/1520-0477(2002)083&lt;0407:DIHRPM&gt;2.3.CO;2
https://doi.org/10.3390/jmse4010018
https://doi.org/10.1016/j.enconman.2022.116470
https://doi.org/10.5194/nhess-9-1845-2009
https://doi.org/10.1002/qj.49712757604
https://doi.org/10.2147/COPD.S208108
https://doi.org/10.1038/srep01277
https://www.ncbi.nlm.nih.gov/pubmed/23429502
https://doi.org/10.1002/joc.6772
https://doi.org/10.1016/B978-0-12-416042-2.00005-7

	Introduction 
	Downscaling of Meteorological Data 
	Region of Interest 
	Model Description 
	Choice of Model Parameters and Setup 
	Computational Environment 
	Sensitivity Analysis and Model Calibration 

	Results 
	Discussion 
	Conclusions 
	References

